BOSCH Guideline GTL (Global Transport Label)

Basis: VDA 4994

Contents
1 Introduction .. 5
2 Function of labels (VDA 4994) .. 6
3 Consignments and transport (VDA 4994) .. 7
4 Size, layout and application of labels .. 7
 4.1 Dimensions (VDA 4994) ... 7
 4.2 Data fields on labels (BOSCH) ... 10
 4.2.1 Combined GTL/MAT-Label (BOSCH) .. 13
 4.3 Technical Requirements (BOSCH) ... 13
 4.4 Types of labels (BOSCH) .. 14
 4.5 Labels for small load carriers - SLCs (VDA 4994) ... 16
 4.6 Label pasting (BOSCH) ... 16
 4.7 Handling Unit structure and transfer into the ASN (BOSCH) 17
5 Description of data fields (BOSCH) .. 19
6 Identification of packages and loading units (BOSCH) ... 22
7 Barcode, 2D code and optional RFID tag (BOSCH) ... 23
 7.1 1D barcode (BOSCH) ... 23
 7.2 2D Data Matrix symbol (BOSCH) .. 23
 7.2.1 Symbol size ... 23
 7.2.2 Positioning .. 23
 7.2.3 Message structure and user data ... 25
 7.2.4 Segmentation of Information in 2D Code .. 26
 7.3 RFID tags used in conjunction with smart labels (BOSCH) 27
8 Delivery scenarios and requirements regarding the information on the labels (VDA 4994) ... 27
9 Label for shipments of empty packages (VDA 4994) .. 27
10 Appendix (BOSCH) .. 28
10.1 List of Figures .. 28
10.2 Font size Global Transport Label (VDA 4994) ... 29
10.3 List of tables ... 30
Document history

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Change/History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>25.02.2020</td>
<td>Guideline creation</td>
</tr>
</tbody>
</table>

Contact person

<table>
<thead>
<tr>
<th>Name</th>
<th>E-Mail Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfeffer, Achim</td>
<td>Achim.Pfeffer@de.bosch.com</td>
</tr>
</tbody>
</table>

List of Abbreviations

AIAG: Automotive Industry Action Group
ASCII: American Standard Code for Information Interchange
ASN: Advanced Shipping Notification
DESADV: Despatch advice, an international standard for the format for the exchange of electronic data in business transactions. DESADV corresponds to the ASN.
DI: Data Identifier (ISO/IEC 15418)
DMC: Data Matrix Code (ISO/IEC 16022)
DUNS-Number: Data Universal Numbering System (developed and regulated by DUN & BRADSTREET‘)
ESD: Electrostatic discharge
GLN: Global Location Number
GS1: Global Standards One
GTL: Global Transport Label
HU: Handling Unit
MAT-Label: Material label (VDA 4992)
NVE: Nummer der Versandeinheit (shipping unit number)
Odette

Odette is a pan-European collaboration and services platform to create standards for the automotive industry.

SKU

Stock keeping unit

SLC

Small Load Carriers

SLC1

Label for Small Load Carriers

SLC2

Label flat Small Load Carriers

UHF

Ultra High Frequency

VDA

Verband der Automobilindustrie: Joint interest grouping of German automobile manufacturers and suppliers
1 Introduction

This guideline describes the BOSCH requirements of the Global Transport Label (GTL) and contains the technical specifications that are required to implement GTL. The guideline specifies the label, label placement, field and barcode contents in accordance to VDA recommendation 4994.

The GTL is found on the delivered item and is aligned with the advanced shipping notification that is transmitted via electronic data interchange (EDI). Therefore the Shipping notification (DESADV Global EDIFACT D.07A) and GTL must contain the same information.

The use of the GTL serves to clearly identify packages (shipping units and individual packages), to enable process optimization in goods receipt area (no relabeling and mechanical processing) and continuous tracking of the goods along the entire transport chain (traceability).

The BOSCH Global Transport Label is in accordance with the VDA recommendation 4994. BOSCH specific regulations are maintained in the following chapters:

- Chapter 1 Introduction
- Chapter 4.2 Data fields on labels
- Chapter 4.2.1 Combined GTL/MAT-Label
- Chapter 4.3 Technical Requirements
- Chapter 4.4 Types of labels
- Chapter 4.6 Label pasting
- Chapter 4.7 Handling Unit structure and transfer into the ASN
- Chapter 5 Description of data fields
- Chapter 6 Identification of packages and loading units
- Chapter 7 Barcode, 2D code and optional RFID tag
- Chapter 10 Appendices
- Chapter 3/8/9 of the VDA recommendation are not applicable

For easier orientation we added the information (BOSCH) or (VDA 4994) to the chapter titles:

(BOSCH) BOSCH specific requirements additional to the VDA recommendation 4994

(VDA 4994) Chapter corresponds with VDA recommendation 4994 V1.1 2018-06
The start date from which the GTL is used has to be agreed on in advance between supplier and BOSCH. The GTL has to be approved by BOSCH pant, therefore it has to be tested with a BOSCH contact person before the go-live. After approval of the GTL the usage is mandatory for the supplier.

2 Function of labels (VDA 4994)

Labels are used to identify product and shipping packages in the internal material flow and along their route from the dispatcher of the goods (normally the factory of the supplier) to the shipping company and eventually to the recipient of the goods (normally the factory of the customer). Labels allow for the unique identification of packages around the globe. In addition to the clear-text information, labels also contain machine-readable data in the form of 1D and 2D barcodes for automated handling.

Depending on the actual purpose of the package unit, the label has different control functions:

- **Product Packaging Unit (PPU)**: Examples: cardboard boxes and plastic boxes (also known as Small Load Carriers – SLC). In this case the label provides unique identification of the product, together with additional logistics data. The label generally supports the internal handling of the PPU by the supplier up to the point of consolidation into transport packaging units and by the customer once the transport packaging units are broken down again.

- **Transport Packaging Unit (TPU)**: Examples: pallets, loaded with PPUs and auxiliary packaging material (lids, etc.), metal containers or large load carriers (LLC). In this case, the label provides unique identification of the package unit, including details regarding its logistics and material properties. The information on the label is generally used to control consignments along single-stage or multi-stage transport chains from the supplier to the customer and to support the receipt of the goods by the customer with subsequent internal handling including storage in the customer’s warehouse.

In cases where the PPU is also the TPU, the labels combine the features and functions of the above two packaging levels. This type of packaging unit is usually described as a **Simplified Loading Unit**.
3 Consignments and transport (VDA 4994)

- Not applicable -

4 Size, layout and application of labels

4.1 Dimensions (VDA 4994)

Labels can vary in size according to the size of the packaging unit they will be attached to and can sometimes vary according to the region of the world in which they are to be used.

The following sizes or formats are considered to be a fairly exhaustive list:

a. A5: 210mm x 148mm

b. Half letter: 216mm x 140mm

c. A6: 148mm x 105mm or 152.4mm (6 inches) x 101.6mm (4 inches)

d. SLC1: Label for small load carriers 210mm x 74mm

e. SLC2: Label for flat small load carriers 210mm x 42mm

As A6 and B10 are virtually identical in size, they are described together.
Figure 1: Label size A5

Figure 2: Label Half-Letter size
Figure 3: Label size A6/ AIAG

Figure 4: Label size for small load carriers (SLC 1)

Figure 5: Label size for flat small load carriers (SLC 2)

In case of smaller labels please refer to VDA recommendation 4992 – MAT label.
Size comparison between different label sizes:

![Size comparison between different label sizes](image)

Figure 6: Comparison of the different label sizes

4.2 Data fields on labels (BOSCH)

The information printed on the label is divided into logical fields of data according to the applicable layout template.

The following information blocks are defined:

- **A1** - Goods sender (ship from)
- **A2** - Goods recipient (ship to)
- **A3** - Label type and 2D barcode symbol
- **B1** - Customer reference 1
- **B2** - Customer routing information
- **B3** - Logistics reference
- **C** - Customer’s article number
- **D1** - Package ID
- **D2** - Customer reference 2
- **E1** - Optional information as defined by supplier
- **E2** - Customer reference 3

For more information, see chapter 5.
Figure 7: Dimensions and layout of data fields - label format A5

Figures 8: Dimensions and layout of data fields - label Half-Letter format
Figure 9: Dimensions and layout of data fields - label format small load carriers (SLC 1)

Figures 10: Dimensions and layout of label format flat small load carriers (SLC 2)

Note: Due to the small size, the SLC 2 label only contains a subset of the information printed on the other labels. Also, to avoid reading problems with the 2D Symbol, certain lines on the label which separate the blocks are not printed (see examples later in this document).
4.2.1 Combined GTL/MAT-Label (BOSCH)

The regulations concerning the combined GTL/MAT label will be further explained in the next version of this guideline. This label is used if the MAT label cannot be directly applied to the goods (e.g., bulk material or products too small for labelling delivered in SLC) the MAT-label has to be applied on the SLC.

In those cases a combination between GTL and MAT-label is necessary, since the pasting of two separate labels on the SLC is not allowed.

4.3 Technical Requirements (BOSCH)

In order to ensure the readability of barcodes on GTL, the use of a laser printer is recommended.

Paper quality has to be according to the information below:

<table>
<thead>
<tr>
<th>Label</th>
<th>Anforderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert label</td>
<td>Min. 160 g/m²</td>
</tr>
<tr>
<td>Adhesive label</td>
<td>Min. 80 g/m²</td>
</tr>
<tr>
<td>Combined label</td>
<td>Approx. 130-170 g/m²</td>
</tr>
<tr>
<td>- Carrier material</td>
<td>Approx. 50 - 90 g/m²</td>
</tr>
<tr>
<td>- Label material</td>
<td>Approx. 80 g/m²</td>
</tr>
<tr>
<td>Paper</td>
<td>white, machine-finished, moisture-resistant</td>
</tr>
<tr>
<td>Adhesive</td>
<td>permanent adhesive, moisture-resistant, easy to remove</td>
</tr>
</tbody>
</table>
Table 1: Technical requirements

Please note the paper weight must be at least 160g/qm.

Depending on customer requirements, insert labels might be secured with adhesive dots or might be produced from heavier paper.

For use with returnable containers, adhesive labels must be easy to remove without leaving behind any residue.

If the labels have to be attached to boxes without label holders, then adhesive components will need to be used (sticky labels, adhesive dots).

For shipments to and from North America, label sizes Half Letter or 6x4" might be used, if approved by the customer.

Before applying new labels, all old (and thus invalid) labels must be removed from the packaging.

4.4 Types of labels (BOSCH)

For TPUs, label format A5 landscape should be used. It can be designed as an insert label (if a suitable label frame/holder is available) or as a self-adhesive label. Depending on the type, the following specifications must be observed:

Labels for TPUs:

- **Master Label for homogeneous TPU:** the TPU holds individual PPUs which all contain the same article number (e.g. packed in SLCs). The individual PPUs are equipped with separate Single labels: a Single Label denominates the label on the PPU, i.e. innermost packaging unit containing the parts.

- **Master Label for mixed TPU (Mixed Label):** The TPU holds individual PPUs which do not all contain the same article number. The individual PPUs are equipped with separate Single Labels.

- **Single Label for simplified TPU:** the TPU contains only parts with the same article number but which are not packed in individual PPUs.
Master label (figure below can be used for orientation; label pasting is explained in chapter 4.6)

In case of non-mixed packages (i.e. homogeneous loading units), product packaging unit contain Single Label.

![Master label example](image1)

800 mm

Figure 12: Example usage of the Master label on a homogeneous pallet (1200x800)

Mixed load label (figure below can be used for orientation; label pasting is explained in chapter 4.6)

In case of mixed packages (i.e. non-homogeneous loading units), product packaging unit contain Single Label.

![Mixed load label example](image2)

800 mm

Figure 13: Example usage of the Mixed load label on a non-homogeneous pallet (1200x800)
Single Label (figure below can be used for orientation; label pasting is explained in chapter 4.6)

In case of homogeneous packages (e. g. boxes, lattice boxes, SLC, etc.), with no product packaging units.

![Image of Single Label usage](image)

Figure 14: Example usage of the Single Label A5 or small container

4.5 Labels for small load carriers - SLCs (VDA 4994)

For containers according to VDA small load carrier system (VDA 4500), the DIN A5 label might also be used for SLCs, provided that the label can be inserted into the label frame without having to be folded.

Instead of using folded labels, the SLC or SLC2 2 label size should be used. Please follow customer’s instructions regarding use of SLC and SLC2

The use of adhesive labels on SLCs is prohibited. Prior to returning the empty containers to the sender, all labels must be removed.

If disposable or reusable containers are used which, due to their height, do not even permit the use of the classic SLC label, a 210x42 mm (SLC2) label can be used.

4.6 Label pasting (BOSCH)

A GTL has to be attached to all packages carrying parts (loading unit, container or shipping carton).

The right pasting of the GTL is an important component of packaging, and a prerequisite for automated processing in the supply chain, e. g. camera recording at goods receipt. Empty containers as well as auxiliary packaging, such as lids and packaging materials do not have to be labelled.
The Master or Mixed Label has to be attached on in the middle on top of the narrow side and on the long side at the top right corner. Single labels should not be covered, if possible. Master or Mixed Label cannot be covered by items used for securing the loaded goods.

For SLC that are facing outwards Single Labels have to be pasted in field of sight on the long side of the SLC. SLC that are not visible from the outside also have to be labelled on the long side even when the label is not visible.

The following figure illustrates the pasting of Master and Single label on a pallet.

![Label pasting on a pallet](image)

Figure 15: Arrangement of labels on palette (illustration)

4.7 Handling Unit structure and transfer into the ASN (BOSCH)

The matching of Single Labels to the Master/Mixed Label of a handling unit is based on a unique number. This Unique ID can either be a License Plate number based on the DUNS number (according to ISO/IEC 15459) or a SSCC18 (from GS1; structure of the GLN type 2). For further details see chapter 6. **A Unique ID from other number ranges is not permitted!**

For the physical matching of the Unique ID to the delivered goods, the packing data in the EDI message DESADV Global EDIFACT D.07A must match the content of the label (for clarification, see Figure 21 and Figure 22).
Figure 16: Matching of Single Label and higher-level Master/Mixed Label

Figure 17: Example structure of ASN (EDI Message DESADV Global EDIFACT D.07A)
5 Description of data fields (BOSCH)

In principle, data fields are to be filled according to the VDA recommendation 4994 (chapter 5).

For all text content, use font Arial Narrow, bold (alternative font: Helvetica Condensed, bold). Text must be printed in capital letters. The font size is 6 pt. The font size for the individual data fields according to VDA recommendation 4994 (compare GTL V1.1 – Appendix 1 - 2018-07.xlsx) can be found in the Appendix in chapter 10.2.

Completely filled labels can look like the following:

![Figure 18: Master Label for homogeneous loading units](image)

Figure 18: Master Label for homogeneous loading units
Figure 19: Mixed Label for mixed loading units
Figure 20: Single Label for homogeneous loading units or inner packaging

Figure 21: Single Label in SLC 1 format for inner packaging
Identification of packages and loading units (BOSCH)

The identification of the individual packages and loading units plays a central role in controlling the various process steps in the incoming goods department. For this reason, each package and each loading unit must be uniquely identifiable worldwide.

As an alternative to the License Plate (package ID = data block D1), BOSCH accepts the SSCC18 number as the globally unique identification number of a package or loading unit. The License Plate (see VDA 4994 Chapter 6) and SSCC18 (Serial Shipping Container Code) number ranges are therefore permitted. The SSCC18 is based on the GS1 standard with GLN (Global Location Number) type 2 structure using the shipping unit number (NVE).

In order to switch to the BOSCH GTL with SSCC18 or License Plate number, a print sample must be sent by the supplier to the receiving BOSCH plant to ensure verification of the contents and legibility of the barcodes. If the check is positive, the BOSCH label is approved by the receiving plant. After approval, the GTL is to be used for all deliveries to the corresponding factory.

Exceptions to this process require a separate agreement.
7 Barcode, 2D code and optional RFID tag (BOSCH)

7.1 1D barcode (BOSCH)

The barcode for the package ID (License Plate/SSCC18) is a code 128 barcode.

In the readable versions, the data identifier (1J, 5J, 6J) for the package ID is omitted. Otherwise, the barcode corresponds to the readable version of the package ID. Spaces are only included to make the printed text more readable but are omitted in code 128.

The width of the barcode of the package ID must be at least 130 mm. The minimum height of the barcode of the package ID is 15 mm for the Single Label and 20 mm for the Master Label. The margin must be at least 7 mm to the left edge and at least 5 mm to the right edge. The minimum distance to the text at the top and bottom is 1 mm.

7.2 2D Data Matrix symbol (BOSCH)

7.2.1 Symbol size

The Data Matrix code is a Data Matrix ECC 200 code (see also ISO/IEC 16022).

For SLC1 labels the height and width including margin is 20 mm, for DIN A5 labels 34 mm. The height and width of each module is 0.4 mm.

7.2.2 Positioning

The positioning of the DMC center point in the data field A3 has to be 17,2 mm (DIN A5 format) and 9,7 mm (SLC1 format) away from the outer edge of the label (refer to figure 28 and 29). Further requirements will be communicated by the receiving BOSCH plant if required.
Figure 23: Positioning DMC on A5 Label

Figure 24: Positioning DMC on SLC1 Label
7.2.3 Message structure and user data

The format indicator "06" (according to ISO/IEC 15434) is used to construct the Data Matrix Code. This consists of the character string [)><RS>06<GS> at the beginning of the code, followed by the user data according to ISO/IEC 15418 and the character strings <RS> and <EOT> at the end.

<table>
<thead>
<tr>
<th>ASCII</th>
<th>Hex</th>
<th>Decimal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[)></td>
<td>5B, 29, 3E</td>
<td>91, 41, 62</td>
<td>Compliance Indicator</td>
</tr>
<tr>
<td>RS</td>
<td>1E</td>
<td>30</td>
<td>Format Trailer Character</td>
</tr>
<tr>
<td>06</td>
<td>30, 36</td>
<td>48, 54</td>
<td>Format identifier for 'ASCII Dis'</td>
</tr>
<tr>
<td>GS</td>
<td>1D</td>
<td>29</td>
<td>Data Field Separator</td>
</tr>
<tr>
<td>EOT</td>
<td>04</td>
<td>4</td>
<td>Message Trailer</td>
</tr>
</tbody>
</table>

The user data will be included after the format identifier ‘06’ and ‘GS’ with preceding data identifier in the syntax, each separated with a separator ‘GS’. For optional fields that are not filled, the data identifiers must always be specified. In this case the content remains empty. Data fields according to VDA 4994 chapter 7.2.4 may only be added after consultation with the receiving plant.

<table>
<thead>
<tr>
<th>Sequence of data fields</th>
<th>Data Identifier</th>
<th>Master²</th>
<th>Mixed³</th>
<th>Single²</th>
<th>Mandatory/Optional¹</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of specification</td>
<td>12P</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>Constant „12PGTL3“</td>
</tr>
<tr>
<td>Specification version</td>
<td>9K</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td>e.g. „9K10“ for version 1.0</td>
</tr>
<tr>
<td>License Plate or SSCC18 (Package ID)</td>
<td>1J, 5J oder 6J</td>
<td>X (6J)</td>
<td>X (5J)</td>
<td>X (1J)</td>
<td>M</td>
<td>Format CCYYMMDHMM (e.g. 14D201512312359)</td>
</tr>
<tr>
<td>Used by / expiry date</td>
<td>14D</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>Without hyphen</td>
</tr>
<tr>
<td>Article number BOSCH</td>
<td>P</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplier batch</td>
<td>1T</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td></td>
<td>Only for material with mandatory index identification Only if unique, else empty</td>
</tr>
<tr>
<td>Quantity</td>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td></td>
<td>If supplier uses batches Only if unique, else empty</td>
</tr>
<tr>
<td>Order No. BOSCH</td>
<td>K</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order item BOSCH</td>
<td>4K</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery note (Supplier)</td>
<td>2S</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanban-ID BOSCH</td>
<td>15K</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td></td>
<td>Only within Kanban-Process</td>
</tr>
</tbody>
</table>
Table 3: Data elements in the DMC

<table>
<thead>
<tr>
<th>Sequence of data fields</th>
<th>Data Identifier</th>
<th>Master²</th>
<th>Mixed²</th>
<th>Single²</th>
<th>Mandatory/Optional¹</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier No. at BOSCH</td>
<td>V</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Gross weight in KG</td>
<td>7Q</td>
<td>X</td>
<td>X</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Shipment Identification code assigned by supplier</td>
<td>2K</td>
<td>X</td>
<td>X</td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

¹ M = Mandatory; O = Optional
² X = Relevant for type of label

Example of a valid Data Matrix code according to Table 2: Control indicators and Table 3: Data elements in the DMC:

```
[>3060512GTL359UN315012294200999760814D052410050027006W85A0225002550265664800010838031911615K09003770972X123456789R5O:
```

7.2.4 Segmentation of Information in 2D Code

The data elements in the barcode that contain data identifiers are segmented hierarchically into a tree structure (looping structure) within the Data Matrix code. The data identifier (F) is used for this purpose.

The segmentation assigns the data fields to the linked hierarchical levels, e.g. article and serial numbers are linked to containers carrying parts and these are linked to higher-level load carriers. The individual structural levels are provided with corresponding level codes (see EDI syntax ANS X12, data element 735). The following levels can be used:

<table>
<thead>
<tr>
<th>Level</th>
<th>Level-name</th>
<th>Level-code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher-level load Master-/Mixedload</td>
<td>Tare</td>
<td>T</td>
<td>The tare level is used to identify pallets. If there are no identifiable pallets, this level may be omitted.</td>
</tr>
<tr>
<td>Container carrying parts</td>
<td>Pack</td>
<td>P</td>
<td>The pack level is used to identify the cartons within which the item is shipped, e.g., label serial numbers. In most cases there will be some sort of packs.</td>
</tr>
<tr>
<td>Article</td>
<td>Item</td>
<td>I</td>
<td>Stock keeping unit (SKU) identification data.</td>
</tr>
</tbody>
</table>

Table 4: Level Codes

After completion, the entire data string is embedded in the syntax ISO/IEC 15434. A Data Matrix code of a master or mixed label can be executed as a set code with the information of the subordinate single units or without this information only for the relevant level.
Set codes contain the data segments of the subordinate single labels, surrounded by the data segment of the higher-level unit. Three levels are used for segmentation, the "TARE" level of the higher-level master and mixed units, the "PACK" level for partially-bearing containers and the "ITEM" level for articles (see Table 4: Level Codes).

7.3 RFID tags used in conjunction with smart labels (BOSCH)

VDA Recommendation 4994 (Chapter 7.3) applies with reference to VDA 5500.

As an additional requirement, the UHF tags must be legible on metallic containers and ESD containers.

8 Delivery scenarios and requirements regarding the information on the labels (VDA 4994)

- Not applicable -

9 Label for shipments of empty packages (VDA 4994)

- Not applicable -
10 Appendix (BOSCH)

10.1 List of Figures

Figure 1: Label size A5 ... 8
Figure 2: Label Half-Letter size ... 8
Figure 3: Label size A6/ AIAG ... 9
Figure 4: Label size for small load carriers (SLC 1) ... 9
Figure 5: Label size for flat small load carriers (SLC 2) ... 9
Figure 6: Comparison of the different label sizes .. 10
Figure 7: Dimensions and layout of data fields - label format A5 ... 11
Figure 8: Dimensions and layout of data fields - label Half-Letter format 11
Figure 9: Dimensions and layout of data fields - label format small load carriers (SLC 1) 12
Figure 10: Dimensions and layout of label format flat small load carriers (SLC 2) 12
Figure 11: Dimensions and layout of data fields - label format A6 .. 13
Figure 12: Example usage of the Master label on a homogeneous pallet (1200x800) 15
Figure 13: Example usage of the Mixed load label on a non-homogeneous pallet (1200x800) 15
Figure 14: Example usage of the Single Label A5 or small container 16
Figure 15: Arrangement of labels on palette (illustration) .. 17
Figure 16: Matching of Single Label and higher-level Master/Mixed Label 18
Figure 17: Example structure of ASN (EDI Message DESADV Global EDIFACT D.07A) 18
Figure 18: Master Label for homogeneous loading units ... 19
Figure 19: Mixed Label for mixed loading units ... 20
Figure 20: Single Label for homogeneous loading units or inner packaging 21
Figure 21: Single Label in SLC 1 format for inner packaging ... 21
Figure 22: Single Label in SLC 2 format ... 22
Figure 23: Positioning DMC on A5 Label .. 24
Figure 24: Positioning DMC on SLC1 Label ... 24
10.2 Font size Global Transport Label (VDA 4994)

<table>
<thead>
<tr>
<th>Data field</th>
<th>Short description</th>
<th>A5</th>
<th>SLC 210x74</th>
<th>Small 210x42</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship-from name 1</td>
<td>Name of ship-from</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ship-from post code</td>
<td>Post code of ship-from</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ship-from location</td>
<td>Ship-from's location</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ship-from country</td>
<td>ISO 3166-1 alpha-2 code of the ship-from</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ship-from unique ID</td>
<td>Ship-from ID number</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Country of origin</td>
<td>ISO 3166-1 alpha-2 code of the country of origin</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ship-to name 1</td>
<td>Name of ship-to</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ship-to post code</td>
<td>Ship-to's post code</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ship-to location</td>
<td>Ship-to's location</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ship-to country</td>
<td>ISO 3166-1 alpha-2 code of the ship-to</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Ship-to plant number</td>
<td>Ship-to's plant ID number</td>
<td>30</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Unloading point</td>
<td>Unloading point (where the means of transport is being unloaded)</td>
<td>30</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Customer internal destination</td>
<td>Additional Internal destination at customer's side after unloading (warehouse / storage)</td>
<td>30</td>
<td>18</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Label type</td>
<td>Type of Label M=Master, MIX=Mixed, S=Single</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Supplier number</td>
<td>Supplier number of the ship-from plant assigned by customer</td>
<td>18</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Delivery note number</td>
<td>Delivery note number, issued by supplier (maybe in some cases DESADV number?)</td>
<td>18</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Customer specific routing</td>
<td>Customer specific routing</td>
<td>36</td>
<td>22</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>Place of consumption</td>
<td>Place where items are used in production</td>
<td>36</td>
<td>22</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>ETA - Requested/expected time of arrival</td>
<td>Time of arrival, requested by customer</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Quantity</td>
<td>Quantity per loading unit (Master label) or per pack (Single label)</td>
<td>30</td>
<td>24</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Unit of measure</td>
<td>Abbreviation of the unit of measure</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Gross weight</td>
<td>Gross weight of the loading unit or inner packaging item</td>
<td>20</td>
<td>12</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Net weight</td>
<td>Net weight of the loading unit or inner packaging item</td>
<td>20</td>
<td>12</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Customer's part number</td>
<td>Part number assigned by customer</td>
<td>36</td>
<td>24</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>Customer's part description</td>
<td>Part description according to customer's nomenclature</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Safety sign</td>
<td>Symbol to mark safety relevant parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>License plate (UUID)</td>
<td>Globally unique package ID of the package / loading unit</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Package type code</td>
<td>Type of package code according to receiver's codification</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Shipment date</td>
<td>Date and time of scheduled shipment</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Expiry date</td>
<td>Best before date</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Production date</td>
<td>Date of production</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Batch number / lot number</td>
<td>Batch number / lot number</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Hardware status</td>
<td>Hardware status</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Software status</td>
<td>Software status</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Engineering change ID</td>
<td>Engineering change ID</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Number of inner package items</td>
<td>Number of inner packages in a loading unit</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Supplier specific information</td>
<td>Supplier specific information for supplier's use only</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
<td>tbd</td>
</tr>
</tbody>
</table>
Table 5: Font size Global Transport Label

10.3 List of tables

Table 1: Technical requirements ... 14
Table 2: Control indicators ... 25
Table 3: Data elements in the DMC .. 26
Table 4: Level Codes .. 26
Table 5: Font size Global Transport Label .. 30