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Preface 

Before the computer was invented and comfortable statistical programs were developed, 
the graphical display and evaluations in the present work had to be done by hand using 
special forms and statistical tables. 

In the interest of deep understanding, it is still sensible today to reproduce the respective 
procedures in detail, for example when studying statistics or completing training. For this 
reason, the procedures are described in such a way that allows them to be evaluated by 
hand without the use of a calculator. 
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1 Introduction 

Mathematical statistics, or statistics for short, has its origin in censuses, which serve to 
determine the state (Latin. "status") of a country and describe macroeconomic charac-
teristics. According to the Duden dictionary, it is the “science of numerically recording, 
studying and evaluating mass occurrences”.  

This definition includes two essential aspects of statistics: recording, structuring and 
portraying statistical data are the goals of descriptive statistics, while evaluating (analysis, 
interpretation) the data is the task of inductive statistics. In the media we find many dif-
ferent examples for the respective use of both subfields. 

Some examples for the use of descriptive statistics are illustrations of  

 variations over time of foreign exchanges rates or stock indices (original value 
charts) 

 seat allocations in parliaments (pie charts) 

 portions of various auto brands as part of the total number of newly registered ve-
hicles in Germany in one year (histograms) 

or data on the per capita use of dairy products in the EU countries in  one year (means).   

The following examples of procedures used in inductive statistics still have an un-
mistakable relationship to censuses: 

 forecasting voting results on voting day on the basis of representative surveys, 

 projecting viewer figures of television programs on the basis of viewer ratings from 
chosen test viewers, 

 estimating the number of visitors at major (public) events,  

 estimating the population of a certain animal species (total population) in an area 
of a known size, 

 analyzing the effects of advertising campaigns on purchasing behavior in a market 
using the behavior of chosen test customers. 

In all of these situations mentioned above, a statement on a larger collective (population) 
is derived from knowledge of a limited portion of individuals (sample).  

This process makes use of the fact that, for many mass phenomena, the result of an indi-
vidual observation (annual number of lightning strikes per square kilometer in area xy) is 
indeed random (and thus cannot be predicted for certain), but it can still be expressed in 
mathematical terms. 

However, inductive statistics often also strives to determine future behavior from a mo-
mentary condition (trend), or in other words, to predict the future in a manner of spea-
king. 

To achieve this, statistics works with mathematical models (distribution functions) that 
describe the properties of so-called random variables. 

 

Misunderstandings based on the use of statistical methods are almost always the result  
of disregarding the relationship of the models and the assumptions associated with the 
methods. 
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For the beginner understanding statistical statements and methods is made more difficult 
by the many problematic aspects listed on the following page. 

1. Conceptual difficulties 

In everyday speech, the term “probable” is often replaced with other terms like “impos-
sible”, “maybe”, “likely”, “pretty certain”, or “dead sure” which, in our experience, are 
supposed to represent a way to trust the correctness of a statement. However, depen-
ding on the person using such a term, their mood (euphoric, depressed) and the respecti-
ve situation, each term might have a completely different meaning.  

In contrast, statistics uses a mathematically defined “probability”, a number between ze-
ro (impossible event) and one (certain event), as a means to determine the expected “oc-
currence” or “non-occurrence” of an event. This said it's becoming quite obvious that 
there's no simple explanation for the term probability outside its "statis tical realm". 

2. Logical difficulties 

There is a danger that the user of inductive statistics gets the impression of objective 
certainty when it does not actually exist. This misunderstanding is mirrored in terms like 
“unknown”, “random” (random variable), “probable” (“probability”) that culminate in the 
term “certain” (statement of certainty) in everyday speech. 

It should be obvious that in reality is not possible to create a bridge between the conditi-
ons “unknown” and “certain”. 

3. Transferability 

The examples considered in statistical textbooks show that it is difficult to avoid applying 
known conditions to natural phenomena and related measured values or examples from 
game theory in order to illustrate random (chaotic?) behavior:  

 number of lightning strikes per square kilometer of the earth’s surface and per 
year, 

 annual rainfall per square meter, 

 movement of gas molecules (Brownian motion) 

 radioactive decay, 

 chances of winning games of chance (dice, roulette, lottery).  

Compared to such examples, phenomena studied in industrial practice hardly appear to 
be compatible with the terms “random” or even “chaotic”. 

Despite these fundamental problems, statistical methods have firmly established them-
selves in industrial practice. 

The present work provides the “introduction” into the series on “Quality Management in 
the Bosch Group, Technical Statistics”, which covers a number of special topics.  

 

2 Terms 

2.1 Characteristic 

The subject of statistical considerations and calculations in industrial practice are usually 
continuously changing, measurable characteristics and discrete, countable characteristics 
of observable units. In accordance with these subgroups, the first two books in the Bosch 
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series “Quality Management in the Bosch Group” have the subtitles “Continuous Charac-
teristics” (book no. 1) and “Discrete Characteristics” (book no. 2).  

The continuous characteristics considered in the present Book 1 are measurable or ob-
servable properties (length, weight, temperature) of objects or results (lifet ime, bursting 
pressure). 

Although physical dimensions are always given in the form of a measured value (e.g. 48) 
and a unit (e.g. mm), the units of measurement are of lesser importance for statistical 
observations. Therefore, we can focus purely on the figures given in the examples. 

Statistical analyses of the properties of continuous characteristics are used in many in-
dustrial areas, e.g. when 

 studying the capacity of measuring devices and machines, 

 evaluating production processes, 

 applying statistical process control (SPC), 

 interpreting trial data. 

Inductive statistics procedures are of special interest with regard to risk analyses and, of 
course, where one has to work with relatively small sample sizes due to economic 
reasons, e.g. when conducting complex (expensive) quality inspections (destructive tes-
ting, service life tests). 

2.2 Population 

The term “population” refers to a limited or unlimited number of observable units that 
are to be considered concurrent within the framework of an existing statistical  problem. 
Such observable units can, for example, come from "observations” or results from “tests” 
conducted under the same conditions.  

Examples of finite populations are the number of 

 students in a school, 

 eligible voters within a state, 

 television viewers who watched the final match of the last Football World Cup,  

 parts in a delivery of goods, 

 products manufactured within one shift at factory XY. 
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Examples of (theoretically) infinite populations are the number of  

 points observed when rolling dice, 

 results determined when repeatedly measuring against a standard of length,  

 parts that a machine will create, under the assumption that it will retain its current 
condition for ever. 

Above all, the previous examples show that a population does not always have to be real; 
it can also be fictional. Moreover, one can recognize that a statistical problem can some-
times be focused at a prognosis (prediction) of future results.  

2.3 Sample 

On the other hand, a sample is a real and therefore finite number of “things” or events. 
Examples of this are the set of 

 vehicles that passed through the Engelberg Tunnel (near Leonberg) on 5.1.2015,  

 results observed when rolling one die 10 times, 

 results obtained when conducting 25 measurements against a standard of length, 

 50 parts made while testing a machine’s capacity. 

By the way, the German term for “sample” (“Stichprobe”) originates from the practice of 
“piercing” grain sacks and cotton bales during quality inspection. A sample consists of one 
or several units that were “drawn” from a real or fictitious population according to the 
random principle. The number of these elements is called the sample size. The properties 
of the sample are supposed to represent the population. Random sampling presupposes 
that each element of the population is given the same chance (same probability) to be pi-
cked for the sample. In general, it is rarely possible to apply the random principle in a 
nearly ideal manner (flipping a coin, roulette, drawing the lottery numbers). The idea is 
especially problematic with regard to fictitious populations; “drawing” the sample is only 
possible in a figurative sense. 

2.4 Random variable 

Statistics gets around this problem by introducing the terms “random experiment” and 
“random variable”. “Random experiment” designates a process that can be repeated as 
often as desired and whose (individual) results are not predictable (e.g. rolling a die). The 
“random variable” represents the possible results of a random experiment (e .g. the num-
bers 1, 2, ..., 6). From the mathematic perspective, it is a function that can be correlated 
to a real number (e.g. pips on rolled dice) by a “random experiment”.  The “units” or 
“elements”, that are “observed” as the results of a random experiment (“drawn” from 
the population as a sample), are the so-called “realizations” of these random variables. 

If one compares these definitions with the explanations from 2.2 and 2.3, one can recog-
nize that the terms “population” and “sample” from everyday speech and common intui-
tion have been replaced by the mathematical values “random variable” and “realization 
of the random variable”, with the limitation that both of the terms mentioned always 
deal with real numbers. 

For example, the results 1021 x,,x,x   of a series of 10 repeated measurements against a 

standard of length are the realization of a random variable X , which represents the popu-
lation of all possible (infinitely many) measurement results against this standard. 
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In everyday speech, the measured values of a sample of real parts (set of measurement 
results) are also often called the sample. 

 
EXAMPLE 2.1:  

The Figures 2.1 and 2.2 show a total population of 4941 balls each. The population according 
to Figure 2.1 consists of 4465 white balls and 476 black balls. We are going to consider the lat-
ter as a representative for non-conforming parts. The proportion 'p  of the black balls is there-

fore %9.60.096
4941

476
p'  . 

In order to estimate the share of defects (which is the random variable of interest in this case), 
a sample of 490 balls is drawn. The area is illustrated through the area confined by the 
rectangle ( 1049   balls). The sample contains 48 black balls whose proportion in the sample is 

therefore %9.80.098
490

48
p  . 

In this case, the sample provides a relatively good estimation of the share of defects in the po-
pulation. 

      

The example in Figure 2.2 shows how such an estimation can lead to erroneous conclusions. 
Here, the population is not uniformly mixed. The share of defects decreases from bottom to 
top. This situation might occur, for example, if the share of defects on a production line 
constantly decreases within a limited period of time and the parts produced in the production 
series are placed into a container accordingly. In the present example, 499 balls from the po-
pulation are black and 4442 are white. 

There is therefore a share of defects %10.10.101
4941

499
p'   that is hardly distinguishable 

from Figure 2.1. However, it is obvious that the share of defects in sample 

%1.630.0163
490

8
p   leads to the wrong conclusion. 

Fig. 2.1: Uniformly mixed population with approx. 10% share of non-conforming parts. 
The share of defects is estimated quite well using the sample (rectangle).  
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The difference in both sample results and the resulting estimation of proportion s is given by 
the fact that the randomness principle was not adhered to (in both cases). Not every part of 
the population had the same chance to be drawn for the sample.  

In reality, we live in a world where we do not know the share of errors among the tota l popula-
tion and have to rely exclusively on the significance of the sample.  

 

2.5 Probability 

Mathematical probability is a number that is closely related to the results of a random 
experiment. 

Its classic definition is derived from game theory, which is the origin for the theory of 
probability and statistics. 

Flipping a coin is a random experiment that is commonly examined in statistical text-
books. It is generally accepted that the results from flipping a coin are impossible to pre-
dict and that, based on the (sufficient) symmetry of the coin, the results of “heads” and 
“tails” are just as probable. 

According to the classic definition, the mathematical probability )A(P  of result A in a ran-

dom experiment is given by  

m

g
)A(P  . 

Where  

g   is the number of (favorable) cases where A  occurs, 

and  

m  the number of all possible cases 

 

Fig. 2.2: Non-uniformly mixed population with approx. 10% share of non-conforming 
parts. The share of defects is estimated incorrectly using the sample (rectangle).  
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in the experiment at hand. With regard to flipping a coin, this  means: 

the probability of the event “head” is %500.5
2

1
head”)(“P  . 

The number g  of cases where “tails” occurs (favorable result for the player who predic-

ted “tails”) is equal to 1, the number of all possible outcomes of the (one-time) coin roll is 
equal to 2 (“heads” and “tails”). The “symmetry of probability” obviously results from the 

symmetry of the coin. Both results are just as probable: 
2

1
”)(“tailsP”)(“headsP  . 

If one considers a random experiment with a finite number of possible results whose pro-
bability of occurrence cannot be directly derived from an examination of the symmetry, 
there is (at least theoretically) the possibility of repeating the experiment many times and 
determining the relative frequencies (see Chapter 5.3) of the occurrence of each result. 
One can then define the probability for a certain result as the limit, the event’s relative 
frequency (a number between zero and one) is approaching for a large (towards infinity) 
number of repetitions of the random experiment. 

For example, for repeated coin flips, one can determine that the relative frequencies (e.g. 
the number of “heads” divided by the total number of flips) for either event are ap-
proaching the value 0.5 (Figure 2.3) with increasing number of flips of the coin. Generally, 
this phenomenon is called the “law of large numbers”. 

 

 

 

 

 

Fig. 2.3: Illustration of the law of large numbers. The relative frequency of the 
result “tail”, when repeatedly flipping a coin, approaches the theoretic value of 
0.5 after a sufficient number of rolls. 
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The following table shows how the relative frequencies in Figure 2.3 were calculated.  
 

Roll 
No. 

Roll re-
sult 

rel. frequency of the 
result “tail” 

Roll 
No. 

Roll re-
sult 

rel. frequency of the 
result “tail” 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

H 

T 

H 

H 

H 

T 

H 

T 

T 

H 

0/1 = 0.00 

1/2 = 0.50 

1/3 = 0.33 

1/4 = 0.25 

1/5 = 0.20 

2/6 = 0.33 

2/7 = 0.29 

3/8 = 0.38 

4/9 = 0.44 

4/10 = 0.40 

991 

992 

993 

994 

995 

996 

997 

998 

999 

1000 

T 

T 

T 

T 

T 

H 

H 

H 

T 

T 

0.504 

0.504 

0.505 

0.505 

0.506 

0.505 

0.505 

0.504 

0.505 

0.505  

Table 2.1: Calculation of the relative frequency for Figure 2.3 
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3 Statistical Measures 

Essential properties of a data set are the “central tendency” of the individual values as 
well their “dispersion” on the number line from negative to positive infinity. This chapter 
explains measures suitable to describe these properties. 

3.1 Median 

Already during the collection of individual values, one must consider that their order con-
tains essential information, namely the chronological sequence of their appearance (e.g. 
temperature range, trial order). These values are therefore recorded in the order of 
appearance. The resulting list is referred to as the master list. 

If several parts are drawn subsequently from a serial production whose characteristics  are 
to be measured and analyzed, it is advisable to number the parts according to the order 
in production. 

This is especially important, if the measurement process is performed at a different loca-
tion as the production site and there is a risk of losing the order.  Of course, the values 
(measurement values) are recorded in correlation with the numbering of the parts.  
 

EXAMPLE 3.1: 

The following nine measurements were collected:   5, 6, 6, 3, 5, 8, 6, 7, 4.  

 
One can assume that these are deviations from a specified desired value (mean of the to-
lerance range), e.g. 1/100 mm or mV. 

Generally, one designates a value with the letter x  and the number of the values with n . 
A running index i  is added to the symbol x : 

n,,3,2,1i;xi  , 

meaning the values are designated with 

n321 x,,x,x,x  . 

If the values are arranged according to their size, beginning with the smallest value, the 
result is called an ordered list. 
 

According to Example 3.1:       3, 4, 5, 5, 6, 6, 6, 7, 8 

 
In mathematical terms: 

     n21 xxx    

The indices are placed in parentheses in order to differentiate them from the values of 
the master list. 

In an ordered list, the first quantity corresponds to the minimum value and the last cor-
responds to the maximum value: 

min)1( xx             max)n( xx  . 

Plotting the values against the x-axis displays their frequency distribution (Figure 3.1).  
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An easy to calculate location measure is the median, or central value. It divides the samp-

le into two halves of equal number. The median, designated with x~  (pronounce: "x-
tilde"), is determined by counting the values in an ordered list:  








 


2

1nxx~                   if n  is odd, 

2

xx

x~
1

2

n

2

n



















    if n  is even. 

The median is therefore only included in the value set if there is an odd number of mea-
sured values; for an even number, the median equals the average of the sum of the two 

neighboring values 









2

nx  and 








1

2

nx . 

 
The ordered list given above:  

3x(1)  , 4x )2(  , 5x )3(  , 5x )4(  , 6x )5(  , 6x )6(  , 6x )7(  , 7x )8(  , 8x )9(   

has a median of: 6xx~ )5(  . 

 
The key benefit of the median is its independence from the extreme values within a data 
set. 
 
 
 
 
 
 
 
 

 

Fig. 3.1: Frequency diagram (dot diagram) 
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3.2 Arithmetic mean 

The arithmetic mean is defined as the sum of all the individual values divided by the 
number of individual values: 

values individual allof  number The

values individual allof  sum The
x            ( x : pronounce: “x-bar”) 

or, formulated mathematically: 





n

1i

ix
n

1
x                                        (arithmetic mean). 

The sum of all individual values is represented in a simplif ied manner by a summation 
symbol (upper-case Greek letter sigma). This means that all n  values x , beginning with 

the first measured value 1x  (with 1i  ) to the last measured value nx  (with ni  ), are 

summed up. 

Written, it looks as follows: 

n21

n

1i

i xxxx 


 . 

 
For the nine measurement values ( 9n  ) in Example 3.1 the sum is: 

50476853665x
9

1i

i 


 

and the arithmetic mean: 

5.6
9

50
x  . 

 
If x  is not indexed, it always represents the arithmetic mean in this book.  

As the following example shows, the mean is merely a starting point for the “central loca-
tion of the values” on the number line. Without additional information, it can be almost 
useless. 
 

EXAMPLE 3.2: 

The 20 students from a class have an average body height of 1.70 m.  

Does this allow for a conclusion on the actual distribution of body size?  

It is conceivable that the body sizes of 1.50 m, 1.60 m, 1.80 m, and 1.90 m were roughly equal-
ly represented, and the remaining students are 1.70 m tall.  

However, it is also possible that half of the students are 1.60 m tall and the other half are  
1.80 m tall. 

It is also possible that 19 students are roughly 1.66 m tall and one is extremely tall at 2.46 m.  

 
This example shows that the explanatory power of the arithmetic mean is related to the 
associated distribution model (single peak, multiple peaks, symmetric, skewed distributi-
on). It is especially clear that extreme values have a strong influence on the arithmetic 
mean. 
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3.3 Moving average 

A moving average is created from a series of values by formally combining the values of 
this series in groups of n  values and calculating the mean for each of these n  values. 

For each new value that is added to the series, one removes the first value from the last 
group of values so that a new group of values is created with the size n , from which the 
new moving average will be calculated, etc. 
 

Example for 5n  : 

3  7  4  9  1                           4.8x1   

3  7  4  9  1  8                       5.8x2   

3  7  4  9  1  8  5                   5.4x3   

3  7  4  9  1  8  5  2               5.0x4   

 
Of course, the moving averages calculated in this manner are no longer independent from 
one another. This measure therefore only responds with a delay to sudden changes , 
which is most definitely intended. 

For example, a long-term trend is more easily recognized in a depiction of the number of 
monthly car and station wagon registrations over time, if a moving average has been de-
rived from the numbers of the previous 6 or 12 months (see Figure 3.2). Short-term devi-
ations have almost no effect on the moving average. 

Within the scope Statistical Process Control, it is possible to use a quality control chart  
with a moving average in order to control processes. However, in this case the delayed 
“response” of the moving average to sudden, undesired process conditions can be a disa-
dvantage. 

  
 

Fig. 3.2: Moving 12-month average 
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3.4  Geometric mean 

The geometric mean corresponds to the n -th root of the product of all n  values in 
a series of numbers: 

n
g values individual n allof  Productx   

or in mathematical terms: 

n

n

1i

ig xx 


            (geometric mean). 

The product of all the individual values is simply represented by the upper-case Greek let-

ter pi. This means that all n  values x , beginning with the first measured value 1x  (with 

1i  ) to the last measured value nx  (with ni  ), are multiplied with each other:      

n21

n

1i

i xxxx 


 . 

 
The nine measured values from Example 3.1 will serve again as an example. Their product is:  

3628800476853665x
9

1i

i 


, 

and the resulting geometric mean is: 

5.43628800x 9
g  . 

 
The geometric mean is used in conjunction with growth processes. 
 

EXAMPLE 3.3: 

Let us assume that the population in a city has grown exponentially. We want to exclude sud-
den (discontinuous) changes from massive influxes or catastrophes.  
 

Time in years Year Population 

0t1   1990 100000N1   

10t2   2000 141000N2   

20t3   2010 200000N3   

 
We assume that the population is known for years 1990 and 2010, and we want to determine 
the population in the year 2000 from this information. 

The arithmetic mean would provide a population of 150,000 for the year 2000. However, with 
this type of calculation, one would not be considering the exponential growth and would fal-
sely calculate the value that results from linear growth. 

The geometric mean provides the correct estimation in this example:  

141000200000100000x 2
g  . 

The reason for this relationship becomes clear when one considers what exponential growth is. 
The population grows according to the function 
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ta
0 eNN   

in time t . Using this law of growth and the information from the years 1990 and 2010, the 

growth parameter a  can be calculated: 

0.03466
100000

200000
ln

20

1

N

N
ln

t

1
a

1

3 





















 . 

The population in the year 2000 can then be determined by substituting t with the mean time 

2

tt
t 31

2


 : 

141000e100000eNN 100.034662

tt
a

12

31

 




. 

This corresponds to the result obtained using the geometric mean.  

3.5 Harmonic mean 

Provided that the measurement values ix  are ratios (or reciprocals), calculating the 

arithmetic mean will lead to an incorrect result. 
 

EXAMPLE 3.4: 

A motorist travels 200 km on the highway. He covers the first half of the trip km100s1   at 

hkm80v1  , the second half km100s2   at hkm160v2  . What is the average speed? 

The obvious answer hkm120hkm
2

16080
v 


  is wrong! 

The correct result is obtained by dividing the complete distance by the time required:     

2

2

1

1

21

21

21

v

s

v

s

ss

tt

ss
v









 . 

Since both segments have the same length ( 21 ss  ), this gives: 

hkm107

hkm160

1

hkm80

1
2

v 



  

 

In general, the value to be considered 

n21

H

x

1

x

1

x

1
n

x





 

is called the harmonic mean value (harmonic mean). 
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3.6 Standard deviation 

The data sets pictured in Figure 3.3 consist of 7 measurement values each and are all cha-
racterized by the same arithmetic mean 5x  . 

a)  b) 

   
  c)  d)  

Although the arithmetic mean is the same in all cases, the individual values are obviously 
dispersed differently around the mean. This means that a more or less large deviation of 
the individual values around the mean. In Figure 3.3c, the deviation is smallest, in 3.3b it 
is largest. 

Therefore it appears to be useful to calculate an average deviation from the arithmetic 

mean by dividing the sum of the individual deviations 



n

1i

i )xx(  by the number of the in-

dividual values n :     Mean deviation = 



n

1i

i )xx(
n

1
. 

However, the problem occurs that the sum of all individual deviations becomes zero:  

)xx(+)xx(+)xx(+)xx()xx( n321

n

1i

i 


  

                 xn)xxxx( n321    

                 xnx
n

1i

i 













 



. 

Fig. 3.3: Dot diagram for data sets with the same mean ( 5x  ) 
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Because of the relationship xnx
n

1i

i 


 (definition of the mean), it follows that  

0)xx(
n

1i

i 


. 

Obviously, the sum of the deviations of the individual values from the mean is not a 
useful measure of dispersion. 

The alternative is to add up the absolute values of the individual deviations from the me-
an and then to divide the sum by the sample size. The measure of dispersion defined in 
this way is called the mean linear deviation: 





n

1i

i xx
n

1
D . 

However, this measure is not commonly used. 

On the contrary, a very important and often used measure of dispersion can be obtained 
by summing up the squares of the individual deviations instead of the absolute values, 
and using the result as the measure: 





n

1i

2
i )xx( . 

On the one hand, by squaring, the individual summands of the total deviation become 
positive and on the other hand, the individual values that lie farther away from the mean 
have a greater influence. A suitable measure of dispersion is finally obtained by dividing 
the sum of the squared deviations by the sample size minus one.  








n

1i

2
i

2 )xx(
1n

1
s  

This measure 2s  of deviation is called “variance”. 

It should be noted that the division is not performed with the number of individual values 
n , but rather with that very number minus one 1n  . The reason for this is that the 

sample variance defined in this way is a “good” (in mathematical terms: unbiased) esti-
mation of the unknown variance of the examined population. 

The value that is derived by taking the square root of the variance 2s  is called (empirical) 
standard deviation s : 








n

1i

2
i )xx(

1n

1
s . 

Because it is calculated using a sum of squared expressions, it is always a positive number 
(greater than or equal to zero). 

With regard to repeated measurements in order to estimate the measurement uncertain-

ty,  measurements are occasionally indicated in this way (23  0.2) mm. 

The number 23 corresponds to the mean x  calculated from the individual measurement 
values, and the number 0.2 corresponds, for example, to three times the standard devia-
tions of these individual values. 
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So the statement s3x   includes besides the measured mean also information  about 

the “range” of the measured values. 

Since each measured value (e.g. 23 mm) consists of a value (the number 23) and a unit 
(mm), it is obvious that the variance is not suitable for indicating the measurement 

uncertainty (a statement in the form of 23 mm  0.04 mm2 wouldn't make sense). 
 
The manual calculation of the standard deviation s will be explained using the values from 
Example 3.1. The following table will suit this purpose: 
 

Table 3.1: Evaluation of the values from Example 3.1 

   55.
9

50
x           1.5118.227

19

1
s 


  

3.7 Variation coefficient 

The variation coefficient v  represents a fairly important measure for the evaluation of 
populations. The variation coefficient relates the extent of the dispersion of the individual 
values to the value of the arithmetic mean: 

%100
x

s
v  . 

The application of this measure is always beneficial when comparing two data sets, which 
share a similar distribution type, but whose means are significantly apart.  

Running index Individual values Deviation Squared deviation 

i  ix  xxi   2
i )xx(   

1 

2 

3 

4 

5 

6 

7 

8 

9 

5 

6 

6 

3 

5 

8 

6 

7 

4 

-0.55 

0.45 

0.45 

-2.55 

-0.55 

2.45 

0.45 

1.45 

-1.55 

0.303 

0.203 

0.203 

6.503 

0.303 

6.003 

0.203 

2.103 

2.403 

Sum 50  18.227 
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3.8 Range 

Another useful measure of dispersion is the range R . The range is the difference between 
the last and the first value of an ordered series of values:  

)1()n( xxR   

or, with regard to any unstructured value set, the difference between the biggest and the 
smallest values: 

minmax xxR  . 

The range is always a positive number (greater than or equal to zero).  
 

EXAMPLE 3.5: 

The result for the value set (2, 3, 7, 5, 3, 2, -2, 0, 4, 3) is: 

7xmax      2xmin       9)2(7R  . 

3.9 Range method to determine the standard deviation 

The range method is a simplified calculation to quickly determine a standard deviation 

Rs . This measure of dispersion Rs  is a good approximation for s  and is sufficiently accura-

te for many practical applications. The requirements for this simple procedure are: the 
data set must be derived from a normal distribution and especially not contain any out-
liers. 

The values from the measurement series m  are divided into groups (samples) with n  in-
dividual values each. The data set consists, therefore, of a total of nm   individual values. 

In general, this procedure is applied when the measurement values occur in groups 
anyway, e.g. with the median r chart within an SPC in the form of 5-piece samples. 

The respective group mean jx  is then 





n

1i

j,ij x
n

1
x  

With i : running index within a group, 

j : running index for the groups ( m,,2,1j  ). 

The range of each group is min,jmax,jj RRR  . 

The mean R  of the range of all groups is 





m

1j

jR
m

1
R . 

From R  and the use of a tabulated auxiliary quantity *
2d  finally the standard deviation Rs  

can be calculated: 

*
2

R
d

R
s  . 

*
2d  is dependent on the number n  of the individual values per group as well as the num-

ber m of the groups (see Table 3.2). 
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  Sample size n 

  2 3 4 5 6 7 8 9 10 

N
u

m
b

e
r 

m
 o

f 
gr

o
u

p
s 

1 1.414 1.912 2.239 2.481 2.673 2.830 2.963 3.078 3.179 

2 1.279 1.805 2.151 2.405 2.604 2.768 2.906 3.024 3.129 

3 1.231 1.769 2.120 2.379 2.581 2.747 2.886 3.006 3.112 

4 1.206 1.750 2.105 2.366 2.570 2.736 2.877 2.997 3.103 

5 1.191 1.739 2.096 2.358 2.563 2.730 2.871 2.992 3.098 

6 1.181 1.731 2.090 2.353 2.558 2.726 2.867 2.988 3.095 

7 1.173 1.726 2.085 2.349 2.555 2.723 2.864 2.986 3.092 

8 1.168 1.721 2.082 2.346 2.552 2.720 2.862 2.984 3.090 

9 1.164 1.718 2.080 2.344 2.550 2.719 2.860 2.982 3.089 

10 1.160 1.716 2.077 2.342 2.549 2.717 2.859 2.981 3.088 

… … … … … … … … … … 

2d  1.128 1.693 2.059 2.326 2.534 2.704 2.847 2.970 3.078 

Table 3.2: Values of *
2d  depending on n and m. 2d  is the limit of *

2d  for infinitely many 

groups (i.e. m ). 

 
EXAMPLE 3.6: 

 

 Group No. 

i  1 2 3 4 5 6 

1 70 71 68 72 72 72 

2 68 67 72 76 66 69 

3 69 66 69 67 63 63 

4 69 64 67 68 73 68 

5 75 72 69 69 72 68 

jx~  69x~1   67x~2   69x~3   69x~4   72x~5   68x~6   

jR  7R1   8R2   5R3   9R4   10R5   9R6   

 
 

8
6

9109587
R

6

1
R

6

1j

j 


 


       

 

43.
2.353

8

d

R
s

*
2

R   
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4 Statistical calculations in EXCEL 

Measurements are often recorded in EXCEL tables. This often leads to the need to calcu-
late simple statistical measures directly in these tables. 

One can calculate a mean by, for example, adding up all of the individual values in column 
A using the “=SUM(A1:An)” function and then dividing the result by the number n. This 
would correspond to the process explained in 3.2. 

To calculate the variance, one can tediously copy the steps described in Chapter 3.6, and 
subtract the calculated mean from every value in column A, enter the results into the 
respective lines in column B, then multiply every field in column B with itself, enter the 
results into the respective lines in column C, and then finally sum up column C and divide 
the result by 1n . This way statistical measures are determined using basic arithmetic 

methods like addition, subtraction, multiplication and division. To calculate the standard 
deviation, one also has to take the square root. 

These “programming exercises” can be easily understood and handled using simple ma-
thematical EXCEL functions. However, to quickly calculate statistical measures, the prac-
ticed Excel user will use the available statistical functions. 

For example, the mean of the values in lines 1 to 10 in column A can be calculated by en-
tering "=AVG(A1:A10)" into cell A11. Similarly, the standard deviation can be calculated 
by entering "=STDEV(A1:10)" into cell A12. Alternatively, one can use the corresponding 
functions on the graphical interface. 

Note the following feature, with regard to the standard deviation. The EXCEL function 
"STDEV” assumes that the values entered originate from sample results, from which the 
standard deviation   of a larger population will be calculated. The calculation of s (as the 
estimator for  ) is realized by the following formula: 








n

1i

2
i )xx(

1n

1
s . 

In this case, the sum of the squared deviations is divided by the sample size minus one.  

The EXCEL function “STDEV” assumes that the provided numbers already correspond to 
the population (e.g. body sizes of students in a class), and the sum of the squared devia-
tions is divided by the population size (number of entered values). So the calculation uses 
the formula: 





n

1i

2
in )xx(

n

1
s . 

When dealing with larger data sets, starting at 50n  , the difference between the factors 

1n

1


 and 

n

1
 becomes meaningless (the relative “error” in the case of 50n   is approxi-

mately 2%).  
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Measures should be used with caution! 

The following example is going to illustrate that using a statistical measure alone is not 
enough to provide a clear conclusion regarding the fraction nonconforming with respect 
to a tolerance limit (upper limit - UL). 
 

EXAMPLE 4.1: 
 

Measurement series 1, measured values ix   

22 25 25 26 26 

26 22 22 23 25 

24 23 24 23 23 

23 24 22 26 25 

26 25 24 22 24 

Mean: 024.x         Standard deviation: 44341.sx   

 

Measurement series 2, measured values iy  

24 23 22 25 23 

23 25 21 24 24 

24 23 22 26 24 

23 26 24 24 25 

24 25 28 24 24 

Mean: 024.y         Standard deviation: 44341.sy   

 

 

 

 

 

Fig. 4.1: Dot diagram for measurement series 1 
(above) and measurement series 2 (below) 
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Although the means and standard deviations of both measurement series are each the 
same, in the first case, there is not a single value above the upper limit UL  (“upper tole-
rance limit”), while in the second case, one measurement UL  exceeds this. 

This example shows that it is unavoidable, when evaluating series of measurements, to 
embrace a comprehensive, integrated approach and not to draw conclusions based on a 
few pieces of information. Obviously, the “distribution” of the measurements in the  pre-
vious example should not be disregarded (see Chapter 6).  
 

NOTE: 

It is often assumed that the terms “mean” and “standard deviation” always refer to the normal 
distribution (see Chapter 6). This assumption is not correct.  
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5 Graphical display of data 

A graphical display of data allows the viewer to quickly ascertain the essential properties 
of a data set. It assists and facilitates when examining series of measurements.  

For instance, by using an original chart it is extremely easy to recognize special charac-
teristics like the starting point, end point, trends, periodicity, aggregations of points or 
individual points that lie well outside the majority of the rest of the points, so -called out-
liers, etc. 

Moreover, the majority of graphical displays serves the viewer to determine a data set's 
statistical properties and measures without the use of a computer or calculator.  

5.1 Original value chart 

Using an original value chart, one lists measurement values in series based on their occu r-
rence, the abscissa (x-coordinate) usually corresponds to time. When examining proces-
ses, data is normally recorded in increments of minutes, hours, shifts or days. The time, 
therefore, can be indicated in these cases by entering the date and time of day.  When 
examining parts that were sampled from a production process, there may be a great dif-
ference between the respective points of time of the sampling and the measurement of 
the value of the part's characteristic. This may play a role, for instance, with products that 
are subject to alterations over time (e.g. plastic parts, adhesive bonds).  

On the other hand, when conducting experimental studies it may be of interest to define 
the beginning as point zero on the time scale (e.g. the transient response of a control de-
vice). The following example shows the temperature profile in a drying chamber  with 
a simple two-step control. 
 

Fig. 5.1: Example of an original value chart 
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5.2 Tally chart, dot diagram  

Examples of dot diagrams are found in the previous Chapters 3.1, 3.6 and 4. These dot di-
agrams as well as frequency charts or histograms are going to be used to explain grouping 
in following sections.  

As illustrated in the following example, a dot diagram originates from a tally chart when 
each group of five (obviously other groupings are also possible) is represented by a dot. 
Compare Figure 5.2 to Figure 4.1. (below). In both cases, a so-called natural grouping ari-
ses (see Chapter 5.3) since the values only occur as integers. The height of a “pillar” is 
a measure for the absolute frequency of the associated value. 

Fig. 5.2:  Example of a tally chart 

5.3 Grouping, histogram   

If the number of measurement values in a sample is greater than about 25, it is expedient 
to group these values. 

The grouping procedure will be explained in an example with the following  list of measu-
rement values. The measurement values, given in millimeters (mm) are hypothetical. 
However, they could very well originate from a production process like cutting bar stock.  

 
EXAMPLE 5.1:  
The following master list contains 50 values: 

8.0 7.0 7.4 8.0 7.0 

7.4 7.8 7.5 7.7 6.9 

6.5 7.5 7.6 7.3 8.0 

7.0 7.5 7.1 7.4 8.6 

6.0 8.0 7.0 8.0 6.9 

7.5 8.4 6.8 8.3 8.0 

8.3 7.3 7.0 7.5 7.9 

8.0 7.5 7.0 6.5 7.8 

5.8 7.8 6.3 7.5 7.9 

9.0 8.0 7.1 7.0 7.4 

29

28 IIIII
27

26 IIIII IIIII
25 IIIII IIIII IIIII IIIII
24 IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII
23 IIIII IIIII IIIII IIIII IIIII
22 IIIII IIIII
21 IIIII
20
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If one enters the measurement values into a frequency diagram with a grouping of 7 classes in 
mind, the following illustration results: 

 

 
 

 A grouping with 22 classes, on the other hand, gives the following frequency diagram:  

 

 

 
Obviously, the number of classes and their width has a strong influence on the 
“appearance” of the frequency diagram. 

The following formula (rule of thumb) provides a clue for the suitable number k  of clas-
ses: 

nk       for 100n25  . 

The limitation for this sample size indicates that this formula only applies for measure-
ment series of up to 100 values. For less than 25 values, it is usually no longer sensible to 
create a frequency diagram. 

Fig. 5.3: Frequency diagram for Example 5.1; 7k  , 5,0w   

Fig. 5.4: Frequency diagram for Example 5.1; 22k  , 15,0w   
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On the other hand, if more than 100 measurement values exist, it is generally recom-
mended to choose the number of classes using the formula: 

)n(log5k       for 100n  . 

The following number of classes result with these rules in mind:  
 

Table 5.1: Number of classes k depends 
on the number of measurement valu-
es n 

 

 

 

 

 

 

 
As one can see from the frequency diagram, each class contains a certain range of values. 
The limits of each range (interval) are called the lower and upper class limits. The length 
of such an interval is called the class width w . 

One possible way to determine this class width is to use the formula 
1k

xx
w minmax




  for 

the range. This, however, usually yields class limits with several  decimal places and may 
result in empty classes. 

 
The frequency diagram from Figure 5.3 was created using the 50n   values from Example 5.1. 

The following values result when using the above rules for choosing the quantities k  and w  :  

750k       and     0.5
17

5.89.0

1k

xx
w minmax 









 . 

In Figures 5.3 and 5.4, the class limits were determined by choosing the second decimal 
point so that each value can be clearly assigned to a class. Another option to clearly as-
sign classes is to include the right class limit with the interval, or to evenly divide the va-
lues that are identical to the class limit into the neighboring classes, respectively. 
 

NOTE: 

There are conceivable situations where it would be advantageous to select different class  wid-
ths. For example, the above rule usually fails to determine the class width  when the data set 
contains an outlier. 

Strictly following this rule could lead to a situation where only the outer classes are occupied 
(one of the classes containing only the outliers) and all the others are empty. This can be 
avoided by, for example, disregarding individual extreme values when creating th e classes, and 
then assigning these to the corresponding outer classes (first or last class), after determining 
classes that would be sensible for the situation. This means that the first class on the left and 
the last class on the right are open ended with no lower or upper class limits, respectively. 

One cannot avoid the fact that statistical programs that create groupings according to a few, 
simple rules (when, for example, creating histograms) might deliver unusable illustrations de-
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pending on how “exotic” the data set is, due to reasons mentioned. Which is why they normal-
ly provide the users with the option of correcting the grouping at their own discretion.  

 
Before we begin calculating the mean x  and the standard deviation s  from a grouping, 
certain important terms need to be explained. 

Class limit: 

Each class from a given grouping is limited by its lower class limit 1j'x   and its upper class 

limit j'x . 

Class midpoint jx : 

The class midpoint corresponds to the arithmetic mean of the lower and upper class li-
mits:  

2

'x'x
x

j1j

j





. 

Class width jw : 

The class width corresponds to the distance between the lower and upper class limits:  

1jjj 'x'xw  . 

Generally, all classes have the same class width, i.e. ww j   for all classes. 

Absolute frequency jn : 

The number of values allotted to the ( j -th) class (one can also speak of “absolute class 

frequency”). 

Relative frequency jh : 

Absolute frequency divided by the total number n  of the values from the data set:  

n

n
h

j
j    with k321

k

1j

j nnnnnn 


 . 

Absolute cumulative frequency jG : 

Sum of the absolute frequencies jn  from the first until the j -th class (inclusive).  

j321

j

1i

ij nnnnnG 


  

Relative cumulative frequency jH : 

Relative share of all values below the upper class limit of the j -th class: 

j321

j

1i

ij hhhhhH 


  

or, which is easier when calculating by hand: 
n

G
H

j
j  . 

A frequency diagram shows the distribution of the measured values, therefore the relationship 
 between a variable x  and the frequency of its occurrence. If one plots the absolute frequen-
cies on the x-axis, one obtains a frequency diagram (see Figures 5.3 and 5.4). 

On the other hand, if one enters the relative frequencies, one obtains a so-called histogram 
(also called a bar graph).  
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The following chart is created from the values in Example 5.1:  
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Here, rectangles are drawn above the classes of the characteristics, whose heights cor-

respond to the frequencies jh  (with constant class width). The following table includes 

almost all of the essential statistical measures: 
 

Class 
No. 

Lower 
class limit 

Upper 
class limit 

Absolute 
frequency 

Relative 
frequency 

Relative 
cumulative 
frequency  

Auxiliary 
value 

(see text) 

Auxiliary 
value 

(see text) 

 1j'x   j'x  jn  jh  jH  jj xn   2
jj xn   

1 5.75 6.25 2 4% 4%   12.0   72.0 

2 6.25 6.75 3 6% 10%   19.5 126.8 

3 6.75 7.25 12 24% 34%   84.0 588.0 

4 7.25 7.75 15 30% 64% 112.5 843.8 

5 7.75 8.25 13 26% 90% 104.0 832.0 

6 8.25 8.75 4 8% 98%   34.0 289.0 

7 8.75 9.25 1 2% 100%      9.0   81.0 

   50n 
 100%  375.0 2832.6 

Table 5.2    

5.4 Cumulative curve 

If one plots the relative cumulative frequencies above the upper class limits, one obtains 
a s-shaped curve, the so-called cumulative curve. 
 

Fig. 5.5: Histogram for the values from Example 5.1 
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The benefit of a cumulative curve versus a frequency diagram is easy to see. One can 
read, without much trouble, the percentage of the measured values that lie below a  
certain value on the x-axis (e.g. when estimating a rejection rate). In the example shown, 
90% of the data lies below the value 8.25, or 10% of the data lies above this value. If the 
original values of the data set are not known, the following formulas can be of use to cal-
culate the mean and the standard deviation using the information included in the histo-

gram (remember: here jx  designate the class midpoints) . 

Mean:   
n

xnxnxnxn
)xn(

n

1
x kk332211

k

1j

jj


 




 

Variance:   



















 



k

1j

22
jj

k

1j

2
jj

2 xn)xn(
1n

1
)xx(n

1n

1
s  

Standard deviation:   2ss   

The absolute frequencies jn  can be calculated using the relative frequencies jh  : 

jj hnn  . 

 
In the above example (see Table 5.2), one finds:  

7.5
50

375.0
x    and  410.)7.5506(2832.

150

1
s 22 


   and finally 0.64s  . 

When calculating these quantities using the original values, one obtains: 4547.x   and 

0.6399s  . 

Fig. 5.6: Cumulative curve for the values from Example 5.1 
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6 Statistical distributions 

6.1 Gaussian normal distribution  

If one continuously increases (under constant measurement conditions) the size n  of a 
series  of measurements (i.e. the number of the measurement values becomes theoreti-
cally infinitely large), and one simultaneously reduces the class width (to zero), the cumu-
lative curve (see 5.4) approaches a limit curve that corresponds to the distribution (distri-
bution function) of the (infinite) population. Similarly, the outline of the step functio n re-
presenting the upper edge of the histogram approaches a limit curve that is the graphical 
representation of a probability density function (see Figure 6.1, n , class width 

0w ). 

Each point on the x-axis corresponds to a number with theoretically infinitely many deci-
mal points, e.g. ...873.2645271x  . The probability that a characteristic (with known dis-

tribution) assumes this value exactly is zero. On the other hand, the probability that a va-
lue lies within the range (interval) between 73.2 and 73.4 is a finite number greater than 
zero. One obtains such a probability by multiplying a value on the probability density 
function with the interval width. The probability density function is the generalization of 
the relative frequency when the class width shrinks to zero, so to speak.  

The term “density” touches upon an analogy between the calculus of probabilities  and 
the mechanics of rigid bodies (see e.g. [3]).   

The area confined by the probability density function and a definite interval on the x -axis 
corresponds to the probability with which values of the population fall into this very in-
terval. This area is therefore a graphical analog to the probability. The total area limited 
by a chosen probability density function and the characteristic axis (between negative 
and positive infinity) always corresponds to the value 1 (=100%).  

The past has shown that experimental studies and statist ical observations often find dis-
tributions of characteristics that result in histograms with a similar appearance. The ma-
thematician C. F. Gauss examined this phenomenon using land survey data. This type of 
distribution is called the “normal distribution” and often serves as a distribution model 
for technical and statistical phenomena. Due to their characteristic shape, illustrations  of 
this distribution’s density function are also called the “Gaussian bell curve”.  

Fig. 6.1: Illustration of the transition from histogram to density function using the exa-
mple of a normal distribution 
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6.1.1 Properties and measures of the normal distribution  

The bell curve is the graphical representation of the density function of the normal distri-
bution, which is described by the mathematical relationship 

2
x

2

1

e
2

1
)x(f


















  

The function (and the curve) is clearly defined by the parameters   and  . Thereby,  

  represents the mean of the distribution and   its standard deviation. 

Looking at the functional equation or its graphical representation, several special charac-
teristics can be found: 

 The curve is symmetrical about the mean  . 

 The curve has an inflection point at the points   and   respectively. This 

means that, e.g. at   the curve changes its orientation from convex (away 

from the x -axis) to concave (toward the x -axis). 

 The curve runs from x  to x . However, that is only interesting from 

a theoretical point of view. Practically speaking, the curve is only meaningful at 
a distance of three to four standard deviations to the left and right of the mean  
  in Figure 6.2. There, the curve already approaches the x -axis. 

As already explained, the area under the Gaussian curve corresponds to an infinitely large 
number of measurement values from a normally distributed population. If this area is set to 1 
(corresponds to 100%), a proportion that lies between two points can be determined (in %). 

If on the x-axis around the mean   equal distances are marked in multiples of the standard 

deviation, the proportion of the distribution can be given depending on  . In Figure 6.2, 
these proportions are marked in gray for the areas  1 ,  2  and  3 . 

Accordingly, the following is obtained for the interval 

 1  a percentage of 68.3%, 

 2  a percentage of 95.4%, 

 3  a percentage of 99.7%. 

One can see that outside  3  there is only an infinitesimally small percentage of the 

distribution, namely just 0.3% (= 100% - 99.7%) (see Figure 6.2). 
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Fig. 6.2: Surface area under the bell curve 
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6.1.2 Distribution function   

Chapter 5.4 describes how to determine the cumulative curve of a frequency distribution. 
The relative cumulative frequencies are determined by adding the individual relative class 
frequencies and then they are plotted over the upper class limits. The corresponding 
points are connected piecewise using lines. All of the values (= 100% of the distribution) 
are then accounted for at the last upper class limit. 

The cumulative curve of the Gaussian distribution is also determined this way , in princip-
le. The frequency curve created using the characteristic value x , which corresponds to 
a certain section of the area below the Gaussian curve, must now be calculated with 
a special mathematical procedure: integration. 

 

 
The function that describes the cumulative curve of a probability distribution is called the 
distribution function )x(F . It provides for every x  the probability that a randomly mea-

sured value is less than or equal to x . 

Mathematically formulated, the cumulative probability up to the point x  is given by the 
distribution function: 























x v

2

1

dve
2

1
)x(F

2

. 

)x(F corresponds to the area under the Gaussian bell curve up to the value x . 

Figure 6.3 illustrates the meaning of integration. The area under the curve up to the point 
x  is calculated approximately by defining and summing up the areas of narrow rectangle s 
(width x ). The result becomes more accurate the narrower the rectangles are (passage 

to the limit 0x ). 

 

Fig. 6.3: Illustration of integration 
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The distribution function is given as a curve in Figure 6.4 (below).  
 

 

Fig. 6.4: Comparison between the probability density function (above) and the 
distribution function (below) of the normal distribution 

From this illustration, it follows that the cumulative frequency is 50% at the mean  . The 

0% line as well as the 100% line are only touched by the curve in infinite, theoretically 
speaking. At  3  or  3 , however, the corresponding lines have already almost 

been reached. At  3  the cumulative probability is 0.135%, at  3  it is 99.865%. 

One can easily see that the percentage of the distribution is approximately 99.73% 
between  3  and  3 , namely 99.863% - 0.135%. 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45
f(

x)

x

µ - 3 µ - 2 µ - 1 µ          µ + 1 µ + 2 µ + 3

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

F(
x)

x

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

1.00 

0.90 

0.80 

0.70 

0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-001_BBL_N_EN_2016-01-01.pdf


Basic Principles of Technical Statistics  Continuous Characteristics 

 

 Robert Bosch GmbH 01.2016 - 39 - 

6.1.3 Standard normal distribution 

The Gauss curves are only really practical when they have been standardized.  That is un-
derstandable if one considers that for every chosen normal distribution, the associated 
Gauss curve can be drawn. 

Standardization turns all Gaussian curves into a standard curve with mean 0  and 

standard deviation 1 . This is achieved through the following transformation: 






x
u . 

By subtracting x  the mean is shifted toward the zero point. Dividing by the standard 

deviation effectively compresses (or stretches) the x-axis so that the standard deviation 
becomes 1. Figure 6.6 illustrates this transformation in scale. 

µ - 3 µ - 2 µ - 1 µ           µ + 1 µ + 2 µ + 3
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Fig. 6.5: Bell curve for standard normal distribution 

When drawing the bell curve, one can use the following approximate values for a given 
choice of the maximum M in mm (see Figure 6.5): 
 

Abscissa σ0.5μ    1  σ1.5μ    2   3  

Ordinate 
M

8

7
  

M0.88  

M
8

5
  

M0.63  

M
8

2.5
  

M0.33  

M
8

1
  

M0.13  

M
8

0.1
  

M0.01  

 Table 6.1: Approximate values to graphically display the Gaussian curve 

The advantage of standardization is that, for Gauss distributions with any   and  , the 

probability density and therefore also the cumulative function (cumulative  frequency) on-
ly depend on the values of the variable u . 
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 P
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u u1-
 

Fig. 6.6: Illustration of fractions non-conforming 

Two new terms appear with regard to this representation: 

 The quantity P , which gives the probability that a randomly measured value lies 

between x  and 1x , and 

 the non-conforming fraction  . This quantity corresponds to the probability of 

which the measured value is smaller than x . Due to the symmetry,   is also 

equal to the probability that the measured value is greater than 1x . 

The area under the Gauss curve corresponds to %10012P  . 

For the interval  3 , the probability is %99.73P   and therefore the one-sided non-

conforming fraction is %0.135α   (because %0.27α2  ). 

So-called limits of variation located on the x-axis are assigned to the non-conforming frac-

tion  ; the lower limit is designated with x  and the upper limit with 1x . 

By rearranging the standardizing equation 






x
u  

these limits of variation can be calculated easily. It follows:   11 ux . 

Since the normal distribution is symmetrical, it also follows:  

  ux  with   1uu             1ux . 

The practical use of standardization can now be understood: For every Gaussian distribu-
tion  with any given   and  , the proportion P of the distribution lies between the limits 

of variation x  and 1x . P  
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This general relationship between u  and P  is visible in the following table: 
 

u  1.0 1.28 1.64 1.96 2.0 2.33 2.58 3.0 3.2 

)u(P   % 68.3 80.0 90.0 95.0 95.4 98.0 99.0 99.7 99.9 

  % 15.9 10.0 5.0 2.5 2.28 1.0 0.5 0.135 0.05 

Table 6.2: Relationship between u and P 

Chapter 10 includes another detailed table for the standard normal distribution. How-
ever, somewhat different designations are used there. )u(D  corresponds to the quantity 

designated here with P  and )u(  is identical to  . 

6.2 The normal probability plot 

The normal probability plot is a guide to visually determine statistical characteristics of a 
data set. It also offers the possibility to verify whether or not the values of a data set ori-
ginate from a normal distribution. 

The division of the y-axis of the normal probability plot is chosen in such a way that the 
data sets origination from a normal distribution provide a sequence of points that lie on 
a straight line. In visual terms, the cumulative curve from Figure 6.4 is “straightened” by 
the corresponding distortion of the y-axis. This is achieved by equally spacing the cumula-
tive frequencies belonging to the integral multiples of the (dimensionless) quantities u  
on the y-axis. The abscissa axis, that is the x-axis (represented here for u , see Chapter 
6.1.3), has a linear division. 
 

  

Since the values for the relative cumulative frequency determined using a sample normal-
ly only approximate the theoretical normal distribution, the corresponding points in the 
probability plot are approximated using a straight line. 

Fig. 6.7: Formation of the normal probability plot 
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The use and practical benefit of the probability plot are explained in the following chap-
ter. 

Frequency diagram with probability plot  

Using a normal probability plot, one can verify whether or not it is justifiable to adopt this 
distribution model for the data set in consideration. Moreover, the statistical measures  of 
the data set can be identified/read easily.  
 
The relative 
cumulative frequency 

 
 
equates to 

50% the mean x  

99.865% the value s3x   

0.135% the value s3x   

These relationships form the basis for using the probability plot. 

For series of measurements that consist of more than 25 measurements and are to be 
analyzed using grouping, one plots the values of the relative cumulative frequency on the 
upper class limit in the probability plot. 

For smaller series of measurements, one first creates an ordered list (arranging 

the measurements according to size) and then assigns cumulative frequencies )n(Hi  

to these values that can be calculated using the approximation formula 

0.4n

0.3i
(n)H i




 )n,,2,1i(  . 

   1x ,  2x , ... ,  nx  

 )n(H1 , )n(H2 , ... , )n(Hn . 

Finally, the points (  ix , )n(Hi ) are plotted on the probability plot. 

A best-fit line is drawn through the series of points in order to minimize the distances of 
the points from the line and to place approximately as many points above and below the 
line. The better this line approximates this series of points, the more suitable the model 
of normal distribution is to describe the data set being evaluated.  
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Example 6.1 provides more explanation about how to graphically determine statistical mea-
sures. 

Graphical determination of the mean 

One finds the mean x  by finding the point where the horizontal line at 50% cumulative fre-
quency intersects with the best-fit line and reading the associated value on the x-axis. 

One finds 346x  . 

Graphical determination of the standard deviation 

The standard deviation s  can be determined, by reading the x -values belonging to the cumulati-

ve frequencies 99.865% (corresponds to s3x  ) and 0.135% (corresponds to s3x  ), in the 

example at hand, these values are 366x   and 324x  , and dividing their difference by 6. 

One therefore finds: 7
6

42

6

324366
s 


 . 

Graphical determination of the fraction non-conforming 

In the present case, the upper limit is 360UL   (“upper tolerance limit”). The theoretical pro-

portion of the population that exceeds UL  is found by drawing a perpendicular line at this 

point and finding its intersection with the best-fit line. The cumulative frequency associated 
with this intersection corresponds to the proportion of the population that lies below the UL ; 

here about 97.5%. 

The desired fraction non-conforming (right-hand side) equals the difference between that and 
100%, therefore 2.5%. 

 

The proportion that lies below a certain lower limit LL  (“lower tolerance level”) is given in a 
similar manner. One therefore draws a perpendicular line at LL  and reads the associated cu-
mulative frequency at the intersection with the best-fit line. This values corresponds directly to 
the desired fraction non-conforming (left-hand side). 

The so-called two-sided fraction non-conforming is the sum of the lower (left-hand side) and 
upper (right-hand side) fractions non-conforming. It gives the proportion of units from the po-
pulation whose values lie outside the tolerance range. 
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Example 6.1: Dynamic pressure values of valve plugs  

The frequency distribution of a sample of 50 measured values is displayed here.  
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Example 6.2: Guide diameter of injection needles 

This “sample” includes 240n   measured values. 
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EXAMPLE 6.3: Dynamic pressure values for valve plugs 

This example shows how to evaluate a “small series of measurements” ( 15n   measurements) 

in a probability plot. The following table contains the measurements ix  (10 N/mm2) and the 

associated relative cumulative frequencies )(nHi  to record the points (  ix , )n(Hi ) into the 

probability plot (in ascending order). 

The latter were calculated with the approximation formula 
40.n

30.i
(n)Hi




  for 15,,2,1i  . 

Example: %11110.
40.15

30.2
(15)H2 




 . 

 

No.  1 2 3 4 5 6 7 8 

ix  311 319 321 321 321 321 325 327 

)n(Hi  4.5 11.0 17.5 24.0 30.5 37.0 43.5 50.0 

No.  9 10 11 12 13 14 15  

ix  329 329 329 331 333 333 335  

)n(Hi  56.5 63.0 69.5 76.0 82.5 89.0 95.5  

 

The scale on the x-axis must be chosen carefully. On one hand, one should be able to draw the 
best-fit line completely so that it is possible to read the points of intersections on the upper 
and lower edge of the plot. On the other hand, the line should not run too steeply, in the inte-
rest of readability. 
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EXAMPLE 6.4: Analysis of the process “bearing bush grinding” 

In this case, the measurements were entered similar to an origina l value chart in chronological 
order. The frequency diagram is created in a simple manner from this representation.  

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1

2

3

4

5

6

7

8

9

10

1
0

.0
0

0

1
0

.0
0

1

1
0

.0
0

2

1
0

.0
0

3

1
0

.0
0

4

1
0

.0
0

5

1
0

.0
0

6

1
0

.0
0

7

1
0

.0
0

8

1
0

.0
0

9

1
0

.0
1

0

1
0

.0
1

1

1
0

.0
1

2

1
0

.0
1

3

1
0

.0
1

4

1
0

.0
1

5

Fr
eq

u
en

cy

Diameter / mm

0.02
0.05

0.1

0.5
1
2

5

10

20

30
40
50
60
70

80

90

95.0

98.0
99.0
99.5

99.9
99.95
99.98 

10.000 10.002 10.004 10.006 10.008 10.010 10.012 10.014

C
u

m
u

la
ti

ve
 fr

eq
u

en
cy

 i
n

 %

Diameter / mm

10.000

10.002

10.004

10.006

10.008

10.010

10.012

10.014

10
:0

0

10
:1

0

10
:2

0

10
:3

0

10
:4

0

10
:5

0

11
:0

0

11
:1

0

11
:2

0

11
:3

0

11
:4

0

11
:5

0

12
:0

0

12
:1

0

12
:2

0

12
:3

0

12
:4

0

12
:5

0

13
:0

0

13
:1

0

13
:2

0

13
:3

0

13
:4

0

13
:5

0

14
:0

0

D
ia

m
et

er
 /

 m
m

Time

 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-001_BBL_N_EN_2016-01-01.pdf


Basic Principles of Technical Statistics  Continuous Characteristics 

 

 Robert Bosch GmbH 01.2016 - 48 - 

6.3 Lognormal distribution  

If a characteristic cannot go below or above of a certain limit due to physical reasons, the 
result is commonly a so-called skewed (asymmetrical) distribution of the values. This is 
the case, for example, with characteristics like deflection and concentricity where the lo-
wer limit is “zero”, or the Rockwell hardness test for steel, where the value won't be less 
than a defined minimum hardness. Evaluating the frequency diagram of such a skewed 
distribution with the normal probability plot produces a curved line (Figure 6.8).  
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Fig. 6.8: Evaluating the skewed distribution using a normal probability plot  
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Fig. 6.9: The same data set using a lognormal probability plot 

However, if the same data set is presented in the lognormal probability plot , the result is 
approximately a straight line of points (see Figure 6.9).  

 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-001_BBL_N_EN_2016-01-01.pdf


Basic Principles of Technical Statistics  Continuous Characteristics 

 

 Robert Bosch GmbH 01.2016 - 50 - 

6.3.1 Lognormal probability plot 

The ordinate scale of the lognormal probability plot is identical to the scale of a normal 
probability plot. The plots only differ in the scale division of the abscissa ( x -axis). In case 
of the lognormal probability plot, this scaling is logarithmic. Because of the relationships 
given in the following table (the first two columns contain a different  notation for the 
same number x ), the intervals between the values corresponding to 10, 100, 1000, for 
example, are identical on an axis with a logarithmic scale.  
 

x  x  )x(log  

0.01
100

1
  210  -2 

0.1
10

1
  110   -1 

1 010  0 

10 110  1 

100 210  2 

1000 310  3 

 
 
This provides a simple way to display data sets that span over two or more orders of 
magnitude (see Figure 6.9). Note that a logarithmic scale cannot contain zero, since the 
corresponding value for zero would be "negative infinity".  

The points are plotted like in a "normal” probability plot (see Chapter 6.2).    

The measures for the lognormal distribution are the geometric mean gx  and the geomet-

ric standard deviation   (“epsilon”). gx  is the median, meaning that 50% of the individual 

data is lower and the other 50% is larger than this number. It is easy to determine graphi-
cally by looking for the intersection of the drawn best-fit line with the horizontal line at 
50% and determining the corresponding x -value. 

The mean x  is not identical to the most common value (mode) due to the asymmetry of 

the distribution, it lies between the mode and the median gx . 

When determining the geometric standard deviation  , one first determines the intersec-

tion of the best-fit line with the horizontal line on the probability plot at gx  (corres-

ponds to a cumulative frequency of 84.13%), then reads the associated value on the x -

axis and finally divides this number by gx . 

Similar to a normal distribution, one can determine areas using gx  and  , which are li-

mited by certain intervals of the curve of the density function and the x -axis. 
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68.3% of all values of a lognormal distribution lie between 


gx
 and gx . 

95.4% of all values of a lognormal distribution lie between 
2

gx


 and 2

gx  . 

99.7% of all values of a lognormal distribution lie between 
3

gx


 and 3

gx  . 

Generally, only the upper limit (UL) UL  is of interest with regard to zero-limited charac-
teristics. In this case, the associated non-conforming fraction can be determined using the 
logarithmic probability plot. To do so, one draws a perpendicular line at the point UL  (on 
the x -axis) and determines from the intersection with the best-fit line the corresponding 
cumulative frequency (UL)H  in percent. The value (UL)H100  corresponds to the theore-

tical proportion of the distribution (in percent) that exceeds the limit. 

Figure 6.10 shows an example of such an analysis. Note that the frequency diagram  
(above) and the probability plot (below) have different x-axis scales (linear and logarith-
mic division), and therefore the points in the probability  plot won't lie perpendicular un-
der the positions of the upper class limit of the frequency diagram. 

Following the horizontal line at 50% cumulative frequency towards the right up to the in-
tersection with best-fit line and then down perpendicularly, one finds the geometric me-

an 0.31xg  . Correspondingly, one finds the value 0.51εxg   at the intersection of the 

84.14%-line with the best-fit line. Dividing both of these numbers results in the geometric 

standard deviation 1.65
0.31

0.51
ε  . Following the perpendicular line at the upper limit 

0,1OGW  , one finds the intersection with the best-fit line at 99 % cumulative frequency. 

The fraction non-conforming with regard to this limit is therefore 1%. 
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Fig. 6.10: Graphical analysis in a logarithmic probability plot 
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6.3.2 Relationship between normal distribution and lognormal distribution 

By taking the logarithm, a lognormal distributed characteristic x   is transformed into 
a normal distributed characteristic z . Through the use of logarithms, the upper portion of 
the lognormal distribution is strongly compressed and the area between the geometric 

mean gx  and the zero point is strongly stretched. This corresponds to a “mirroring” of the 

curve of the function )x(lnz  . Image 6.11 shows that gx  is mapped to z  and the 

point gx  corresponds to the value zsz  . It is: 

)x(lnz g           z
g ex      and     )(lnsz           zs

e . 

ln(x)

Lognormalverteilung

N
o

rm
al

ve
rt

ei
lu

n
g

s z

z

x

 

Fig. 6.11: Illustration of the relationship between the normal distribution and the log-
normal distribution  

NOTE:  

It may seem somewhat confusing that the preceding explanations are related to the natural 
log )x(ln  (with base e), but the probability plot features a division based on the common loga-

rithm (x)log  (with base 10). This fact is, however, meaningless with regard to the comparabili-

ty of the evaluation results, since the values are always transformed back into the original 

coordinate system during the determination of gx  and  , and the calculation of fractions non-

conforming or limits requires both of these quantities. If using (x)log  as well as its inverse 

function x10 , the above expressions are replaced with z
g 10x  and zs10 . 

gxgx
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6.4 Mixture distributions 

It can happen that the dimensions of parts produced on two different machines or pro-
duction lines exhibit different distributions. Normally one sees that central tendency 
and/or variation differ from one another although the distribution type is the same. If the 
parts are not separated, the resulting distribution is called in statistical terms a mixture 
distribution. Mixture distributions can also occur if the essential impact factors of 
a running production series change abruptly (tool change, different batch of materials).  ~ 

The histogram of a mixture distribution normally has two or more maxima. One can also 
speak of a bimodal or multimodal distribution. 

If the mixture distribution is caused by two superimposed normal distributions whose 
mean values strongly differ, a representation (of the cumulative frequency  or individual 
values) in the probability plot shows that the resulting dot line may be approximated pie-
cewise by two different straight lines. 
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Fig. 6.12: Representation of a mixture distributions based on two collectives  
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7 Quality control charts 

NOTE:  

This chapter presents only statistical fundamentals about control chart techniques. Special 
procedures and current control systems with regard to their practical  application are described 
in Book 7 “Statistical Process Control (SPC)” of the Bosch Series  "Quality Control in the Bosch 
Group, Technical Statistics”. 

 
Statistical Process Control is best practice for controlling a production process based on 
statistical methods. 

Thereby samples of parts are drawn from the process according to process-specific samp-
ling rules and the values are measured and entered in so-called quality control charts. The 
statistical measures calculated from the values are then used to assess the current state 
of the process. If necessary, the process status will be corrected with appropriate mea-
sures. 

The control chart technique was developed by Walter Andrew Shewhart (1891-1967) in 
the nineteen-twenties and described in detail in 1931 in his work “Economic Control of 
Quality of Manufactured Product”. 

SPC is a process drawn from inductive (conclusive) statistics. Not all measurement values 
are made available as would be the case if inspection 100%. Conclusions about the popu-
lation are based on a small data set, the sample values. 

The mathematical model for variable quantities is based on the idea that  there are many 

quantities that have an influence on a process. The “5 M”    Man, Machine, Material, 

Milieu, Methods  are the main categories of these influencing quantities. 

Each “M” can be further subdivided, e.g. Milieu (= environment) breaks down into tempe-
rature, humidity, vibration, contamination, illumination, ...  

Uncontrollable, random effects of many influencing quantities lead to deviations of the 
real values from the target value, despite careful procedures (generally the midpoint of 
the tolerance range). 

The random interaction of many influencing quantities in general results in an approxima-
te Gaussian normal distribution for the observed part characteristic . This fact is described 
in statistics by the central limit theorem. The normal distribution is therefore of funda-
mental importance for SPC. 

7.1 Location control charts 

One can obtain initial insight into the status of a process by taking a completed part as a 
random sample, measuring the desired characteristic and then comparing the obtained 

value with the estimation of the mean ̂ . If the individual value lies outside the range of, 

for example,  3 , this result will not be a surprise, because under the requirements 

mentioned for purely random process behavior, approximately 99.73% of all values are 
supposed to lie within this range. One might already conclude from the obtained result 
that the current process average corresponds to the pre-production run (estimated value 

̂ ), or that there is no indication of a change to the process location.  
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However, confidence in such a statement would be significantly greater, if it were not ba-
sed on an individual sample value , but on, e.g. 5n   values. The preceding thoughts form 

the basis for the function of a quality control chart. A conclusion about a momentary pro-
cess location is drawn from the results of a current 5-piece sample. Now, there is still the 
unanswered question, which measure(s) should be used as the information media regar-
ding the process location. 

Besides the possibility of considering all the five individual values separately, it is recom-
mendable to undertake an assessment based on the location of the mean value x  or the 

median (central value) x~  of the five values. These three options correspond to three dif-
ferent control charts for the location: the original value chart, the mean chart and the 
median chart. We want to limit ourselves in this documentation to representations of the 
mean chart and the original value chart. 

7.1.1 Mean chart 

The mean chart is the most important and the most commonly used quality control chart 
in practice. The following shall explain how to use it.  

At constant time intervals, samples of size 5n   are drawn from a production process, 

the characteristic to be monitored is measured and the five individual measurements as 
well as their standard deviation s  and mean x  are entered into the quality control chart. 

For now we only look at the means of the sample ix  in chronological order. The standard 

deviations is  will be analyzed using the s -chart (Chapter 7.2.1). 

The calculated means are entered into a diagram and connected with a line.  
 

 
Fig. 7.1: Schematic about the functionality of a mean chart. In order to illustrate  the re-
lationships, the mean values (points) as well as the individual values (crosses) from each 
sample are represented. 

The means like the individual values show a variation around the process average  ; 

however, the variation of the means is smaller by the factor 
5

1
 than that of the indivi-

dual values. The following figure illustrates this relationship.  
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Fig. 7.2: Relationship between the variation of the individual values (original 
values) and the variation of the means. 

Generally: If the individual values of a process characteristic are dispersed with the stan-

dard deviation  around the mean , then the standard deviation of the means x  of n  

values is equal to 
n


. 

We are now looking at the general case of a sample with the size n . 

One can now easily locate the random variation interval of the means by using the fact 

that the transformation 





x
u  converts a normally distributed variable x  into 

a standard normally distributed variable u  (see Chapter 6.1.3), and instead of x  with the 

standard distribution  it actually enters the means x  with the standard deviation 
n


: 

n

x
u




 . 

The table of the standard normal distribution provides the limits 2.58ulower   and 

2.58uupper   for the (two-sided) 99% random variation interval of the quantity u . Thus, 

with a probability of  99% u  lies within the limits -2.58 and +2.58: 

2.58u2.58   

 

 

x

n
x

x




x

xu

xu
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Substituting u  provides the 99% random variation interval of the mean x  of a sample of 
size n: 

2.58

n

σ

μx
2.58 


           

n

σ
2.58μx

n

σ
2.58μ   

If one also substitutes the unknown quantity   with the nominal value C  and the also 

unknown  of the population with the corresponding estimation value ̂  (determined in 
a process capability analysis with at least 20 samples of 5 parts each), then one obtains:  

n

σ
2.58Cx

n

σ
2.58C

ˆˆ
  

a central relationship with regard to all of the location control charts.  

The quantities 

n

σ
2.58CUCL

ˆ
   and  LCL

n

σ
2.58C

ˆ
  

are called upper and lower control limit for the mean x . Since they only depend on the 

process variation  and are independent of the characteristic tolerance, one speaks of na-
tural or process related control limits. 

They limit the interval containing 99% of all means of n  individual values respectively. 
These control limits are drawn in the control chart (see Figures 7.1 and 7.2) as horizontal 
lines. All previous considerations required that the process conditions are stable. If an ob-

served mean ix  exceeds the upper or falls below the lower control limits, one can con-

clude that the process conditions are no longer stable; the process has shifted significa-
ntly and must be corrected by the machine operator. 

7.1.2 Original value chart (x-chart) 

Practical experience shows that it is desirable in some cases to evaluate the process loca-
tion directly using the individual values from the sample. This is shown by the original va-
lue chart. 

The natural control limits are derived by considering the probability that all individual va-
lues from a sample of size n  lie within these limits. 

It was shown in the chapter about the mean chart that, under certain conditions  (normal-
ly distributed characteristic, stable process), there is a 99% chance that an individual va-
lue lies within the interval between 

σ2.58C    and  σ2.58C   

Since, for example, 5 sample values are random results that are independent from one 
another, the probability that all 5 values lie within this interval is equal to the product of 
the individual probabilities, thus 

0.990.990.990.990.99Ptotal   

0.950.99P 5
total  . 

In order to calculate the natural control limits for the original value chart with 5n  , one 

merely has to set the total probability 99,0Pges   and transform the equation 

0.99)(PP 5
individualtotal    into 
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0.9980.99P 5
individual  . 

They can, therefore, be obtained from the standard normal distribution table as (two-
sided) 99.8% random variation limits. For the example 5n  , this is the value 3.09u  , 

and the control limits are 

σ3.09CUCL ˆ                                                     

 ( 5n  ) 

LCL σ3.09C ˆ . 

If generalized to samples of size n , the natural control limits for the original value chart 
can be calculated as follows 

σuCUCL n 0.99
ˆ  

LCL σuC n 0.99
ˆ . 

 

Fig. 7.3: Schematic of the functionality of an original value chart. For illustrative purpo-
ses, both the largest and smallest individual value from each sample are connected by a 
line (same data as in Figure 7.1). 

7.2 Variation control charts 

Just like the process average, the process variation, in general synonymous with the stan-
dard deviation of a part characteristic, is a key measure to evaluate production quality . 
Hereby, recognizing increases in variation is just as important as decreases in variation. 
The latter provides the chance to find out the reason for the short-term improvement 
and to maintain the favorable process conditions permanently.  

Quality control charts for variation are suitable tools to determine such changes . For this 
purpose, the samples of size n  that were used in association with the mean chart are 
going to be used. In addition to the information about the current process location, each 
group of individual sample values also contains information about the current process va-
riation. 

One can consider the standard deviation s  or the range R  of each sample as the measure 
of this information.  
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7.2.1 s-chart 

As already indicated, it is convenient not to regard the s -chart as a separate chart, but 
rather to display it as a second diagram on the form sheet for the mean chart. One calls 
this combination the x - s -chart. 

In parallel to representing the mean of each i -th sample of 5 (or generally samples of size 

n ), here its standard deviation is  is recorded. 

The size of the current value of this standard deviation is  naturally depends on the mean 

process variation estimated by ̂  and can by chance in a special case be somewhat grea-
ter or smaller than a long-term mean s . In order to decide when to interpret such fluctu-
ations of s  as indications of an actual change to the process variation, and not as a rand-
om occurrence, one needs limits for s  that contain, e.g. the 99% random variation range 
of s . If the actual value of s  is greater than the upper limit or smaller than the lower li-
mit, it is an indication of significant changes to the process variation. Such limit values can 

be determined by considering the fact that the quantity 
2

2s
f

  is subject to a 2 -

distribution (called: chi-squared). 

From    2

2

2s
f 

    with 

σ
f

χ
s

2
α/21,f

up 


    and    σ
f

χ
s

2
α/2,f

lo   

we obtain the desired control limits for s . 

The 2 -distribution with f  degrees of freedom ( f  corresponds to the sample size minus 

1, thus 1n  ) is tabulated like the standard normal distribution. However, the 2 -

distribution is not symmetrical. 

This results in different factors to calculate the upper and lower control limits. The squar-

e-root terms in the above expressions are, to simply matters, designated with '
EupB  and 

'
EloB  and given directly with the sample size n  in the table below. The equations for the 

control limits of the s -chart are thus: 

σBUCL '
Eup

ˆ  

LCL σB'
Elo

ˆ . 

 

n  2 3 4 5 6 

'
EupB  2.807 2.302 2.069 1.927 1.830 

'
EloB  0.006 0.071 0.155 0.227 0.287 

Table 7.1: Factors to calculate the control limits of the s -chart 
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Fig. 7.4: Schematic of an s-chart (same data as in Figures 7.1 and 7.3). The standard de-
viations obey a skewed distribution. Since the control limits for s  are calculated using 

those for 2s , the surface areas above UCL  or below LCL  in the illustration are depicted 
too large. 

7.2.2 R-chart 

With R-charts, one uses the range R , therefore the difference between the largest and 
smallest individual values of a 5-piece group (or a sample of size n ) as a measure for the 
momentary process variation. 

The basis for calculating the variation limits of R  is given by the distribution of the stan-

dardized range nw . 

This distribution can, for example, be simulated using a computer by repeatedly "dra-
wing" a random sample of size n  from a population of standard normally distributed va-
lues and determining its range R . The 99% random variation range of this quantity R  is 

then given by the upper limit 0.995n;w  and the lower limit 0.005n;w . 

Since, when using the range chart, it is appropriate to estimate the process standard de-

viation   via the average range R  (see Chapter 3.9) 

nd

R
ˆ  , 

it is beneficial to combine the factors 0.005n;w  or 0.995n;w  and 
nd

1
 and denote the resulting 

factors EupD  or EloD . These quantities are tabulated below and allow one to calculate the 

control limits for the range chart according to 

RDUCL Eup   

RDLCL Elo  . 

 

n  2 3 4 5 6 

EupD  3.518 2.614 2.280 2.100 1.986 

EloD  0.008 0.080 0.166 0.239 0.296 

Table 7.2: Factors to calculate the control limits of the R -chart 
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8 Evaluating frequency distributions in connection with 
a tolerance 

The following illustrations show schematics of examples of possible frequency  distributi-
ons, which may occur when examining a production process; short explanations are in-
cluded. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 8.1:  

Variation range considerably smaller than tole-
rance. Mean corresponds well with the tolerance 
average. 

 

Fig. 8.2:  

Variation range considerably smaller than tole-
rance. However, mean lies outside the tolerance 
average. Rejection rate may go up. 

Center process! 

Fig. 8.3:  

Variation range considerably smaller than tole-
rance. However, mean of the distribution is far 
removed from the tolerance average. 

Center process! 
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Fig. 8.4:  

Variation range is about the same as the tole-
rance. 

Mean of the distribution corresponds well 
with the tolerance average. However, 
a systematic shift of the mean can lead to de-
ficient product. 

Reduce variation! 

 

Fig. 8.5:  

Variation range is about the same as the tole-
rance. 

However, mean of the distribution does not 
coincide with tolerance average. Deficient 
product on the upper tolerance limit. 

Center process, reduce variation! 

Fig. 8.6:  

Mean of the distribution corresponds well 
with the tolerance average. Variation range is 
too large. Both tolerance limits exceeded. 

Reduce variation! 

 

Fig. 8.7:  

Superposition of two distributions. 

Possibly caused by systematic process chan-
ges (e.g. tool, material). 

After eliminating the cause, the tolerance is 
easy to maintain because the variation range 
of both distributions is comparably small. 
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Fig. 8.8:  

Similar situations like in Figure 8.7, however, 
the means of both distributions are placed so 
far from one another resulting in deficient 
product at both tolerance limits. 

 

Fig. 8.9:  

Mean of the distribution is shifted toward the 
lower tolerance limit. Apparently the lot was 
sorted 100%. If the process can be centered, 
sorting will no longer be necessary. 

Fig. 8.10:  

The main distribution has a low variation ran-
ge. Mean corresponds well with the tolerance 
average. A small portion lies beyond the up-
per tolerance limit. We might be dealing with 
deficient product that occurred while setting 
up the machine and that was not sorted out. 
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9 Accuracy of estimating mean and standard deviation 

Statements about a population that were derived from a sample are always associated 
with statistical uncertainty. This uncertainty generally increases, the smaller the un-
derlying data basis, meaning the size n  of the sample. 

In the following, we require that the population is normally distributed and its mean   

and standard deviation   are not known. 

The (empirical) quantities x  and s  calculated from a sample are estimations of the unk-
nown quantities   or  . This is expressed with  

xˆ   ( x  is an estimation for  ) 

sˆ   ( s  is an estimation for  ) 

One can give an interval around x  or s , where the unknown quantities   and  , respec-

tively, lie with a great probability. The width of this so-called confidence level depends, 
on the one hand, on the sample size n , and on the other hand, on a specified confidence 

level AP . The quantity AP1   is the associated significance level. 

In Figures 9.1 and 9.2, the confidence levels of   and   are represented as a function of 

the sample size. The curves are valid for a confidence level of 95%. This means that, on 
average in 95 of 100 cases, in which   is estimated by x  or   through s ,   or   lie 

within the confidence limits derived from the curves. 

a) Confidence level for  : 

lo

R

up

R

D

s
σ

D

s
  

Rs  is the standard deviation of the sample determined using the range method (see Chap-

ter 3.9). One finds the factors 
loD

1
 and 

upD

1
 by looking for the sample size n  on the x-axis 

(which is divided logarithmically), going up perpendicularly until reaching both of the cur-
ves and then going from here horizontally to the left until the y-axis. One then reads the 

corresponding value for 
loD

1
 or 

upD

1
 (Figure 9.1). 

b) Confidence level for  : 

RR s
n

't
xs

n

't
x   

One can find the factor 
n

't
 similar to the procedure described in a) (Figure 9.2). Since 

the confidence level for   is symmetrical, it is enough to read 
n

't
 from the upper curve. 

The larger the sample, the more the factors 
loD

1
, 

upD

1
 approach the value 1, or 

n

't
 con-

verges to 0. 
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The curve progressions also indicate that the confidence levels become insignificantly 
smaller for sample sizes beyond 50n   (despite increasing testing effort). In contrast, 

one should carefully interpret statements about mean and standard deviation for sample  
sizes 25n  , since the associated confidence levels become very large. 

 

Fig. 9.1: Diagram to determine the confidence level for   ( %95PA  ) 

Fig. 9.2: Diagram to determine the confidence level for   ( %95PA  ) 
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10  Standard normal distribution  )u(1)u(     )u()u()u(D   
 

u  (-u)  (u) D(u) 

0.01 0.496011 0.503989 0.007979 
0.02 0.492022 0.507978 0.015957 
0.03 0.488033 0.511967 0.023933 
0.04 0.484047 0.515953 0.031907 
0.05 0.480061 0.519939 0.039878 
0.06 0.476078 0.523922 0.047845 
0.07 0.472097 0.527903 0.055806 
0.08 0.468119 0.531881 0.063763 
0.09 0.464144 0.535856 0.071713 
0.10 0.460172 0.539828 0.079656 
0.11 0.456205 0.543795 0.087591 
0.12 0.452242 0.547758 0.095517 
0.13 0.448283 0.551717 0.103434 
0.14 0.444330 0.555670 0.111340 
0.15 0.440382 0.559618 0.119235 
0.16 0.436441 0.563559 0.127119 
0.17 0.432505 0.567495 0.134990 
0.18 0.428576 0.571424 0.142847 
0.19 0.424655 0.575345 0.150691 
0.20 0.420740 0.579260 0.158519 
0.21 0.416834 0.583166 0.166332 
0.22 0.412936 0.587064 0.174129 
0.23 0.409046 0.590954 0.181908 
0.24 0.405165 0.594835 0.189670 
0.25 0.401294 0.598706 0.197413 
0.26 0.397432 0.602568 0.205136 
0.27 0.393580 0.606420 0.212840 
0.28 0.389739 0.610261 0.220522 
0.29 0.385908 0.614092 0.228184 
0.30 0.382089 0.617911 0.235823 
0.31 0.378281 0.621719 0.243439 
0.32 0.374484 0.625516 0.251032 
0.33 0.370700 0.629300 0.258600 
0.34 0.366928 0.633072 0.266143 
0.35 0.363169 0.636831 0.273661 
0.36 0.359424 0.640576 0.281153 
0.37 0.355691 0.644309 0.288617 
0.38 0.351973 0.648027 0.296054 
0.39 0.348268 0.651732 0.303463 
0.40 0.344578 0.655422 0.310843 
0.41 0.340903 0.659097 0.318194 
0.42 0.337243 0.662757 0.325514 
0.43 0.333598 0.666402 0.332804 
0.44 0.329969 0.670031 0.340063 
0.45 0.326355 0.673645 0.347290 
0.46 0.322758 0.677242 0.354484 
0.47 0.319178 0.680822 0.361645 
0.48 0.315614 0.684386 0.368773 
0.49 0.312067 0.687933 0.375866 
0.50 0.308538 0.691462 0.382925 

u  (-u)  (u) D(u) 

0.51 0.305026 0.694974 0.389949  
0.52 0.301532 0.698468 0.396936  
0.53 0.298056 0.701944 0.403888  
0.54 0.294598 0.705402 0.410803  
0.55 0.291160 0.708840 0.417681  
0.56 0.287740 0.712260 0.424521  
0.57 0.284339 0.715661 0.431322  
0.58 0.280957 0.719043 0.438085  
0.59 0.277595 0.722405 0.444809  
0.60 0.274253 0.725747 0.451494  
0.61 0.270931 0.729069 0.458138  
0.62 0.267629 0.732371 0.464742  
0.63 0.264347 0.735653 0.471306  
0.64 0.261086 0.738914 0.477828  
0.65 0.257846 0.742154 0.484308  
0.66 0.254627 0.745373 0.490746  
0.67 0.251429 0.748571 0.497142  
0.68 0.248252 0.751748 0.503496  
0.69 0.245097 0.754903 0.509806  
0.70 0.241964 0.758036 0.516073  
0.71 0.238852 0.761148 0.522296  
0.72 0.235762 0.764238 0.528475  
0.73 0.232695 0.767305 0.534610  
0.74 0.229650 0.770350 0.540700  
0.75 0.226627 0.773373 0.546745  
0.76 0.223627 0.776373 0.552746  
0.77 0.220650 0.779350 0.558700  
0.78 0.217695 0.782305 0.564609  
0.79 0.214764 0.785236 0.570472  
0.80 0.211855 0.788145 0.576289  
0.81 0.208970 0.791030 0.582060  
0.82 0.206108 0.793892 0.587784  
0.83 0.203269 0.796731 0.593461  
0.84 0.200454 0.799546 0.599092  
0.85 0.197662 0.802338 0.604675  
0.86 0.194894 0.805106 0.610211  
0.87 0.192150 0.807850 0.615700  
0.88 0.189430 0.810570 0.621141  
0.89 0.186733 0.813267 0.626534  
0.90 0.184060 0.815940 0.631880  
0.91 0.181411 0.818589 0.637178  
0.92 0.178786 0.821214 0.642427  
0.93 0.176186 0.823814 0.647629  
0.94 0.173609 0.826391 0.652782  
0.95 0.171056 0.828944 0.657888  
0.96 0.168528 0.831472 0.662945  
0.97 0.166023 0.833977 0.667954  
0.98 0.163543 0.836457 0.672914  
0.99 0.161087 0.838913 0.677826  
1.00 0.158655 0.841345 0.682689  
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u  (-u)  (u) D(u) 

1.01 0.156248 0.843752 0.687505 
1.02 0.153864 0.846136 0.692272 
1.03 0.151505 0.848495 0.696990 
1.04 0.149170 0.850830 0.701660 
1.05 0.146859 0.853141 0.706282 
1.06 0.144572 0.855428 0.710855 
1.07 0.142310 0.857690 0.715381 
1.08 0.140071 0.859929 0.719858 
1.09 0.137857 0.862143 0.724287 
1.10 0.135666 0.864334 0.728668 
1.11 0.133500 0.866500 0.733001 
1.12 0.131357 0.868643 0.737286 
1.13 0.129238 0.870762 0.741524 
1.14 0.127143 0.872857 0.745714 
1.15 0.125072 0.874928 0.749856 
1.16 0.123024 0.876976 0.753951 
1.17 0.121001 0.878999 0.757999 
1.18 0.119000 0.881000 0.762000 
1.19 0.117023 0.882977 0.765953 
1.20 0.115070 0.884930 0.769861 
1.21 0.113140 0.886860 0.773721 
1.22 0.111233 0.888767 0.777535 
1.23 0.109349 0.890651 0.781303 
1.24 0.107488 0.892512 0.785024 
1.25 0.105650 0.894350 0.788700 
1.26 0.103835 0.896165 0.792331 
1.27 0.102042 0.897958 0.795915 
1.28 0.100273 0.899727 0.799455 
1.29 0.098525 0.901475 0.802949 
1.30 0.096801 0.903199 0.806399 
1.31 0.095098 0.904902 0.809804 
1.32 0.093418 0.906582 0.813165 
1.33 0.091759 0.908241 0.816482 
1.34 0.090123 0.909877 0.819755 
1.35 0.088508 0.911492 0.822984 
1.36 0.086915 0.913085 0.826170 
1.37 0.085344 0.914656 0.829313 
1.38 0.083793 0.916207 0.832413 
1.39 0.082264 0.917736 0.835471 
1.40 0.080757 0.919243 0.838487 
1.41 0.079270 0.920730 0.841460 
1.42 0.077804 0.922196 0.844392 
1.43 0.076359 0.923641 0.847283 
1.44 0.074934 0.925066 0.850133 
1.45 0.073529 0.926471 0.852941 
1.46 0.072145 0.927855 0.855710 
1.47 0.070781 0.929219 0.858438 
1.48 0.069437 0.930563 0.861127 
1.49 0.068112 0.931888 0.863776 
1.50 0.066807 0.933193 0.866386 

 

 

u  (-u)  (u) D(u) 

1.51 0.065522 0.934478 0.868957  
1.52 0.064256 0.935744 0.871489  
1.53 0.063008 0.936992 0.873983  
1.54 0.061780 0.938220 0.876440  
1.55 0.060571 0.939429 0.878858  
1.56 0.059380 0.940620 0.881240  
1.57 0.058208 0.941792 0.883585  
1.58 0.057053 0.942947 0.885893  
1.59 0.055917 0.944083 0.888165  
1.60 0.054799 0.945201 0.890401  
1.61 0.053699 0.946301 0.892602  
1.62 0.052616 0.947384 0.894768  
1.63 0.051551 0.948449 0.896899  
1.64 0.050503 0.949497 0.898995  
1.65 0.049471 0.950529 0.901057  
1.66 0.048457 0.951543 0.903086  
1.67 0.047460 0.952540 0.905081  
1.68 0.046479 0.953521 0.907043  
1.69 0.045514 0.954486 0.908972  
1.70 0.044565 0.955435 0.910869  
1.71 0.043633 0.956367 0.912734  
1.72 0.042716 0.957284 0.914568  
1.73 0.041815 0.958185 0.916370  
1.74 0.040929 0.959071 0.918141  
1.75 0.040059 0.959941 0.919882  
1.76 0.039204 0.960796 0.921592  
1.77 0.038364 0.961636 0.923273  
1.78 0.037538 0.962462 0.924924  
1.79 0.036727 0.963273 0.926546  
1.80 0.035930 0.964070 0.928139  
1.81 0.035148 0.964852 0.929704  
1.82 0.034379 0.965621 0.931241  
1.83 0.033625 0.966375 0.932750  
1.84 0.032884 0.967116 0.934232  
1.85 0.032157 0.967843 0.935687  
1.86 0.031443 0.968557 0.937115  
1.87 0.030742 0.969258 0.938516  
1.88 0.030054 0.969946 0.939892  
1.89 0.029379 0.970621 0.941242  
1.90 0.028716 0.971284 0.942567  
1.91 0.028067 0.971933 0.943867  
1.92 0.027429 0.972571 0.945142  
1.93 0.026803 0.973197 0.946393  
1.94 0.026190 0.973810 0.947620  
1.95 0.025588 0.974412 0.948824  
1.96 0.024998 0.975002 0.950004  
1.97 0.024419 0.975581 0.951162  
1.98 0.023852 0.976148 0.952297  
1.99 0.023295 0.976705 0.953409  
2.00 0.022750 0.977250 0.954500  
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u  (-u)  (u) D(u) 

2.01 0.022216 0.977784 0.955569 
2.02 0.021692 0.978308 0.956617 
2.03 0.021178 0.978822 0.957644 
2.04 0.020675 0.979325 0.958650 
2.05 0.020182 0.979818 0.959636 
2.06 0.019699 0.980301 0.960602 
2.07 0.019226 0.980774 0.961548 
2.08 0.018763 0.981237 0.962475 
2.09 0.018309 0.981691 0.963382 
2.10 0.017864 0.982136 0.964271 
2.11 0.017429 0.982571 0.965142 
2.12 0.017003 0.982997 0.965994 
2.13 0.016586 0.983414 0.966829 
2.14 0.016177 0.983823 0.967645 
2.15 0.015778 0.984222 0.968445 
2.16 0.015386 0.984614 0.969227 
2.17 0.015003 0.984997 0.969993 
2.18 0.014629 0.985371 0.970743 
2.19 0.014262 0.985738 0.971476 
2.20 0.013903 0.986097 0.972193 
2.21 0.013553 0.986447 0.972895 
2.22 0.013209 0.986791 0.973581 
2.23 0.012874 0.987126 0.974253 
2.24 0.012545 0.987455 0.974909 
2.25 0.012224 0.987776 0.975551 
2.26 0.011911 0.988089 0.976179 
2.27 0.011604 0.988396 0.976792 
2.28 0.011304 0.988696 0.977392 
2.29 0.011011 0.988989 0.977979 
2.30 0.010724 0.989276 0.978552 
2.31 0.010444 0.989556 0.979112 
2.32 0.010170 0.989830 0.979659 
2.33 0.009903 0.990097 0.980194 
2.34 0.009642 0.990358 0.980716 
2.35 0.009387 0.990613 0.981227 
2.36 0.009137 0.990863 0.981725 
2.37 0.008894 0.991106 0.982212 
2.38 0.008656 0.991344 0.982687 
2.39 0.008424 0.991576 0.983152 
2.40 0.008198 0.991802 0.983605 
2.41 0.007976 0.992024 0.984047 
2.42 0.007760 0.992240 0.984479 
2.43 0.007549 0.992451 0.984901 
2.44 0.007344 0.992656 0.985313 
2.45 0.007143 0.992857 0.985714 
2.46 0.006947 0.993053 0.986106 
2.47 0.006756 0.993244 0.986489 
2.48 0.006569 0.993431 0.986862 
2.49 0.006387 0.993613 0.987226 
2.50 0.006210 0.993790 0.987581 

 

u  (-u)  (u) D(u) 

2.51 0.006037 0.993963 0.987927 
2.52 0.005868 0.994132 0.988264 
2.53 0.005703 0.994297 0.988594 
2.54 0.005543 0.994457 0.988915 
2.55 0.005386 0.994614 0.989228 
2.56 0.005234 0.994766 0.989533 
2.57 0.005085 0.994915 0.989830 
2.58 0.004940 0.995060 0.990120 
2.59 0.004799 0.995201 0.990402 
2.60 0.004661 0.995339 0.990678 
2.61 0.004527 0.995473 0.990946 
2.62 0.004397 0.995603 0.991207 
2.63 0.004269 0.995731 0.991461 
2.64 0.004145 0.995855 0.991709 
2.65 0.004025 0.995975 0.991951 
2.66 0.003907 0.996093 0.992186 
2.67 0.003793 0.996207 0.992415 
2.68 0.003681 0.996319 0.992638 
2.69 0.003573 0.996427 0.992855 
2.70 0.003467 0.996533 0.993066 
2.71 0.003364 0.996636 0.993272 
2.72 0.003264 0.996736 0.993472 
2.73 0.003167 0.996833 0.993666 
2.74 0.003072 0.996928 0.993856 
2.75 0.002980 0.997020 0.994040 
2.76 0.002890 0.997110 0.994220 
2.77 0.002803 0.997197 0.994394 
2.78 0.002718 0.997282 0.994564 
2.79 0.002635 0.997365 0.994729 
2.80 0.002555 0.997445 0.994890 
2.81 0.002477 0.997523 0.995046 
2.82 0.002401 0.997599 0.995198 
2.83 0.002327 0.997673 0.995345 
2.84 0.002256 0.997744 0.995489 
2.85 0.002186 0.997814 0.995628 
2.86 0.002118 0.997882 0.995763 
2.87 0.002052 0.997948 0.995895 
2.88 0.001988 0.998012 0.996023 
2.89 0.001926 0.998074 0.996147 
2.90 0.001866 0.998134 0.996268 
2.91 0.001807 0.998193 0.996386 
2.92 0.001750 0.998250 0.996500 
2.93 0.001695 0.998305 0.996610 
2.94 0.001641 0.998359 0.996718 
2.95 0.001589 0.998411 0.996822 
2.96 0.001538 0.998462 0.996923 
2.97 0.001489 0.998511 0.997022 
2.98 0.001441 0.998559 0.997117 
2.99 0.001395 0.998605 0.997210 
3.00 0.001350 0.998650 0.997300 
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3.01 0.001306 0.998694 0.997387 
3.02 0.001264 0.998736 0.997472 
3.03 0.001223 0.998777 0.997554 
3.04 0.001183 0.998817 0.997634 
3.05 0.001144 0.998856 0.997711 
3.06 0.001107 0.998893 0.997786 
3.07 0.001070 0.998930 0.997859 
3.08 0.001035 0.998965 0.997930 
3.09 0.001001 0.998999 0.997998 
3.10 0.000968 0.999032 0.998065 
3.11 0.000936 0.999064 0.998129 
3.12 0.000904 0.999096 0.998191 
3.13 0.000874 0.999126 0.998252 
3.14 0.000845 0.999155 0.998310 
3.15 0.000816 0.999184 0.998367 
3.16 0.000789 0.999211 0.998422 
3.17 0.000762 0.999238 0.998475 
3.18 0.000736 0.999264 0.998527 
3.19 0.000711 0.999289 0.998577 
3.20 0.000687 0.999313 0.998626 
3.21 0.000664 0.999336 0.998673 
3.22 0.000641 0.999359 0.998718 
3.23 0.000619 0.999381 0.998762 
3.24 0.000598 0.999402 0.998805 
3.25 0.000577 0.999423 0.998846 
3.26 0.000557 0.999443 0.998886 
3.27 0.000538 0.999462 0.998924 
3.28 0.000519 0.999481 0.998962 
3.29 0.000501 0.999499 0.998998 
3.30 0.000483 0.999517 0.999033 
3.31 0.000467 0.999533 0.999067 
3.32 0.000450 0.999550 0.999100 
3.33 0.000434 0.999566 0.999131 
3.34 0.000419 0.999581 0.999162 
3.35 0.000404 0.999596 0.999192 
3.36 0.000390 0.999610 0.999220 
3.37 0.000376 0.999624 0.999248 
3.38 0.000362 0.999638 0.999275 
3.39 0.000350 0.999650 0.999301 
3.40 0.000337 0.999663 0.999326 
3.41 0.000325 0.999675 0.999350 
3.42 0.000313 0.999687 0.999374 
3.43 0.000302 0.999698 0.999396 
3.44 0.000291 0.999709 0.999418 
3.45 0.000280 0.999720 0.999439 
3.46 0.000270 0.999730 0.999460 
3.47 0.000260 0.999740 0.999479 
3.48 0.000251 0.999749 0.999498 
3.49 0.000242 0.999758 0.999517 
3.50 0.000233 0.999767 0.999535 

 

u  (-u)  (u) D(u) 

3.51 0.000224 0.999776 0.999552 
3.52 0.000216 0.999784 0.999568 
3.53 0.000208 0.999792 0.999584 
3.54 0.000200 0.999800 0.999600 
3.55 0.000193 0.999807 0.999615 
3.56 0.000185 0.999815 0.999629 
3.57 0.000179 0.999821 0.999643 
3.58 0.000172 0.999828 0.999656 
3.59 0.000165 0.999835 0.999669 
3.60 0.000159 0.999841 0.999682 
3.61 0.000153 0.999847 0.999694 
3.62 0.000147 0.999853 0.999705 
3.63 0.000142 0.999858 0.999717 
3.64 0.000136 0.999864 0.999727 
3.65 0.000131 0.999869 0.999738 
3.66 0.000126 0.999874 0.999748 
3.67 0.000121 0.999879 0.999757 
3.68 0.000117 0.999883 0.999767 
3.69 0.000112 0.999888 0.999776 
3.70 0.000108 0.999892 0.999784 
3.71 0.000104 0.999896 0.999793 
3.72 0.000100 0.999900 0.999801 
3.73 0.000096 0.999904 0.999808 
3.74 0.000092 0.999908 0.999816 
3.75 0.000088 0.999912 0.999823 
3.76 0.000085 0.999915 0.999830 
3.77 0.000082 0.999918 0.999837 
3.78 0.000078 0.999922 0.999843 
3.79 0.000075 0.999925 0.999849 
3.80 0.000072 0.999928 0.999855 
3.81 0.000070 0.999930 0.999861 
3.82 0.000067 0.999933 0.999867 
3.83 0.000064 0.999936 0.999872 
3.84 0.000062 0.999938 0.999877 
3.85 0.000059 0.999941 0.999882 
3.86 0.000057 0.999943 0.999887 
3.87 0.000054 0.999946 0.999891 
3.88 0.000052 0.999948 0.999896 
3.89 0.000050 0.999950 0.999900 
3.90 0.000048 0.999952 0.999904 
3.91 0.000046 0.999954 0.999908 
3.92 0.000044 0.999956 0.999911 
3.93 0.000042 0.999958 0.999915 
3.94 0.000041 0.999959 0.999918 
3.95 0.000039 0.999961 0.999922 
3.96 0.000037 0.999963 0.999925 
3.97 0.000036 0.999964 0.999928 
3.98 0.000034 0.999966 0.999931 
3.99 0.000033 0.999967 0.999934 
4.00 0.000032 0.999968 0.999937 
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12   Symbols and terms 

 

 

 

  = Integral from negative infinity to positive infinity 

 = Root sign 

  = Summation symbol 

  = Product symbol 

  = less than or equal to 

  = Greater than or equal to  

  = Does not equal 

x  = Absolute value of x (positive value of x) 

loB , upB  = Factors to calculate variation limits for s  

C  = Midpoint of the tolerance range or nominal value 

loD , upD  = Factors to calculate the confidence level for   

e  = Base of the natural log ( 2.71828) 

f  = Degrees of freedom 

)x(f  = Probability density function 

jG  = Cumulative frequency 

jh  = Relative frequency 

jH  = Relative cumulative frequency 

i , j  = Count indices 

k  = Number of classes 

ln = Natural logarithm 

m  = Number of value sets 

n  = Sample size 

jn  = Absolute frequency in the j-th class 

P  = Probability 

AP  = Confidence level 

R  = Range 

s  = Standard deviation of the sample 

Rs  = Standard deviation determined using the range method 

't  = Factor to calculate the confidence level for   with unknown  

                             standard deviation of the population 
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u  = Standardized parameter of the normal distribution )1;0(N 2  

v  = Variation coefficient 

w  = Class width 

x  = Continuous values 

ix , iy  = Values of a measurement series 

)n()1( x,,x   = Measurement series arranged according to the size of the values 

gx  = Geometric mean of a sample 

Hx  = Harmonic mean 

maxx  = Largest value in a sample 

minx  = Smallest value in a sample 

x~  = Median of a sample 

x  = Arithmetic mean of a sample 

  = Interval width 

  = Variation factor of lognormal distribution, geometric standard deviation 

  = Mean of a population 

g  = Geometric mean of a population 

  = Standard deviation of the population 

2  = Variance of a population 

  = Number pi ( 3.1416) 
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Index 

 

Average 

moving, 16 

Bar graph, 32 

Bell curve, 35, 36, 37 

Characteristic, 6 

Class 

limit, 30, 31, 32 

Class midpoint, 31 

Class width, 31 

Confidence level 

of the mean, 66 

of the standard deviation, 66 

Control charts 

for process variation, 60 

location, 56 

Cumulative frequency, 32, 37 

absolute, 31 

relative, 31, 32 

Density function, 34, 38 

descriptive Statistics, 5 

Distribution function, 34, 37, 38 

Dot diagram, 28 

EXCEL, 24 

Fraction non-conforming, 40, 43 

Frequency 

absolute, 31, 32 

relative, 31, 32 

Frequency diagram, 28, 42 

Gauss, 34 

Geometric Standard Deviation, 50 

Grouping, 28 

Histogram, 28 

inductive Statistics, 5 

Influencing quantities ("5M"), 56 

Integration, 37 

Law of large numbers, 12 

Logarithm, 50, 53 

Lognormal distribution, 48, 53 

Mean, 43 

arithmetic, 15 

geometric, 17, 50, 53 

harmonic, 18 

Mean chart, 57 

mean deviation, 19 

Median, 13, 14, 50 

Mixture distribution, 54 

Normal distribution, 34, 35, 56 

ordered list, 14 

Original value chart, 27 

Original value chart (x-chart), 59 

Population, 7 

Probability, 10, 34, 41, 42 

Probability plot 

der lognormal distribution, 49, 50 

Quality control charts, 56 

Random 

experiment, 8, 10 

variable, 8 

variation interval 

of the means, 58 

Range, 22, 62 

Range method, 22 

R-chart, 62 

Realization of a random variable, 8 

Sample, 8 

s-chart, 60, 61 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-001_BBL_N_EN_2016-01-01.pdf


Basic Principles of Technical Statistics  Continuous Characteristics 

 

 Robert Bosch GmbH 01.2016 - 76 - 

Shewhart, 56 

skewed distribution, 48 

Standard deviation, 19, 43 

Standard normal distribution, 39 

Statistics, 5 

Tally chart, 28 

Variance, 20 

Variation 

of the individual values, 58 

of the means, 58 

Variation coefficient, 21 
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