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Preface 

Before the computer was invented and comfortable statistical programs were developed, 
the graphical display and evaluations in the present work had to be done by hand using 
special forms and statistical tables. 

In the interest of deep understanding, it is still sensible today to reproduce the respective 
procedures in detail, for example when studying statistics or completing training. For this 
reason, the procedures are described in such a way that allows them to be evaluated by 
hand without the use of a calculator. 
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1 Introduction 

This book provides insight into the statistics of discrete characteristics. The word discrete 
(Latin discretus: separate) in this context means: values or components that are distin-
guishable, definable, separate from one another, taken from a countable set of elements. 
In order to understand what it means within the framework of statistics, it is necessary to 
first consider some terms that are defined in DIN 55350-12. The definitions quoted from 
this standard are noted with quotation marks as follows. 

Characteristic  

“Feature for the recognition and distinction of units.” 

Quantitative characteristic  

“Characteristic whose values are allocated to a scale with defined distances.”  

All physical quantities are quantitative characteristics, for example length, volume, angle, 
weight, mass, temperature, tension, current, time, speed.  

Continuous Characteristic  

“Quantitative characteristic whose co-domain (range of values) is uncountably infinite.” 

The value of such a characteristic is always given as a product of numerical value and unit.  

EXAMPLES: 

 Length: 12.54561… m, 

 Diameter: 3.532… mm. 

The numerical value of the characteristic "length", for example, can take o n every value 
between 12 and 13; mathematically expressed: every real number on the interval between 12 
and 13.  

In reality, no value of such a continuous characteristic can be measured with infinite ac-
curacy. The number of decimal places is always limited by the number of available digits 
that can be displayed. In addition, properties of the measurement process can limit the 
number of useful decimal places. 

Discrete characteristic  

“Quantitative characteristic whose co-domain is finite or countably infinite.” 

EXAMPLES: 

 Mass in kg (without decimal places).  

 Body weight in cm (without decimal places). 

 Number of "6" when rolling a die 100 times. The result can take on all of the values from 0 
to 100. The number is finite. 

 Number of lightning strikes in Germany during a given year (one can also locate and, of 
course, record atmospheric lightning using antennae). This number can take on a coun-
tably infinite number of values (0, 1, 2, 3, …), although very large values will appear with  
decreasing probability. 

 

https://de.wiktionary.org/w/index.php?title=unterscheidbar&action=edit&redlink=1
https://de.wiktionary.org/w/index.php?title=unterscheidbar&action=edit&redlink=1
https://de.wiktionary.org/w/index.php?title=abgrenzbar&action=edit&redlink=1
https://de.wiktionary.org/wiki/getrennt
https://de.wiktionary.org/wiki/abz%C3%A4hlbar
http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf
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Countable characteristic  

“Special discrete characteristic whose co-domain is given by the set of natural numbers 
including zero (0, 1, 2, …) or a subset of this set.” 

All previously mentioned examples for discrete characteristics are countable characteristics.  

Qualitative characteristic  

“Characteristic whose values are allocated to a scale without defined distances.”  

Nominal characteristic  

“Qualitative characteristic whose values have no quantitative relation to each other.”  

EXAMPLE: The characteristic "color" with the values "red", "yellow", "green".  

The values of these characteristics can only be classified and differentiated (is equal, is 
not equal). 

“The value of a nominal characteristic is often also called attribute. A nominal charac-
teristic with only two, mutually exclusive values is called a dichotomous characteristic, a 
binary characteristic or an alternative characteristic. It can only take on one of two mutu-
ally exclusive values.” 

EXAMPLES: 

 good / bad, 

 inside / outside the tolerance range (OK / not OK),  

 defective / not defective, 

 present / not present. 

Such data is, for instance, gained using limit gauges or by visual assessment with bounda-
ry samples. It is, however, also possible to define a “discrete” continuous characteristic 
by first measuring it and then classifying the measured value using a category “insi-
de/outside the tolerance range”. However, this is rarely sensible due to the associated 
loss of information. If measurement values exist for a continuous characteristic, they 
should be used in their original form. 

Ordinal characteristic  

“Qualitative characteristic whose values have a quantitative relation to each other.” 

EXAMPLES: 

 The characteristic "clothing size" with the values XXS, XS, S, L, XL, XXL, …, 7XL,  

 The characteristic "(European) shoe size" with the values 14, 15, 16, …, 48, 49.  

The values of these characteristics can be classified and differentiated, e.g. using the rela-
tionships “smaller than”, “is equal” or “greater than”. 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf
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2 Taking samples 

2.1 Randomness of samples 

Chapter 3.1 (flipping coins and Example 3) shows how one can draw a conclusion based 
on a sample from a finite or infinite population about the composition of this population.  
Such conclusions are an application of inductive statistics. The application is only permit-
ted and sensible when the requirements of independence and randomness of the samples 
have been fulfilled. 

In this context independence means that the result of a sample is not influenced by the 
result from a previous sample. 

Random means that all of the parts in the population being considered have the same 
chance to make it into the sample (example: drawing lottery numbers). 

If these requirements are not met, one runs the risk of drawing false conclusions from 
these samples, because they are not representative of the population being studied.  

2.2 Random numbers 

There are several ways to ensure that the selection of parts from a population is random.  

If, for example, 10 parts are to be randomly selected from a population of 80 parts, one 
could number the parts and create a sort of lottery with 80 equally sized tickets and 
number them 1 to 80, then draw ten tickets. in this case the mechanical mixing of the 
tickets would guarantee the randomness of the sample. 

Another option would be to use a dodecahedron (an platonic solid composed of twelve 
regular pentagonal faces) and number 10 of the twelve sides from 0 to 9. This is a method 
similar to "rolling dice" and will help to select a number between 0 and 9 (if the result is 
an "empty side", simply "roll again"). 

Due to the object's symmetry, each of the numbers 0 to 9 have the same chance (namely, 
1/12) of being “rolled”. By combining consecutive numbers, one could generate desired 
numbers or cover a number range corresponding to the population. 

It is obvious that generating random numbers using “mechanical devices” i s relatively 
cumbersome and time-consuming. 

In practice, one can take random numbers directly from a table (see Chapter 2.2.1 and 
the Appendix) or create them using a pseudorandom number generator on a computer.  

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf
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2.2.1 Using the random number table 

The units from the observed population are numbered in series. It is not necessary to 
number the units if they are already ordered systematically. The unique mapping of the 
numbers to the observed units has to be guaranteed. 

One chooses a random number from the table (in the Appendix) as a starting number and 
reads progressively through the number groups to the left or right of this number. These 
groups can consist of 1, 2, 3, ... , n numbers depending on the size of the population.  

Each of the numbers found in this way corresponds to one unit of the population. If one 
of the random numbers exceeds the size of the population, it is to be omitted. A number 
is also to be omitted if it is already contained once in the list of numbers.  

If the population is already divided into several groups of equal size, it is usually recom-
mendable to first randomly select a group and then randomly a part within this group.  

This process is complete if a sequence of random numbers corresponding to the planned 
sample size has been determined. 
 

EXAMPLE 1: 

A sample of ten pumps is to be drawn from a lot consisting of 95 injection pumps. Since the 
pumps are located on a shelf in the order in which they were produced, it is easiest to assign 
each of them a consecutive number and select ten numbers randomly using the random num-
bers table. 

To do so, one starts with a random starting number in the random numbers table (see the Ap-
pendix), for example with the number 7 at the “intersection” of column 15 and row 35 of the 
table. One then continues to the right in row 35 taking paired groups:  

75 96 04 32 53 01 99 35 49 40 75 16 

The numbers 75 and 99 are omitted because they either exceed the number of parts (99) or 
have already been taken (75). 

The corresponding pumps will be taken from the lot using the numbers determined in this way.  

 

EXAMPLE 2: 

A sample of 30 castings is to be taken from a lot of 900.  

The castings are in 100 stacks of 9 each. It is therefore beneficial to use the group selection 
system. For example, begin the selection process with the number “9” at the “intersection" of 
row 15 with column 21. Now continue, e.g. from left to right and read numbers in pairs of two 
and combine them with the following number. The first number of each number combination is 
the respective stack, and the second number is the combination of the running number of the 
parts in the stack, which may be numbered from top to bottom. 
 
94/2 13/7 75/6 40/1 28/7 99/4 

50/1 82/1 25/8 03/6 06/6 09/9 

94/2 00/0 60/8 70/1 76/3 40/7 

70/8 15/4 30/4 57/4 45/4 80/0 

56/1 88/4 4    

 

 

continue reading from column 0 in row 16: 
 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf
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44/4 37/8 19/2 87/0 51/1 60/6 

89/9 24/1 
    

 
Note on the bold numbers: 

 Number 00 corresponds to stack 100. 

 The numbers 00/0, 80/0 and 87/0 are omitted since part 0 is not included in a stack.  

 The second occurrence of number 94/2 is omitted. 

2.2.2 Instructions for use 

It is especially beneficial to use random numbers when the lot to be examined is already 
systematically ordered, e.g. parts stored on a shelf, parts numbered during production or 
parts sorted into storage containers. 

With larger quantities, it is recommended to divide the parts into smaller groups and then 
take samples from these. 

If the lot to be examined has already been completely mixed during production or stora-
ge, one can forgo using random numbers. In this case, the sample must be taken in such 
a way that each part has a chance of making it into the sample. 
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3 Randomness and probability 

3.1 The concept of probability 

The words “probability” or “probable” come up often in everyday conversation, in which 
one wants to speculate about a situation or make a prediction on events, e.g.:  

“It is very probable that the football team X will win the game against team Y on Sa-
turday.” 

“My car is only almost six months old; it is unlikely that it will break down because of 
any technical issues during my holiday trip next week.” 

“I would rather take the train to Munich instead of driving, I will definitely get there 
before 10 a.m.” 

In everyday speech, the term “probable” is often replaced with other terms like “impos-
sible”, “maybe”, “likely”, “pretty certain”, or “dead sure”, which, in our experience, are 
supposed to represent a way to trust the correctness of a statement. However, depen-
ding on the person using such a term, their mood (euphoric, depressed) and the respecti-
ve situation, each term might have a completely different meaning.  

On the other hand, mathematical probability is a number that is closely related to the 
results of a random experiment. 

“Random experiment” designates a process that can be repeated as often as desired and 
whose results are not predictable. 

A classic random experiment that is almost always discussed in textbooks about calcula-
ting probability is flipping a coin. This random experiment is usually conducted before a 
ballgame in order to decide who chooses which side on the playing field.  

Obviously, both teams accept that the results from flipping a coin are impossible to pre-
dict and that, based on the (sufficient) symmetry of the coin, the results of “heads” and 
“tails” are just as probable. 

According to the classic definition, the mathematical probability )A(P  of result A in 

a random experiment is given by 

m

g
)A(P  . 

Where  

g   is the number of (favorable) cases where A  occurs and  

m   is the number of all possible cases 

in the experiment at hand. 

With regard to flipping a coin, this means: 

The probability of the event “head” is %500.5
2

1
”)(“headP  . 

The number g of cases where “heads” occurs (favorable result for a team X if they chose 
“heads”) is equal to 1, the number of all possible outcomes of  the coin toss is equal to 2 
(“heads” and “tails”). 

The same also applies for team Y: %500.5
2

1
”)(“tailsP  . 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf
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The number g of cases where “tails” occurs (favorable result for a team since they inevi-
tably chose “tails”) is equal to 1, the number of all possible outcomes of the coin toss is 
equal to 2 (“heads” and “tails”). 

The “symmetry of probability” obviously results from the symmetry of the coin. Both re-

sults are just as probable: 
2

1
”)(“tailsP(“heads”)P  . 

A predictable probability like this is referred to as mathematic or “a priori” probability 
(Latin: a priori = “in the first place”). 

Applying this idea to a regular die, one can predict that the probability of rolling  a “6” is 

6

1
(“6”)P  , because  

1g number of favorable results (6) and  

 6m Number of all possible results (1, 2, 3, 4, 5, 6) 

in this experiment. 

So it is not necessary to actually use a die or coin to conduct random experiments in or-
der to draw a conclusion about the probability of the results. 

If one applies the above definition of probability to other random experiments, it is clear 
that the probability P  is a number between zero and one.  
 

NOTE: 

It should be mentioned here that there is also an axiomatic approach  to the concept of proba-
bility, where the probability P of an event is defined as a non-negative real number that can 
equal, but not exceed one. Moreover, there exist rules associated with probabilities, which we 
will explain using the following examples. 
 

The sum of the individual probabilities for the results of a random experiment is always 
equal to one: 

Coin: 1
2

1

2

1
”)(“tailsP”)(“headsP   

Dice: 1
6

1
...

6

1

6

1
(“6”)P...(“2”)P(“1”)P  . 

An event that always occurs during an experiment is called a “certain event” for this ex-
periment. For example, when rolling dice, one of the numbers 1, 2, 3, 4, 5, 6 is a certain 
event with the probability 1“6”)or...or“2”or(“1”P  . 

An event that never occurs during an experiment is called an “impossible event” for this 
experiment. For example, when rolling a die, the number 7 is an impossible event with 
the probability 0(“7”)P  . 

Until now, we have assumed that the subject of our considerations is physically known or 
can easily be approximated, and it was shown that the results of random experiments 
with this subject (coin, dice) cannot be predicted individually, but can be represented as a 
population. In particular, probabilities can be determined for the individual results wit-
hout even conducting the experiments. 

The situation changes if we, for example, consider a die that seems completely geometri-
cally flawless that possesses an inhomogeneous inner distribution of mass that makes the 
die “roll” the number 6 more often than the other numbers. How can one determine the 
probability of rolling the result “6” in this case? 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf
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This is obviously only possible by rolling the die many times (e.g. 100), noting the results 
using a tally chart and counting how often each number actually occurs. The number of 6 -
rolls compared to the total number of rolls is a suitable measure for the probability of the 
occurrence of the result “6”. 

This process allows one to determine a probability for an experiment that was actually 
conducted. One draws a conclusion about the underlying (unknown) probability in the 
experiment based on the observed results. This type of probability is also called an 
“a posteriori” probability (Latin: a posteriori = “in hindsight”).  

If one repeats the entire experiment (100 rolls), the results will not necessarily show the 
same number of 6-rolls like the first time. The experimentally determined probability 

(“6”)P  can therefore only be an estimation of the unknown probability  P  of achieving a 

“6” with this die. This estimation is better the larger the number of times the die has be-
en rolled. Mathematically, this phenomenon is described by the “law of large numbers”.  

If one calculates the relative frequency of the result “6” by consecutively rolling a regular 
die, the results will show that this quantity is getting closer to the theoretical value 

%616.
6

1
(“6”)P   (see Table 3.1 and Figure 3.1). 

 

Roll 
No. 

Roll 
result 

rel. frequency of 
the result “6” 

Roll 
No. 

Roll 
result 

rel. frequency of 
the result “6” 

1 

2 

3 

4 

5 

6 

7 

8 

9 

5 

2 

4 

6 

5 

3 

3 

6 

3 

0.0 

0.0 

0.0 

25.0 

20.0 

16.7 

14.3 

25.0 

22.2 

492 

493 

494 

495 

496 

497 

498 

499 

500 

2 

1 

3 

6 

2 

4 

5 

3 

4 

16.9 

16.8 

16.8 

17.0 

16.9 

16.9 

16.9 

16.8 

16.8 

Table 3.1 
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Fig. 3.1: Illustration of the law of large numbers. The relative frequency of the result 
“6”, when rolling a die, approaches the theoretic value of 16.6%, if sufficiently many 
rolls have been performed. 

This law of limits is important with regard to the possibility of estimating the fraction of 
non-conforming parts in a population (e.g. production quantity) based on a sample. 
Sampling (with replacement) is, in the above terminology, a random experiment, which  
can be conducted as often as desired. We will continue this thought in the following exa-
mple. 
 

EXAMPLE 3: 

A box contains a total of 4000 balls. One portion of them is black, the rest are white. If one 
tasks several people to take a look into the box and estimate the ratio p of black balls, experi-
ence shows that the number will be between 10% and 40%. 

The problem is now to estimate the actual proportion p of black balls by sampling.  

10 samples of 50 balls each are taken. This process can be demonstrated qui te well if one uses 
a metal plate with 50 grooves. The ratio of black balls in the sample is determined and noted 
after taking each sample. Subsequently, the plate is completely emptied into the box and the 
balls are mixed. 

The following table gives the result of such an experiment. 
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 black balls white balls 

Sample no. Number Proportion Number Proportion 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

10 

10 

11 

10 

12 

10 

14 

11 

8 

9 

20% 

20% 

22% 

20% 

24% 

20% 

28% 

22% 

16% 

18% 

40 

40 

39 

40 

38 

40 

36 

39 

42 

41 

80% 

80% 

78% 

80% 

76% 

80% 

72% 

78% 

84% 

82% 

Mean 10.5 21% 39.5 79% 

Table 3.2 

It is obvious that the number of black balls found can differ from sample to sample, but they 
produce a mean of about 10 or 11 black balls, corresponding to a ratio of about 20% or 21%. 

If only one sample is taken, and eight balls are found as in case no. 9, one would have 
to assume or the time being, due to the lack of additional information, that the estimation  
p = 16% is not too far from the actual value. 

Both the table above and the following illustration showing the results of 100 samples make it 
clear that, with repeated samples, a certain range of dispersion arises for the number of black 
balls and the proportion p in the sample. 
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Fig. 3.2: Results of 100 samples with 50 balls each (with replacement) 
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With the help of a tally chart, one can count how often respectively 1, 2, 3, ..., 49, 50 black 
balls were found in a sample. The frequency of each result and the associated relative fre-
quency (frequency/100) are given in the following table.  

 

Result: 

Number i of black balls 
in the sample 

 

Frequency of the 
result i 

 

relative frequency 
of the result i 

<5 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

>18 

0 

2 

6 

7 

12 

14 

18 

18 

9 

4 

5 

2 

2 

1 

0 

0 

0% 

2% 

6% 

7% 

12% 

14% 

18% 

18% 

9% 

4% 

5% 

2% 

2% 

1% 

0% 

0% 

Table 3.3 

The values in the table can be represented using a bar graph:  
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Fig. 3.3: Bar graph to represent 100 sample results 
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Figure 3.3 shows that sample results of a very large or very small number of black balls rarely 
or “practically never” occur and that about 10 or 11 black balls per sample occur very often. 1 0 
(11) black balls in a sample of size 50n  correspond to 20% (21%). Based on the sample re-

sults and Figure 3.3, one would also be able to estimate the unknown ratio p  at about 20% to 

21%. 

Such estimations are an application of the field of inductive statistics. Based on the results of 
one sample, one can estimate a parameter (here the proportion p  of black balls) of the total 

population (all balls in the box). 

With the example described here, we are lucky to know the true ratio p  of black balls in the fi-

nite population. The box contains 800 black balls and 3200 white balls; the ratio of black balls 
is therefore p = 20%. 

We get back to this example again in Chapter 3.3.1 and will consider then how to explain the 
results from Figure 3.3. 

3.2 Calculation rules for probabilities 

As we saw in Chapter 3.1, the probability of seeing the result “heads” when flipping a coin 
is equal to 1/2. 

We will now ask ourselves, what is the probability of getting “heads” in three consecutive 
coin tosses? 

A simple consideration leads quickly to the solution of this problem. There are a total of 
eight possible results of this experiment (“H” stands for heads, “T” stands for tails): 

1. Possibility:  HHH 

2. Possibility:  HHT 

3. Possibility:  HTH 

4. Possibility:  THH 

5. Possibility:  TTH 

6. Possibility:  THT 

7. Possibility:  HTT 

8. Possibility:  TTT 

Only one of the eight results is “HHH”.  

According to the definition of mathematical probability in Chapter 3.1, the probability of 
this result is: 

8

1

m

g

outcomespossibleallofNumber

outcomesfavorableofNumber
(“HHH”)P  . 

The word “favorable” is to be understood in the sense of game theory. The result “HHH” 
is favorable for the player if he, for example, bet an amount of money on  exactly this re-
sult. 

The probability 
8

1
(“HHH”)P   can, however, also be calculated from the individual proba-

bilities of the individual coin tosses. 

Since the coin does not have a “memory” and knows nothing about the results of previ-
ous tosses (provided that the player cannot influence the result), coin tossing is an inde-
pendent event. According to the multiplication rule for probabilities, the probability for a 
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series of such independent events can be calculated as the product of the respective ind i-
vidual probabilities: 

8

1

2

1

2

1

2

1
(“H”)P(“H”)P(“H”)P(“HHH”)P  . 

How great is the probability that “heads” occurs twice and “tails” once with three coin 
tosses? The order of the individual results is not important for this question.  

According to the multiplication rule, the three possibilities “HHT”, “HTH” and “THH” occur 
with the same probability: 

8

1

2

1

2

1

2

1
(“T”)P(“H”)P(“H”)P(“HHT”)P  , 

8

1

2

1

2

1

2

1
(“H”)P(“T”)P(“H”)P(“HTH”)P  , 

8

1

2

1

2

1

2

1
(“H”)P(“H”)P(“T”)P(“THH”)P  . 

However, only one of the three possibilities can occur when the coin is tossed three 
times, either “HHT” or “HTH” or “THH”. The individual possibilities are mutually exclusive. 

The total probability for the result of two “heads” and one “tails” can then be calculated 
according to the addition rule of mutually exclusive probabilities:  

8

3
(“THH”)P(“HTH”)P(“HHT”)P“THH”)or“HTH”(“HHT”orP   

In the same way, one can calculate the total probability for the result of one “heads” and 
two “tails”: 

8

3
“TTH”)(P(“THT”)P(“HTT”)P“TTH”)or“THT”or(“HTT”P   

Finally, one obtains the probability for the result “TTT” similar to “HHH”, according to the 
multiplication rule:  

8

1

2

1

2

1

2

1
(“T”)P(“T”)P(“T”)P(“TTT”)P  . 

The probability that one of the eight results mentioned on the previous page occurs 
(certain event) is equal to the sum of the probabilities calculated above:  

“TTT”)or...or“HTH”or(“HHH”P  

1
8

1

8

3

8

3

8

1
(“TTT”)P...(“HHT”)P(“HHH”)P  . 
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3.3 Probability distributions 

The probabilities for the four possibilities calculated in Chapter 3.2 

no “heads”,  three times “tails”, 

one time “heads”,  two times “tails”, 

two times “heads”, one time “tails”, 

three times “heads”, no “tails”, 

can be represented as follows: 
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Fig. 3.4: Illustration of the probability function for three coin tosses 

This is a depiction of the probability function of the individual results of the random expe-
riment described above. 

If one wants to be mathematically exact, one would have to say that the probability func-
tion is defined for a certain quantity, the event space. The event space corresponds in 
this case to the quantity of the four possibilities previously mentioned. The probability 
function assigns every element of this quantity a real number, the probability of the 
event. 

The vertical columns in Figure 3.4 are only drawn that wide for illustrative purposes. 
Strictly speaking, the probability function only assumes the values 1/8, 3/8, 3/8 and 1/8 
at the respective positions 0, 1, 2 and 3. It is zero for all the other positions on the num-
ber line. 

3.3.1 Binomial distribution 

The probability function for tossing a coin four times can be calculated in a manner simi-
lar to the calculation of the probability function for tossing a coin three times. We do not 
explicitly want to do that here and merely present an illustration of this function. It assu-
mes the respective accompanying values 1/16, 4/16, 6/16, 4/16, 1/16 for the events no 
“heads”, one time “heads”, ..., four times “heads”. 
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Number of tosses with the outcome “Heads” 
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Fig. 3.5: Illustration of the probability function for the four time coin toss  

Figures 3.4 and 3.5 show a striking symmetry for the probability function, which i s main-
tained in the generalization to the n-time coin toss. In the following, we will see that this 
fact can be explained using a simple law of deduction. 
 

EXAMPLE 4: 

From a lot of housing bases with threaded holes, one part will be randomly chosen and co m-
pared to boundary samples. If the part conforms to specifications, it will be designated with 
good. If it does not (e.g. if the threading is missing), it will be designated with bad. After noting 
the results of the examination, the part will be returned to the lot. 

If one removes two parts, the result might read: 

Part 1 good, part 2 good  or  

Part 1 good, part 2 bad  or  

Part 1 bad, part 2 good  or  

Part 1 bad, part 2 bad. 

This corresponds to a situation with two coin flips, if one considers “good” as “hea ds” and 
“bad” as “tails”. In contrast to a coin flip, the probability for both results when chosen for 
screening is not known. 

In the following, we designate the probability for the occurrence of a bad part with 'p  and the 

probability for the occurrence of a good part with 'p1'q  . According to the multiplication 

rule for independent results, one obtains the following probability for the four possible results:  
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Examination result Probability 

good - good 

good - bad 

bad - good 

bad - bad 

'q'q   

'p'q   

'q'p   

'p'p   

 
According to the summation rule for mutually exclusive results, the total probability is  

  1'q'p'q'q'p2'p'q'q'p'q'q'p'p'pP 222  . 

 

The coefficients in the expression 22 'q1'q'p2'p1   are called the binomial coeffi-

cients and can be determined using Pascal's triangle: 
 

        1         

       1  1        

      1  2  1       

     1  3  3  1      

    1  4  6  4  1     

   1  5  10  10  5  1    

  1  6  15  20  15  6  1   

 1  7  21  35  35  21  7  1  

*  *  *  *  *  *  *  *   

 
Every number except for 1 can be calculated by summing the numbers diagonally above 
to the left and right of its position. This triangle can be continued downward as far as 
desired. 

Binomial coefficients provide a simple way to calculate the probability of an individual 
result when taking three, four, ... parts from a lot. For example, when taking four parts:  

  1'q'q'p4'q'p6'q'p4'p'q'p 4322344
 . 

In a sample of size 4, the probability of 

finding 4 bad parts is 4'p  

finding 3 bad parts is 'q'p4 3   

finding 2 bad parts is 22 'q'p6   

finding 1 bad part is 3'q'p4   

finding no bad part is 4'q . 
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The binomial coefficients can be written concisely as 








i

n
 (say: n  over i ) and calculated 

using the formula 
!)in(!i

!n

i

n











.  

!n  (say: n factorial) means 123)2n()1n(n!n   . 

For example, 12012345!5  . 

The following rules apply when calculating with binomial coefficients:  

n
1

n

1n

n




















   and   1

n

n

0

n


















. 

The probability that in a sample of size n  there are exactly i  non-conforming parts is 

  ini
i,n 'p1'p

i

n
P 









 . 

i,nP  is the probability function of the binomial distribution. 

The binomial distribution can be used without limitations if the total population is infini-
tely large (fictitious population) or, more realistically, if the sample size measured against 
the real population is insignificantly small or the parts sampled are always returned to the 
population. 
 

In this regard we want to turn back to Example 3 from Chapter 3.1. We were looking at a box 
with 4000 balls with a proportion of black balls of %20'p   and a proportion of white balls of 

%80'p1'q  . Since the balls sampled will be placed back into the box, the binomial distri-

bution can be used for this problem. 

Here the number of balls found in a sample of 50n  is subject to the binomial distribution 

with the probability function:  

  i50i
i50, 0.210.2

i

50
P











 . 

i,50P  is the probability to find 50n  exactly i  black balls in a sample of size . 

The following table contains several values for i,50P . Figure 3.6 illustrates these values clearly. 

If one compares Tables 3.3 and 3.4 or Figures 3.3 and 3.6, it is clear that the distribution de-
termined experimentally in the demonstration from Chapter 3.1 approximates the theoretical 
distribution.  
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i 

 

i,50P  /% 


i

0k

k,50P  /% 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.0 

0.0 

0.1 

0.4 

1.3 

3.0 

5.5 

8.7 

11.7 

13.6 

14.0 

12.7 

10.3 

7.5 

5.0 

3.0 

1.6 

0.8 

0.4 

0.2 

0.1 

0.0 

0.0 

0.1 

0.6 

1.8 

4.8 

10.3 

19.0 

30.7 

44.4 

58.4 

71.1 

81.4 

88.9 

93.9 

96.9 

98.6 

99.4 

99.7 

99.9 

    99.97 

 
 

Fig. 3.6: Schematic of the probability function of the binomial distribution with 
the parameters %20'p   and 50n  (dashed: probability density function of 

the normal distribution) 

Table 3.4: 

Values of the probability function and 
the distribution function of the bi-
nomial distribution with the parame-
ters %20'p   and 50n  
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The values of the probability function i,50P  and the distribution function 


i

0k

k,50P , which be-

longs to it, are given in the third column of Table 3.4.  

The distribution function gives, in this example, the probability of finding at most i  black balls 

in the sample. The summation symbol means that the individual probabilities for the results 0, 
1, 2, ... i black balls must be added up: 

i,501,500,50

i

0k

k,50 PPPP 


 . 

Accordingly, each number in the third column (except for the rounding errors) is the result of 
adding the values in the second column up to this line.  The distribution function is shown in Fi-
gure 3.7. From Table 3.4 and Figure 3.7, one can see that in approximately 2% of all cases 4i   

and in approximately 97% of all other cases 15i  , black balls are included in a sample. Or, 

said differently, one finds at least four and no more than 15 black balls in the sample in about 
95% of the cases. 

 

Fig. 3.7: Schematic illustration of the binomial distribution function with the 
parameters %20'p   and 50n  (dashed: normal distribution) 

All of the values up to 20i   are provided in Table 3.4 and Figures 3.6 and 3.7. The probability 

function is almost always zero for 20i  , the distribution function is almost always one (100%). 

For comparison purposes, the probability density function or the normal d istribution function 

with the mean 10  and standard deviation 2.8σ   is displayed as a solid line in the graphs. 

It is apparent that the binomial distribution in this example is a very good approximation of 
the normal distribution. We will come back to this in Chapter 4.1. 

3.3.2 Hypergeometric distribution 

In order to use the binomial distribution it was a prerequisite in Chapter 3.3.1. that the 
population has to stay the same from sample to sample. For a finite population this is 
accomplished by returning each preceding sample to the case. If the sampled parts are 
not put back, the population changes from sample to sample. The parts already taken will 
not be contained in the following samples, and the probability for the remaining parts in 
the total population to be "drawn" next increases with every sample.  The hypergeometric 
distribution takes this fact into account. The probability function of this distribution is:  
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



























 



n

N

in

)'p1(N

i

'pN

P i,n,N . 

Here, N  designates the size of the population, i.e. the total number of all parts in a given 
lot. It is not easy to calculate this expression even by using a computer due to the large 
numbers resulting from the possible factorials (e.g. 1000!). Moreover, depending on the 
size of N , n  and 'p , factorials for non-integer rational numbers may arise, which can only 

be calculated using the gamma function. 

In practice, the population is usually considerably larger than the sample taken ( nN ), 

meaning the binomial distribution can be used by approximation. 

 

3.3.3 Poisson distribution 

If one knows that the interesting event, e.g. finding a non-conforming part in a sample of 
size 1n  , rarely occurs, while the number of executions of the random experiments 

“drawing a sample of size 1n  " is very large, the Poisson distribution can help to appro-

ximate the quite unwieldy binomial distribution caused by the binomial coefficients. 

In mathematical terms, the probability function of the Poisson distribution produces  

  'pn
i

i,n e
!i

'pn
P 


  

as a passage to the limit of the probability function of the binomial distribution, wh en 
n  approaches infinity and 'p  approaches zero, while the product 'pn   remains constant. 

The mean of the Poisson distribution is 'pn  , its standard deviation is 

'pn  . 

 
Calculation example: The value given Table 3.4 for the probability of finding 10i   black balls 

in the sample of size 50n  is 0.14 or 14%. Using the probability function of the Poisson distri-

bution yields 

 
%12.50.125e

!10

10
e

!10

0.250
P 10

10
0.250

10

1050, 


  . 

 

3.3.4 Valid ranges of discrete distributions 

We combine essential properties of the above described distributions in the following 
table. 
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Distribution Valid Mean 

  

Standard deviation   Probability func-

tion  

P  

Hyper- 

geometric 

distribution 

 

generally 

 

 

'pn   

 

)
N

n
1()'p1('pn   





























 

n

N

in

)'p1(N

i

'pN

 

Binomial-

distribution 

N  

or sampling 

with replacing 

 

'pn   

 

 

)'p1('pn   

 

  ini 'p1'p
i

n










 

Poisson-

distribution 

approximately 

for N0.1n   

and 4'pn   

 

'pn   

 

 

'pn   

 

 

  'pn
i

e
!i

'pn 


 

!n  (say: n factorial) means 123)2n()1n(n!n   . 










i

n
 (say: n  over i ) is calculated with the formula 

123...)2i()1i(i

)1in(...)2n()1n(n

!)in(!i

!n

i

n
















. 

Table 3.5 

i,nP  is the probability that, in a sample of size n  from a population of size N , exactly 

i  non-conforming parts will be found when the ratio of non-conforming parts in the po-
pulation is 'p . 

3.3.5 Approximation approaches with discrete distributions 

The Poisson distribution is given by the binomial distribution at the passage to the limit , 
where 'p  approaches zero and n  approaches infinity. The quantity 'p  refers to the popu-

lation. 

According to a limit theorem of statistics, the binomial distribution becomes the normal 
distribution for sufficiently large n  and a given 'p  with 1'p0  . 

Of course, in practice the sample size n  will not become infinitely large. However, it is 
possible, even for finite values of n , to approximate the binomial distribution via the 
Poisson distribution, and the normal distribution or the Poisson distribution via the nor-
mal distribution. Various details on the conditions of these approximations are found in 
the literature (e.g. [7] and [8]), however, for practical use these can be considered the 
same. These conditions are commonly summarized in a diagram (Figure 3.8) that provides 
information on which combination of n and 'p  the binomial distribution can be substitu-

ted by the Poisson distribution or the normal distribution (see for example [7] and  [20]). 
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Fig. 3.8: Formal replacement of the binomial distribution by the Poisson or the normal 
distribution.  

Approximation of the binomial distribution by the normal distribution 

Figures 3.6 and 3.7 clearly show that the normal distribution approximates a binomial 
distribution very well with the example considered there. This approximation is always 
possible if 10'pn   (see [7]). The mean and the standard deviation of the normal distri-

bution are then 'pn   and )'p1('pn  . 

This approximation method is used in Chapter 4.1 to determine in an easy manner the 
control limits of an np-chart. 

Approximation of the binomial distribution by the Poisson distribution 

A binomial distribution with large sample size n  and small 'p  (e.g. number of non-

conforming parts in the population) can be approximated by a Poisson distribution with 
'pn  . A large sample size and a small 'p  mean 10n   and 0.05p'  according to [8].  

The approximation of the binomial distribution by the Poisson distribution is used in 
Chapter 5.2 to easily calculate the control probabilities with regard to the simple samp-
ling scheme. 

Approximation of the Poisson distribution by the normal distribution 

For 10'pn   the values of the Poisson distribution conform very well with the values of 

the normal distribution with 'pn   and 'pn  . We use this fact in Chapter 

4.3 to calculate the control limits of the c-chart. 
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4  Applications of Discrete Distributions within the Scope of 
Statistical Process Control (SPC) 

At the end of Chapter 3.3.1, in the example under consideration, it was determined that 
in about 95% of all cases between 4 and 15 black balls were to be expected in the sample.  

What conclusion should one draw if, against all expectations, for example 25 black balls 
had been contained in the sample? Well, one could of course assume that this is one of 
the rarest cases that could arise, statistically speaking. One could, however, suppose that 
the ratio of black balls in the box had increased considerably since the last probe, for 
example to 50%, because then the observed event would not be unusual, but rather be 
an expected normal case. 
 

NOTE:  

The second guess for an observer to this example would only be obvious i f the box is not visible 
between samplings, of course, giving rise to a chance for manipulation.  
 

The thought process described above creates the basis for the use of discrete distributi-
ons in Statistical Process Control (SPC).  

One takes samples from a production process at regular intervals and determines, for 
example, the number of non-conforming parts contained within. This number is noted on 
the form, the control chart, and entered into a diagram on this control chart (similar to 
Figure 4.1).  

If the respective number found lies within the random variation range bordered by solid 
lines on the control chart (the control limits), one can assume that the current process 
still corresponds to the usual conditions. However, if, for example, the upper control limit 
is exceeded, one can conclude that the process conditions have deteriorated, meaning 
the fraction non-conforming has considerably increased. This procedure corresponds to 
a statistical conclusion from the sample about the population. 

Quality control charts for discrete characteristics (countable characteristics) are based, in 
contrast to control charts for continuous characteristics that are focused on avoiding non -
conformities, on the existence of non-conformities. They are designed to show the user 
whenever a process status will change with respect to an actual state that cannot be im-
proved any further with justifiable effort. The user would therefore like to ascertain whe-
ther the already unsatisfactory process conditions will continue to deteriorate. 

The following types of control charts exist for discrete characteristics:  

 np-chart 

To control the number of non-conforming units with constant sample size 

 p-chart 

To control the relative number of non-conforming units with constant or variable 
sample size  

 c-chart 

To control the number of non-conformities per unit or per unit quantity with 
constant sample size 
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 u-chart 

To control the number of non-conformities per unit or per unit quantity with 
constant or variable sample size 

The way these charts work, they require a comparably large number of errors, which is 
unacceptable considering the level of ppm reached today and the goal of zero defects. 
For this reason, sampling inspection of discrete characteristics is no longer reasonable. 
Therefore, only a few theoretical basics will be represented here.  

4.1 np-chart 

With regard to the np- and the p-chart, in the following we will consider a production 
process where we know that a constant portion 'p  of the produced parts is non-

conforming. This portion 'p  is generally not known, it rather must be estimated using 

a series of samples (pre-production). If one draws a sample of size n, one can expect to 
find about 'pn   non-conforming parts within said sample. 

If 'p  is very small, the sample size n must be chosen sufficiently large, so that some of the 

non-conforming parts will even be included in the sample. 

The following is a good rule of thumb for the minimal sample size:  

The sample size must be at least large enough that the average number of non-
conformities in the sample is greater than or equal to 4 (10 is better). For the np- and p-

chart, due to  a sample size of 
p

400
n   results, where p  is the proportion non-

conforming in percent. 
When repeating the sampling process with constant sample size n, the result is generally 
a random number of non-conforming parts per sample that varies around an average 
value. This average number of non-conforming units  can be designated as the mean pn   

of the non-conforming units in a series of samples. 

Average value of non-conforming units: 






m

1i

i
m21 pn

m

1

m

pnpnpn
pn


   

m  = number of samples 

n  = sample size 

n 1p  = number of non-conforming units in the first sample 

n ip  = number of non-conforming units in the i-th sample 

If one divides the mean pn   by the sample size n, one obtains p , an estimation value for 

the share of non-conforming units 'p . 

The quality control chart for the share of non-conforming parts (np-chart) is based on the 
binomial distribution (see Chapter 3.3.1). The probability function f of the binomial distri-
bution indicates the probability of finding exactly k non-conforming parts in a sample of 
size n, if the share of non-conforming parts in the total population produced is 'p :  

    knk 'p1'p
k

n
'p;n;kf 









 . 

The mean of the binomial distribution is 'pn  , 
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its standard deviation is   






 


n

'pn
1'pn'p1'pn . 

If the mean   of the binomial distribution is sufficiently large (this is guaranteed by 

a minimum sample size), this formula approximates the normal distribution very well 
(see Figure 3.6 in Chapter 3.3.1). 

The control limits are defined, so that around 99% of the sample results lie within these 
limits if the proportion non-conforming remains constant. If a sample result lies outside 
the control limits, one must assume that the proportion non-conforming has changed  
(i.e. has increased or decreased). 

The 99% random variation interval of a normally distributed characteristic is limited by 
control limits that can be calculated as follows (upper or lower control limits):  

σ2.58μUCL ˆˆ   

σ2.58μLCL ˆˆ  . 

The number 2.58 is the two-sided threshold value of the standard normal distribution for 
the number 0.99 (see table of the standard normal distribution in [3] for example).  

The control limits of the np-chart are given as the limit of the 99% random variation in-
terval for the ratio of non-conforming parts by entering the estimations of the mean and 
standard deviation of the binomial distribution into these relations:  








 


n

pn
1pn2.58pnUCL  








 


n

pn
1pn2.58pnLCL . 

Here, pn  are the means of the non-conforming parts determined in pre-production, 

and n is the (constant) sample size. 
 

EXAMPLE 5: Example of an np-chart 

During the final inspection of injection valve production, valve units are regularly found with 
various non-conformities. One decides to monitor how these parts are processed using an np-
chart. 

Since the average number of non-conforming valve units is at first unknown, but estimated to 
be 5%, one chooses a constant sample size of 150 parts in order to fulfill the requirement for 

the minimum sample size 







 80

5

400
n . 

The following numbers of non-conforming valve units are found in the first 10 samples:  

 

Sample no. 1 2 3 4 5 6 7 8 9 10 

Number of non-conforming 

parts 

9 11 6 10 9 7 12 8 11 9 

 
Here, only the number of non-conforming parts is of interested; a defective valve unit may dis-
play many defects. 

The average number of non-conforming units is determined from the numbers identified:  
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9
10

92

m

96119
pn 





. 

The control limits of the np-chart for the sample of size can now be calculated using this value-
150n : 

16.5
150

9
192.589UCL 








  

1.5
150

9
192.589LCL 








 . 

The sample is considered to have exceeded the control limits if 17 or more non -conforming 
parts were found in one sample, or only one or no non-conforming parts were found. Here, 
falling below the lower control limit means that the performance of the entire process has 
considerably improved compared to the previous performance. One should try, in this case, to 
find out what caused this (man, machine, material, methods, milieu) and stabilize the impro-
ved conditions. 

4.2 p-chart 

The same basic ideas applied for the np-chart also apply to the p-chart. Instead of con-
trolling the number of non-conforming units np, the p-chart controls the proportion p of 
non-conforming units. 

One chooses an individual value p by dividing the number of non-conforming units pn   in 

a sample by the sample size n. It is beneficial to consider the proportion p instead of the 
number pn   of non-conforming units because one can now work with changing sample 

sizes n, if this is unavoidable for operational reasons.  

The average proportion p of non-conforming units is given by dividing the sum of all non-
conforming units from a sample by the sum of all the inspected units (sum of the sample 
sizes). 

The control limits of the p-chart can be calculated using the control limits from the np-
chart by dividing the latter by n. 

n

p1
p2.58pUCL


  

n

p1
p2.58pLCL


 . 

For a changing sample size, instead of the n the average sample size 





m

1i

in
m

1
n  is under the root sign: 

n

p1
p2.58pUCL


  

n

p1
p2.58pLCL


 .                        n = average sample size 

Since the standard deviation of the binomial distribution depends on the sample size n, 
during SPC, it is recommended to recalculate the control limits if the sample size has 
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changed by more than 25%. In this case, insert the current sample size n into the formula 
instead of the average sample size n . 

 

Calculating the characteristics from pre-production data 

The average proportion of non-conforming units in relation to the total number of units 
inspected: 

















m

1i

i

m

1i

ii

m21

mm2211

n

pn

nnn

pnpnpn
p




 

m  = number of samples 

1n  = size of the first sample 

2n  = size of the second sample 

11 pn   = number of non-conforming units in the first sample 

ii pn   = number of non-conforming units in the i-th sample 

 
EXAMPLE 6: Example of a p-chart 

We consider a machine that winds enameled copper wire onto spools, strips the wire ends and 
solders short pieces of strand wire onto these ends.  The machine creates a certain proportion 
of non-conforming spools where, for example the winding protrudes out of the spool or indivi-
dual strands jut out of a solder joint. 

Since the machine conditions cannot be improved on short term, the machine is to be monito-
red using a p-chart in order to recognize at an early stage a rise in the proportion of non -
conformities. 

First, every tenth part produced was removed and inspected for non-conformities. The parts in-
spected during five shifts of a work week were considered the pre-production samples. The 
following table summarizes the results of the study. 

 

Shift 
No. 

Number of examined 
parts 

Number of non-
conforming 

parts 

Number of non-
conforming parts 

1 

2 

3 

4 

5 

116 

119 

108 

112 

120 

8 

9 

7 

8 

8 

6.9% 

7.6% 

6.5% 

7.1% 

6.7% 

Sum 575 40  

 
The average proportion of non-conforming units is (see formula in 4.2) 

%70.07
575

40

120112108119116

88798
p 




 . 
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The average sample size is 115
5

575
n  . 

Accordingly, the control limits per the p-chart are given by: 

%130.13
115

0.071
0.072.580.07

n

p1
p2.58pUCL 





  

%10.01
115

0.071
0.072.580.07

n

p1
p2.58pLCL 





 . 

The control limits are entered onto the control chart as solid lines. The series of points on the 
control chart show that the machine is running in a very stable manner with the proportion 
of non-conforming parts determined (see Figure 4.1). 

 

 

Fig. 4.1: Example of a p-chart  ( n  = 115, p = 7%) 

4.3 c-chart 

The c- and the u-chart (see Chapter 4.4) form, to an extent, a separate group among the -
control charts for discrete characteristics. 

As opposed to the np- and p-charts, what is of interest here is not the number or propor-
tion of non-conforming units, but rather the number c or the proportion u of non-
conformities per product unit. 
 

Examples for this are: 

 Number of faulty soldering joints per circuit board. 

 Number of assembly defects per assembly group. 

 Number of metal shavings per cm² of test filter surface.  
 

It is possible to combine the products of a sample into an inspection quantity and to mo-
nitor the number (or the proportion) of non-conformities in this inspection quantity. 

We will first consider the c-chart. 
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The number c of non-conformities per sample is generally described by a Poisson distribu-
tion. 

Its probability function f indicates as to which probability c non-conformities will be found 
in the sample, if the average number of errors is  : 

 
!c

e
;cf

cc 
 . 

The mean of the Poisson distribution is  , its standard deviation is  . 

If one collects - as described above - a sufficient number of results of products into an 
inspection quantity (sample), so that on the average four or more non-conformities are 
found in this inspection quantity (compare with minimum sample size), the normal dist ri-
bution formally approximates the Poisson distribution very well.  Similar to the concepts 
in Chapter 4.2 concerning the np-chart, one obtains the control limits for the c-chart from 
the 99% random variation interval of the number c of errors per sample, by inserting 

σ2.58μUCL ˆˆ   

σ2.58μLCL ˆˆ   

the estimations cˆ   and cˆ   for the mean and the standard deviation of the 

Poisson distribution into the relationships: 

c2.58cUCL   

c2.58cLCL  . 

Determine the average number of errors c  in the samples with the following formula: 








m

1i

i
m21 c

m

1

m

ccc
c


. 

m  = number of samples 

1c  = number of non-conformities in the first sample 

ic  = number of non-conformities in the i-th sample 

 
EXAMPLE 7: Example of a c-chart 

The rinsing fluid used to clean pump housings is filtered in order to remove metal shavings. 
A portion of the surface of a testing filter is examined under a microscope in order to find out if 
the amount of shavings exceed a given amount. 

The number of shavings observed per cm² of filter surface is a quality characteristic and is to 
be monitored using a c-chart. 

The examination of the last eight filters had the following results:  

 

Filter no. 1 2 3 4 5 6 7 8 

Number of 

shavings 

11 13 8 12 11 9 14 10 
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On average, 11
8

88

8

1081311
c 





 shavings were found. 

The control limits for the provided c-chart are then: 

19.6112.5811UCL   

2.4112.5811LCL  . 

A “control” can be implemented if 20 or more, or two or less, shavings have been found. 

4.4 u-chart 

If one divides the number c of non-conformities in an inspection quantity (sample) by the 
number of units inspected in this sample, one obtains the proportion of non-conformities u. 

The average non-conformities per unit u  is determined by dividing the average number 

of non-conformities in a series of m samples 



m

1i

ic
m

1
c  by the average sample size 





m

1i

in
m

1
n : 




















m

1i

i

m

1i

i

m21

m21

m21

m21

n

c

nnn

ccc

)nnn(
m

1

)ccc(
m

1

n

c
u








. 

m  = number of samples 

1n  = size of the first sample 

in   = size of the i-th sample 

1c   = number of non-conformities in the first sample 

ic   = number of non-conformities in the i-th sample 

The calculation of the average proportion of non-conformities u  with regard to the total 
number of units inspected occurs based on the pre-production data. 

Like the c-chart, the control limits of the u-chart are based on an approximation of the 
distribution of u by the normal distribution. 

However, they cannot be calculated directly from the control limits of the c -chart. They 
are derived using mathematical calculation rules for means and variances.  

In contrast to the c-chart, the u-chart is beneficial because varying sample sizes are per-
mitted. 

Calculating the control limits: 

n

u
2.58uUCL   

n

u
2.58uLCL                     n = average sample size 
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The standard deviation depends on the sample size in this case. The control limits are to 
be recalculated if the sample size changes by more than 25%. 

Recalculating the control limits for differing sample size: 

n

u
2.58uUCL   

n

u
2.58uLCL                       n = size of the current sample 

 
EXAMPLE 8: Example of a u-chart 

Occasional errors arise on a machine to print circuit boards in the form of snapped -off compo-
nent connections or mission or damaged components, all of which are easy to ide ntify during a 
visual inspection. Since a constant sample size is not possible in this case, the performance of 
the machine is to be monitored using a u-chart. Approximately 200 randomly selected circuit 
boards have been combined to create a sample (inspection quantity). The following numbers of 
non-conformities were detected on ten samples, produced and inspected within a week:  
 

Sample no. 1 2 3 4 5 6 7 8 9 10 

Sample size 180 200 240 210 170 190 230 200 220 200 

Number of non-

conformities 

7 9 8 8 12 11 11 9 4 8 

 

The average number of non-conformities is %4.30.043
2040

87

200240200180

8897
u 









. 

The average sample size is 204)200240200180(
10

1
n   . 

This results in the control limits: 

%80.08
204

0.043
2.580.043UCL   

%0.50.005
204

0.043
2.580.043LCL  . 

4.5 Control characteristic curves of control charts for discrete chara-
cteristics 

The meaning of control characteristic curves of control charts for discrete characteristics 
shall be explained using the p-chart example from Chapter 4.2., 

The use of a p-chart allow one to recognize a change in the average proportion of non-
conforming units in a population (e.g. production quantity during one shift). It would 
certainly be extremely unpleasant if the control chart reacted to small deviations of the 
current proportion non-conforming p of the mean p , since such small deviations can be 

produced quite naturally due to the randomness of the sample, and therefore also would 
frequently unnecessarily intrude on a process with a stable proportion non-conforming. 

In this sense, an ideal p-chart that functions with 100% certainty should only react when 
limits are exceeded due to actual process changes, meaning, for example %10'p  . 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf


Basic Principles of Technical Statistics  Discrete Characteristics 

 

 Robert Bosch GmbH 10.2016 - 35 -  

Otherwise, the chart should not react with the same certainty. A real p-chart does not 
possess these properties. Even an unchanged proportion non-conforming 'p  has a 1% 

probability that the p-chart reacted incorrectly (type 1 error). 

Real changes in the proportion non-conforming are only displayed with a certain probabi-
lity that becomes greater the more the actual value 'p  differs from the mean p . This con-

trol probability related to the actual proportion non-conforming 'p  is described by a con-

trol characteristic curve (also called an operating characteristic). 
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Fig. 4.2: Control characteristic curves of a p-chart for two sample sizes 

From Figure 4.2, it is obvious that this probability of intervention increases as the propor-
tion non-conforming increases (above 7%) , but it only approaches the value 100% with a 
comparably large value of 'p . At %13.5p' , it is about 50%, meaning that in only half of 

all samples will an increase to %13.5p'  in the proportion non-conforming lead to the 

curve exceeding the upper control limit. 

The control characteristic curve depends on the chosen sample size n. Using the control 
limit formulas allows one to understand that the distance between the lower and upper 
control limits decreases with increased sample size n. The control characteristic curve 
becomes steeper near p  with growing n. 

As an example, Figure 4.2 gives the control characteristic curve for the case 1150n . For 

example, this sample size would result on average if 100% of the goods produced during 
a shift were inspected and considered the “sample”. A sample size that is too large obvi-
ously leads to the chart being more sensitive than otherwise desired. 

This is why the average number of non-conforming parts in the sample should not be lar-

ger than 100 in control charts for discrete characteristics. A sample size  of 
p

10000
n   

(with p  in percent) is created for the p-chart, accordingly.  

Note that in this context, it is not unusual to inspect 100% of the production of a shift or 
day and to observe the proportion of non-conformities over a longer period of time. It is, 
however, not sensible to use control limits calculated statistically, since the population 
was completely inspected and the actual number of non-conformities is known. Instead, 
one might determine, at one’s own discretion based on experience with the process,  
a fraction non-conforming of defects that is not to be exceeded in this case. The previous 
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considerations can be transferred to the remaining control charts for discrete characteris-
tics. 

In the literature, occasional comparisons are made between control characteristics of 
control charts for discrete characteristics and those for continuous characteristics. Within 
Bosch, it has been determined (see Book 7) that control charts for continuous charac-
teristics are to be used for characteristics that are measurable and that should be regula-
ted (monitored) using a quality control chart. Therefore, discussions about the advan-
tages and disadvantages of the control performance (operating characteristic curve) of 
control cards for discrete characteristics is only of theoretical interest. 

4.6 Non-conformity tally chart 

The non-conformity tally chart is used when inspecting discrete characteristics if a unit 
(component, functional unit) is to be inspected with regard to several possible defect 
types. 

A quality control chart for discrete characteristics is provided as a form for this purpose. 
To prepare the chart, the types of defects are listed in the first column of the chart and 
the necessary details are entered into the header of the chart. 

The numbers of defects of each type determined in the individual, consecutive inspec-
tions are entered in the following columns numbered 1 to 25. The inspections may inclu-
de a sample or examine 100% of the parts. In the first case, the numbers 1 ... 25  corres-
pond to one sample each, in the second case they correspond to the entire amount pro-
duced during a shift. 

The sample size should be chosen sufficiently large for a selective inspection that there is 
a large enough probability, according to previous experience with the process at hand, of 
even finding defective parts or defects in the sample. A non-conformity tally chart where 
the number zero is almost the only occurrence is either proof of a very good production 
process or the result of a too small sample size. 

The total number of the defects or non-conforming parts found in a sample is calculated 
by summing up the values within the columns and recording them in the corresponding 
row. Provided that the sample size (or the number of parts produced per shift) changes 
from test to test, it is sensible to also calculate the proportion non-conforming or non-
conforming parts in the sample by dividing the number of non-conforming units by the 
sample size or the number of inspected units. 

The number (proportion) of non-conforming units/defects can be represented graphically 
in the diagram provided on the chart. The behavior of the quality level is easy to see in 
this way. Since this representation is related to the sum of defects of different types, i.e. 
each type of defect is taken into equal consideration, it is hardly sensible to calculate 
statistical control limits at this point. If need be, a plausible (based on experience) upper 
limit can be inserted or drawn that is not to be exceeded under any circumstance. 

To evaluate the chart, the numbers of defects of a type of defect are summed up and 
entered into the second to last column from the right. If one divides this sum of defects 
by the total number of all inspected units and multiplies this by 100. The result is a pro-
portion non-conforming for each defect type in percent (average number of defects per 
inspected unit) that can be entered into the far right column (see Figure 4.3).  

The last two columns show, which types of defects occur most often. This provides a 
place to begin when planning, which processes to improve. Note that the most commonly 
occurring defect does not necessarily cause the highest costs. Therefore, it might be sen-
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sible to multiply the defect frequency with the scrap or rework costs per part and use this 
auxiliary quantity as a scale for improvements. 
 

 

 
 

 
Quality control  
chart for discrete chara-
cteristics 

   x 

 

  np 

 

   c 

Product/Part 
  EV4 Needle with armature 
Process 
  100% Final Visual Inspection 
Equipment  10x binocular 

Plant/Workshop 
W600/625 
 
Page no.  3.1 

Type of defect 1 2 3 4 5 6   25 Sum % 

Caulking burred 1 4 6 5 - 1    30 0.03 
Inlet hole dirty 3 - 16 5 - -    45 0.04 
Armature damaged 5 5 8 8 13 14    145 0.14 
Armature lower edge 

burred 

5 2 8 14 19 5    85 0.08 

Armature upper edge 

burred 

24 6 22 25 24 33    230 0.22 

Needle collar burred - - - 53 1 5    247 0.24 
4 or 5 cant burred 136 34 164 125 75 108    1480 1.43 
Guide damaged 41 8 29 11 7 11    194 0.19 
Armature spring guide 

bore burred 

7 25 18 14 23 12    244 0.24 

Needle incomplete proces-

sed 

2 1 1 3 3 -    13 0.01 

Needle dirty 13 162 52 187 231 171    960 0.93 
            
            
Other defects 1 - 5 1 7 1    43 0.04 

Number of non-

conformities 

238 247 329 451 403 361    3716 3.59 

Number of non-

conforming units 

           

Fig. 4.3: Schematic of a section from a quality control chart for discrete characteristics 
that is being used as a non-conformity tally chart 
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5 Acceptance sampling plans  

Acceptance sampling plans are collections of short handling instructions, similar to statis-
tical tests, to help to decide whether to accept or reject a lot.  The handling instructions 
are therefore referred to as tests. A lot can, in this sense, be a quantity of goods deliver-
ed by a supplier or the goods produced during a shift, for example.  

From the terms below, it is obvious that acceptance sampling plans were originally desig-
ned for use in the area of inspecting incoming goods. 

A random sample is taken from the lot whose size depends on the total number of the 
units in the lot. 

Significant characteristics of the units included the sample are then inspected with 
respect to their attributes, meaning each unit is, for example, assessed based on a gauge 
inspection (gap gauge, plug gauge) or by visual inspection based on boundary samples. 
Examples of the corresponding assessments are good/bad, OK/not OK, inside/outside the 
tolerance range.  

If the number of units in the sample with a negative assessment is less than or equal to 
the acceptance number c specified in the sampling plan, then the entire lot will be accep-
ted, otherwise it will be rejected. If a two-stage sampling plan is used, the result of the 
first sample will either dictate that the lot is accepted directly or that another sample is 
drawn and evaluated. The decision about the lot is then made using the results from both 
samples. 

Within Bosch, such two-stage (multiple or consecutive) sampling plans are no longer 
used, since they fundamentally accept a certain proportion of non-conforming units in 
the lot. This does not conform with quality objectives for modern serial production (zero 
defect principle). 

At Bosch, only a one-stage sampling plan with acceptance number 0c   is used, meaning 

only one sample is “taken” and the appearance of a non-conforming unit in the sample 
requires that the lot be rejected. 

If the lot in question is a delivery of goods from a supplier, then the term “rejection” is  
self-explanatory. In the case of a selection inspection (sample inspection) in the produc-
tion area using a sampling plan, rejection means that the quality of the inspected lot is 
insufficient. A negative sample results leads, in this case, to a 100% inspection. 

We want to explain how to conduct an acceptance sampling plan in the following.  

 
EXAMPLE 9: 

The incoming goods department at a factory receives a delivery that includes 2000N   end 

shields for generators. The delivery includes 200 end shields , which were incorrectly provided 
with threads in one of the drill holes. 

An employee in the QM department takes a random sample of 50n  parts and inspects their 

quality characteristics to see if they conform with the specifications.  How great is the probabi-
lity that 0, 1, 2, 3, ... non-conforming parts are included in the sample? 

Since the sample is considerably smaller than the lot size, the interesting probabilities can be 
calculated using the probability function of the binomial distribution 

  i50i
i50, 0.110.1

i

50
P 









 . 
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The number of non-conforming units in the lot is thus %100.1
2000

200
p'  . 

If one consecutively inserts the values 0, 1, 2, 3, ... for i  in this formula, the following is pro-
duced 

for  0i  : %0.50.0050.005110.90.1
0

50
P 500

050, 







  

for  1i  : %2.90.0290.00570.1500.90.1
1

50
P 491

150, 







  

for  2i  : %7.80.0780.00640.0112250.90.1
2

50
P 482

250, 







  

for  3i  : %13.90.1390.00710.001196000.90.1
3

50
P 473

350, 







  

for  4i  : %18.10.1810.00786102303000.90.1
4

50
P 4464

450, 







   

for  5i  : %18.50.1850.8731021187600.90.1
5

50
P 5455

550, 







  . 

This calculation should, of course, be completed for all further i up to 50i  , however, this 

example should be enough to understand the process. See Figure 5.1 for a schematic with pro-
babilities for the considered example. Their calculation is much simpler usin g the probability 

function of the Poisson distribution 
  5

i
'pn

i

i,n e
!i

5
e

!i

'pn
P  


 . 

The values obtained for both probability functions are compared in the following table.  

 

 i,nP  

i Calculation with the probability 
function of the binomial distri-

bution 

Calculation with the probability 
function of the Poisson distri-

bution 

0 

1 

2 

3 

4 

5 

0.5% 

2.9% 

7.8% 

13.9% 

18.1% 

18.5% 

0.7% 

3.4% 

8.4% 

14.0% 

17.5% 

17.5% 
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Fig. 5.1: Schematic of the probability function for Example 9 

The question about probability L, with which at most three non-conforming parts are included 
in the sample, is easy to answer. 

Since the cases 

 no non-conforming part in the sample 

 one non-conforming part in the sample 

 two non-conforming parts in the sample 

 three non-conforming parts in the sample 

are mutually exclusive events, one merely has to add up the individual probabilities of the 
events for the cases 3,2,1,0i  : 

%25.1PPPPPL 350,250,150,050,

3

0i

i50, 


. 

5.1 Operating characteristics of acceptance sampling plans 

The problem in Example 9 does not, of course, occur in reality, because the number of 
non-conforming parts contained in a delivery is unknown. In practice, a delivery is only 
accepted if no non-conforming parts are contained in the sample. The number of maxi-
mum accepted non-conforming parts in the sample is called the acceptance number c. In 
the Bosch single sampling plan 0c   is preset.  

The previous considerations now allow one to calculate the probability L, with which a 
delivery with a proportion 'p  of non-conforming parts will be accepted. This is only the 

case if 0i   and thus 0,50PL  . 

We use the probability function of the Poisson distribution with 0i   to calculate L: 

  'p50'p50
0

0,50 ee
!0

'p50
PL  


 . 
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The values of L as a function of p' as represented graphically in Figure 5.2. The function L 
is called the operating characteristic. A graphical representation thereof is also called the 
operating characteristic curve or the acceptance characteristic curve.   
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Fig. 5.2: Using the Poisson distribution to calculate the operating characteristic curve for 
50n  and 0c  

The acceptance probability for the example %1.5p'  in the figure is  

%47.20.472e0)c1.5%,p'50,nL( 0.01550   . 

A delivery with a proportion non-conforming of 1.5% will therefore be accepted with 
a probability of 47.2%. Or, said differently, on average about every second delivery with 
this proportion non-conforming will be accepted. 

According to the Bosch single sampling plan, the sample size of a test depends on the size 
of the population N (order quantity). To be correct, one would always have to give L in 
the form )c,'p,n,N(L . 

For completeness, it should also be mentioned that there are also acceptance sampling 
plans with 0c  . In this case, to calculate the acceptance probability L , one must sum up 

the individual probabilities of the excluded cases c,,2,1,0i  :   

c,n2,n1,n0,n

c

0i

i,n PPPPPL 


 . 

Depending on which of the requirements named in Chapter 3.3.4 has been fulfilled, the 
individual probabilities can be determined using the hypergeometric distribution, the 
binomial distribution or the Poisson distribution. 

 

 

 

 

 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-002_BBL_N_EN_2016-10-04.pdf


Basic Principles of Technical Statistics  Discrete Characteristics 

 

 Robert Bosch GmbH 10.2016 - 42 -  

5.2 Characteristics of acceptance sampling plans 

The operating characteristic of a test changes with the sample size n. With increasing n, 
the acceptance curve becomes steeper in the area of smaller proportions non-
conforming, as Figure 5.3 shows for three sample sizes. 
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Fig. 5.3: Using the Poisson distribution to calculate operating characteristics for 0c  

and various sample sizes n 

An ideal sample plan with regard to a given limit would always reject lots whose true 
proportion of non-conforming units exceeded this limit. 

A real sampling plan obviously does not fulfill this desire for ideal behavior in the sense 
an on/off switch. Lots with a certain proportion non-conforming are not rejected with 
absolute certainty, rather they are rejected only with a certain degree of probability. Whi-
le lots with an accepted proportion non-conforming are also only accepted with a certain 
probability. 

The acceptance probability decreases more or less quickly from 100% to almost 0% with 
an increasing proportion non-conforming in the lot, depending on the sample size spe-
cified by the sampling scheme. 

The proportion non-conforming 'p  that is accepted with a great probability )'p(L A  of 

90%, for example, is called the acceptable quality level (AQL). The complement to this 

acceptance probability )'p(L A , thus the number )'p(L1 A , is called the supplier risk. 

The proportion non-conforming accepted with only a small probability )'p(L R  of 10%, for 

example, is called the limiting quality (LQ). )'p(L R  is also called the buyer risk (see 

Figure 5.4). 
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Fig. 5.4: Illustration of the characteristic values of an operating characteristic curve  

The designation supplier risk is designed to express the idea that a certain risk exists for 
the supplier in that his delivery may be rejected by the buyer even though it only contains 
a relatively small proportion non-conforming. Correspondingly, the term buyer risk is 
intended to clarify that there is a certain chance of accepting a delivery although it con-
tains a relatively large proportion non-conforming. 

It should be emphasized that the AQL and LQ values of a test represent purely formal 
testing risks and are not to be misunderstood as a “permissible proportion non-
conforming”. The calculated risk of a sampling inspection is independent of a legal claim 
of 100% conforming products in a delivery. 

If one always inspects lots of the same size and the same quality 'p  according to the same 

sampling instructions (test with specified n and c), an average of %L100  lots will be 

accepted and %)L1(100   rejected. If the rejected lots are sorted to 100% and the non-

conforming parts replaced with conforming ones, the total accepted quantity has 
a proportion non-conforming that is smaller than 'p . In the long run, an average propor-

tion non-conforming is accepted by the sampling inspection, the so called average out-
going quality (AOQ) D. 

The function D is given by the product of the proportion of non-conforming units and the 
associated acceptance probability: 

'p)c,'p,n,N(LD  . 
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The average outgoing quality is zero when the delivered lots are conforming ( 0'p  ). It 

also tends to zero with very high proportions non-conforming, since almost all of the lots 

will be rejected ( 0L  ). D assumes a maximum maxD  with an average proportion non-

conforming. 
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Fig. 5.5: Graphic representation of an operating characteristic curve and the associa-
ted average outgoing quality D. For illustrative purposes, a test with the acceptance 
number 4c    was chosen. 

maxD  can be easily calculated using the probability function of the Poisson distribution. By 

differentiating the function 'pe'pLD 'pn    and calculating the zero position of the 

derivative, it results that D has a maximum at the position 
n

1
'p  . Entering this into the 

functional equation gives: 

n

0.368

n

1

e

1
Dmax  . 

EXAMPLE: From 2000N   and 60n  follows %0.61
60

0.368
Dmax  . 

 

The corresponding table value of the Bosch simple-sampling scheme is 0.6%. 90'p  and 10'p  

can be calculated approximately by solving the equation 'pneL   according to p':  

'pneL        p'n)L(ln        
n

L)(ln
p'  . 

If one enters %100.1L   or %900.9L   into the expression for p', the result is: 

%3.80.038
60

(0.1)ln
p'    or  %0.180.0018

60

ln(0.9)
p'  . 

The values agree sufficiently well with the corresponding table values. With smaller batch 
sizes, the approximation conditions found in Chapter 3.3.4 are no longer  fulfilled. This 
means that using the Poisson distribution will yield large deviations from the table values. 
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5.3 Single sampling plan 

As already stated at the beginning of Chapter 5, the single sampling plan is a collection of 
instructions (tests) that result in a lot's acceptance or rejection.  

In contrast to double or multiple sampling plans, this decision is made using the results of 
just one sample within the single sampling plan. 

Each test in the single sampling plan with acceptance number c = 0 is  significantly charac-
terized by the associated sample size. The quantities AQL, LQ and the maximum AOQ 

maxD  are given for every test in the single sampling plan. The AQL value there has the 

designation 90'p , the LQ value the designation 10'p . The indices 10 and 90 correspond to 

the associated acceptance probabilities in percent. 

According to the single sampling plan, even large lot sizes (lot size N  5000) can be 
worked on with the sample size n that is given in the far right column (calculated for N = 
5000) for the respective test. The values given in the plan are calculated using the hyper-
geometric distribution. 

A sample of n parts is taken from the lot. Provided that there are no non-conforming 
parts in the sample, the lot will be accepted (acceptance number c = 0).  

A sample will have a high probability (90%) of not having a non-conforming part only if 
the proportion of non-conforming parts p’ is very small. Hardly anything changes with the 
acceptance probability if one takes a sample of the same size from a larger lot that has 
considerably more parts, but the same proportion non-conforming p’. 

This is due to the fact that accepting a uniformly mixed lot and taking a random sample  
will mean that each part has the same probability of being included in the sample (similar 
to drawing lottery numbers). 

In practice, it is not suitable to take in lots if they originate from a production series with 
very different quality over time (e.g. periodically changing or constantly increasing or 
decreasing proportion non-conforming). 

If this situation cannot be avoided, the lot to be inspected must be divided into subsets of 
N = 5000 parts maximum each, with each subset being subsequently sampled.  

Make sure that the test specimens in a sample are taken from different places in the de-
livery. Each part must have the same chance of being taken (random selection). The valu-

es of 90'p , 10'p  and maxD  help to decide, which test to use. Moreover, one must consider 

the average quality of the lot as well as the meaning of the testing characteristic(s) of, for 
example, function, quality and reliability. 

Tests EOX, EOV and EOI are generally used as identification tests. They are only to be 
used as tests of quality for higher, more constant production reliability (e.g. inspecting a 
batch being hardened in a salt bath, punched parts, a selection test for surface treatment 
procedures). 

Advances in series production with regard to the level of quality achieved are putting the 
use of sampling plans into question because the proportion non-conforming in ppm is 
extremely difficult to detect using acceptable sample sizes. Alternatively, one can use 
sampling plans for continuous characteristics (see [2]) to inspect discrete characteristics.  
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Single sampling plan 
for inspection of discrete characteristics  

Order 
quantity 

N  <100 101..... 
.....250 

251..... 
.....500 

501..... 
.....1000 

1001..... 
.....2000 

2001..... 

.... 5000 

 
 
Test EX 
 

n 
p'90 
p'10 
Dmax 

100% 
 

- 
- 

100% 
- 
- 
- 

250 
      0.03 
      0.7 
      0.1 

350 
      0.02 
      0.5 
      0.1 

450 
      0.02 
      0.5 
      0.1 

550 
      0.018 
      0.39 
      0.06 

 
 
Test EV 
 

n 
p'90 
p'10 
Dmax 

100% 
- 
- 
- 

100 
      0.08 
      1.8 
      0.3 

120 
      0.08 
      1.7 
      0.27 

160 
      0.06 
      1.3 
      0.21 

200 
      0.05 
      1.1 
      0.17 

250 
      0.04 
      0.9 
      0.14 

 
 
Test EII 
 

n 
p'90 
p'10 
Dmax 

45 
      0.18 
      3.8 
      0.6 

55 
      0.17 
      3.6 
      0.6 

70 
      0.14 
      3.0 
      0.5 

90 
      0.11 
      2.4 
      0.39 

110 
      0.1 
      2.0 
      0.32 

130 
      0.08 
      1.7 
      0.28 

 
 
Test EI 
 

n 
p'90 
p'10 
Dmax 

20 
      0.5 
      9.8 
      1.6 

24 
      0.42 
      8.7 
      1.4 

30 
      0.34 
      7.2 
      1.2 

40 
      0.26 
      5.5 
      0.9 

50 
      0.21 
      4.4 
      0.7 

60 
      0.17 
      3.7 
      0.6 

 
 
Test EOX 
 

n 
p'90 
p'10 
Dmax 

14 
      0.7 

14 
      2.4 

14 
      0.7 

15 
      2.5 

14 
      0.7 

15 
      2.5 

14 
      0.7 

15 
      2.5 

14 
      0.7 

15 
      2.5 

14 
      0.7 

15 
      2.5 

 
 
Test EOV 
 

n 
p'90 
p'10 
Dmax 

6 
      1.7 

31 
      5.5 

6 
      1.7 

32 
      5.6 

6 
      1.7 

32 
      5.6 

6 
      1.7 

32 
      5.7 

6 
      1.7 

32 
      5.7 

6 
      1.7 

32 
      5.7 

 
 
Test EOI 

 

n 
p'90 
p'10 
Dmax 

3 
      3.4 

53 
    10.4 

3 
      3.4 

53 
    10.5 

3 
      3.4 

54 
    10.5 

3 
      3.4 

54 
    10.5 

3 
      3.4 

54 
    10.5 

3 
      3.5 

54 
    10.5 

Designations: 
 
n Sample size 
p'90 (AQL) non-conforming proportion 

(in %) in the lot with 90% acceptance 
probability 

p'10 (LQ) non-conforming proportion 
(in %) in the lot with 10% acceptance 
probability 

Dmax (AOQL) max. AOQ (in %) 
 
 

i Number of non-conforming 
parts in the sample  

c Acceptance number, c = 0 

Note: 
 

 Only use EOX, EOV, EOI tests with 
high degree of production reliability! 

 Take samples from various locations 
in the delivery! 

 The part quantity applies for order sub-
sets, goods produced during a shift are 
considered the order quantity in running 
production 

 
Examination result:  Decision: 
 i = 0 accept lot 
 i > 0 reject lot 

 
Factory-internal sample sizes may be determined for special examinations, which differ 
from the specifications of this plan. 
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5.4 Acceptance characteristic curves for a single sample plan 
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Fig. 5.6 
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Fig. 5.7 

For the user interested in mathematics, we will provide some information about how to 
calculate the characteristics given in the single sampling plan. 

Because of 0c  , when calculating the acceptance probability L in the expression 

c,n2,n1,n0,n

c

0i

i,n PPPPPL 


  only the characteristic 0,nP  is to be considered (see 

Chapter 5.1), from which simple expressions result when using the binomial or Poisson 
distributions. 
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Calculating using the binomial distribution:  

n0n0 )'p1()'p1('p
0

n
)0c(L 








          'p1Ln          n L1'p   

   n
10 0.11p'      and    n

90 0.91p'   

maxD is given by calculating the zero position of the derivative of 'pLD   according to p’ 

and inserting the zero position into D:    
1n

1

1n

n
D

n

max












 . 

Calculating using the Poisson distribution: 

According to Chapter 5.2,  
n

(L)ln
p'    and  

n

1

e

1
Dmax  . 

   
n

2.3

n

ln(0.1)
p'10 


     and    

n

0.105

n

ln(0.9)
p'90 


       

n

0.368

n

1

e

1
Dmax   

Calculating use the hypergeometric distribution: 

Calculating L and the characteristic values 10'p , 90'p  and maxD  using the hypergeometric 

distribution is only possible through the use of a computer.  

















 































 



n

N

n

)'p1(N

n

N

0n

)'p1(N

0

'pN

P)0c(L 0,n,N  

       
     1nN2N1NN

1n)'p1(N2)'p1(N1)'p1(N)'p1(N









 

The first expression contains binomial coefficients in the general form 








n

x
, whereby x 

can be a non-integer depending on the values of N and p' and, even for small N, can 
therefore not be calculated using the factorial function on a calculator.  

The numerator and denominator of the last expression consist of n factors each. Gradual-
ly calculating this expression of the form 

1nN

1n)'p1(N

2N

2)'p1(N

1N

1)'p1(N

N

)'p1(N
L

















   

avoids the difficulty with the factorials as well as exceeding the allowed number range 
and an associated error message from the computer. Using a computer program, one can 

determine 10'p  and 90'p  by increasing p', starting from zero and adding small increments 

until L assumes the value 0.9 or 0.1. maxD  is given by determining the respective maxi-

mum of the function 'pLD  . 

The acceptance characteristic in Figures 5.6 and 5.7 were calculated using the above for-
mula for the binomial distribution. With small sample sizes, one can generate deviations 
using the table calculated using hypergeometric distribution. 
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6 Sampling inspection and 100% examination 

A sampling inspection is the better the smaller the distance is between A'p  and R'p . This 

corresponds to a growing steepness in the operating characteristic curve for small pro-
portions non-conforming. However, with a fixed acceptance number 0c  , this means an 

increase in the sample size n as well as examination costs. Advances in the area of series 
production have reached new levels of quality, a phenomenon that is putting the use of 
sampling plans in question, since proportions non-conforming in the ppm-range are 
hardly detectable anymore via acceptable sampling sizes. 

In particular, it is often essential to test 100% of components that are related to safety. 
However, a 100% examination does not guarantee that the lot examined will be comple-
tely free of defects after the inspection. If people are conducting the inspection, as a rule, 
there will still be parts in the lot that are non-conforming because people become fati-
gued and lose focus. The relationship between the number of parts sorted out and the lot 
size is called “control efficiency”. It depends, among other things, on the proportion non -
conforming originally in the batch (see Figure 6.1). 

The increase in control efficiency with an increasing proportion non-conforming can be 
explained in that the examiner will remain more attentive if he finds a bad part "more 
often”. With very large proportions non-conforming, the control efficiency begins to de-
grade due to the appearance of fatigue. Figure 6.1 serves to present this fact qualita-
tively. The quantitative relationship is influenced, for example, by the working conditions, 
the motivation of the examiner and the degree of difficulty of differentiating between 
good and bad parts. It is also important, of course, how well the ratings “good” and “bad” 
of a quality characteristics are defined. 

To this effect, instructions to “look for clean wiring” are certainly insufficient. Boundary 
samples are helpful in such cases. 
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Fig. 6.1: Dependence of control efficiency on proportion non-conforming 
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Even double or repeated examinations of a lot do not offer any certainty that all of the 
non-conforming parts have been discovered. Since control efficiency also decreases with 
a decreasing proportion non-conforming, it becomes more unlikely to find another non-
conforming part in the lot in subsequent examinations. From experience, even multiple 
examinations still result in a remainder of “bad” parts equal to about 0.2%.  
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Fig. 6.2: Remaining ratio of non-conforming parts in the lot after repeated examina-
tions. The initial values of the curve correspond to different original proportions non-
conforming. 
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7 Confidence levels for the proportion non-conforming 
of the population 

Based on Example 3 in Chapter 3.1, it was clear that the proportion non-conforming in 
a sample can differ from draw to draw. 

The determined proportion non-conforming p in the sample is merely an estimation for 
the generally unknown proportion p’ in the population. It is therefore not permissible to 
set p' equal to p. 

It is, however, possible to generate a confidence level for p'. The confidence level is an 
interval that contains the quantity p’ with a great probability.  

The interval range (the “size” of the confidence level) depends on the proportion non -
conforming p determined in the sample, on the size of the sample n and an arbitrary con-

fidence coefficient AP . 

The confidence level is generally given in the form of an inequality:  

uplo p'p'p'  .  

lop'  is the lower limit, upp'  is the upper limit of the confidence level of p'. The probability 

that p’ lies outside of the confidence level, meaning that it falls below the lower limit lop'  

or exceeds the upper limit upp' , is called the significance level . The following applies for 

this: AP1 . 

Pearson and Clopper have calculated the confidence level of p' for various sample sizes 
and represented this in a diagram (see Figure 7.1). This diagram is only valid under the 
requirement N0.1n  . The significance level for each limit is 5%. Therefore, the con-

fidence level in a two-sided case is  

%90%52%100PA   and %95%5%100PA   in a one-sided case. 

The confidence level is also called the confidence range. 

The lines drawn in the diagrams in Figure 7.1 are merely guides to facilitate reading.  

With a sample of size 5n  , the cases 5,4,3,2,1,0i  of non-conforming parts in the 

sample will only yield the proportions %100,%,40%,20p  . Accordingly, only the 

points drawn at these percentages are relevant. 
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Fig. 7.1: Pearson-Clopper diagrams to determine the two-sided 90% confidence le-
vel for the ratio p' in the total population (with sample size n as a parameter).  
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Fig. 7.2: Schematic for the use of the Pearson-Clopper diagram 

Using the Pearson-Clopper diagram: 

1. Determining the proportion non-conforming p in the sample )
n

i
p( 

2. Draw a vertical at point p on the p-axis

3. Determine the intersections with both “curves” at the sample size in considerati-
on

4. Read the values lop'  and upp' on the p-axis at the intersections 

In general, the curves for the actual sample size of interest will not be contained in the 
diagrams. The diagrams from Figure 7.1 are, however, certainly sufficient for a rough e-
stimate. Otherwise, refer to the calculation options or additional diagrams in the litera-
ture (e.g. [7]) on the following pages. 

With the requirement of binomial distribution, one can calculate the limits of the two -

sided confidence interval uplo p'p'p'  for the confidence level 1  using the following 

formulas (see [7] and [9]): 

α/21;f,f
lo

21
F1)in(i

i
p'


   with )1in(2f1    and  i2f2   

α/21;f,f

α/21;f,f
up

21

21

F1)i(in

F1)i(
p'








   with )1i(2f1    and  )in(2f2  . 

If i is the number of non-conforming parts found in the sample of size n, then 
n

i
p  . The 

given formulas apply to 1ni1  . The following formulas apply to the special cases of 

0i   or  ni  : 

If 0p   (i.e. 0i  ) is upp'p'0  with n
up α/21p'  , 

if 1p   (i.e. ni  ) is 1p'p'lo   with n
lo α/2p'  . 
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EXAMPLE: 

In a sample of size 50n , 13i   non-conforming parts were found. This corresponds to 

a proportion of %26
50

13
p  . For the confidence level %901   (i.e. %52/  ), 

with 76)11350(2f1   and 26132f2   as well as the associated table value of the  

F-distribution 1.78F %9526;76,  , yields the lower confidence limit 

%16.1
1.781)13(5013

13
p'lo 


    

or with 28)113(2f1   and 74)1350(2f2   as well as 1.62F %9574;28,   the upper con-

fidence limit  

%38.0
1.621)(131350

1.621)(13
p'up 




 . 

If, in the case being considered ( 50n ), one does not find a non-conforming part in the samp-

le ( 0i  ), the following is valid for the true proportion p' of non-conforming parts in the popu-

lation with a significance level of 5%: 

upp'p'0    with %5.80.051p' 50
up  . 
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8 Appendix 

 

 

Symbols and terms 

Table of uniformly distributed random numbers 

References 

Index 
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Symbols and terms 

 

 Root sign 

  Summation symbol 

 Less than or equal to 

 Greater than or equal 

 Is approximately 

c  Permitted number of non-conforming parts in the sampling plan 

 with simple sampling inspection (acceptance number) 

1c  Acceptance number for the first sample 

2c  Acceptance number for the second sample 

D  AOQ (Average Outgoing Quality) 

maxD  AOQL (Average Outgoing Quality Limit) 

i Number of non-conforming parts in a sample of size n  

L  Probability of acceptance 

1 L  Probability of rejection 

N Lot size 

n  Sample size 

1n  Size of the first sample 

2n  Size of the second sample 

'p  Number of characteristic values in a lot of size N 

p  Number of characteristic values in a sample 

'
Ap  Proportion non-conforming in the lot, in which the lot, with a probability of %A  

 is accepted 

'
Rp  Proportion non-conforming in the lot, in which the lot, with a probability of 

%R  

 is rejected 

'
50p  Indifferent quality level 

P  Probability of an event 

AP  Confidence level 

'p1'q   Proportion of good in the lot 

AP1  Significance level 

)p(L1 '
A  Supplier risk 

)p(L '
R  Buyer risk 

 Mean of a population 

 Standard deviation of the population 
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Table of uniformly distributed random numbers 

 

 Column 

Row 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

0 23052 48243 24624 15997 12116 98657 97569 71569 97290 06217 
1 87660 05796 41005 30170 06495 33495 36969 83527 22258 66380 
2 92056 11091 39175 29749 61767 86681 45480 32135 52686 36777 
3 99114 61580 46603 25428 69350 40177 47267 70584 39605 89772 
4 19829 30078 54474 89642 25107 65496 27020 34923 24120 39632 

5 00257 56189 04388 43904 00269 03869 27470 46524 07060 79213 
6 52884 91115 18989 21253 52430 06233 29212 35287 88464 74187 
7 38823 01493 80692 23907 42125 33449 77961 94984 33215 81846 
8 63225 11090 74120 01563 80747 36605 63691 06023 74849 92168 
9 04856 12897 18850 60351 52041 44991 40379 02931 29009 15792 

10 18155 21056 13422 92340 30365 28570 43923 83294 78145 41748 
11 98242 87450 35716 38107 85891 26088 13332 24260 06642 61878 
12 52673 14212 89681 95824 32194 89510 73434 65057 37310 92366 
13 28771 56556 52158 82736 48909 85164 73906 75544 12981 40657 
14 86104 91600 00744 18553 66034 10870 50746 25803 32331 49486 

15 46530 00600 57985 62041 09421 37756 40128 79945 01821 25803 
16 44378 19287 05116 06899 24108 99407 04730 11682 66873 32054 
17 57572 72262 15102 99871 18359 81043 34552 79480 39861 25857 
18 12305 11446 13644 70559 52831 62037 20086 50528 91558 36830 
19 22510 94232 40393 85473 90794 81984 20128 46541 79145 39337 

20 83111 29676 91863 57922 61584 52530 89171 97596 78692 28954 
21 89910 90525 23878 08186 02464 70222 77207 54200 67798 39533 
22 11594 28660 49170 04967 19161 51090 88064 34755 21566 20409 
23 31659 44535 66765 34548 55678 96482 24594 14451 88479 89844 
24 48423 52923 71139 73830 54291 08246 08637 20566 77117 39548 

25 38946 77012 42168 20736 53853 05244 06620 26255 79011 04118 
26 33914 74304 88057 36553 17315 69758 80703 62867 90952 64663 
27 62479 36851 56090 83944 74260 06536 03710 85383 51126 74507 
28 43857 08437 97253 76107 95003 81013 48361 06246 85868 97593 
29 73314 98517 21423 67902 83504 70464 65161 19194 04953 54684 

30 47305 84072 85154 86966 44738 23456 40383 77226 38579 47777 
31 09927 02355 30915 85985 90229 31410 65750 98300 76094 86097 
32 29384 41788 82679 85760 02636 58807 95330 19520 05006 47751 
33 70021 60060 03703 76775 09843 75017 70571 52502 55758 29676 
34 54750 37676 44117 70191 14446 53354 77381 00833 88671 46865 

35 48548 87768 27483 75960 43253 01993 54940 75169 58513 16435 
36 07509 69104 14445 30500 19959 67926 28194 34004 70850 48910 
37 57840 92818 23163 46311 34046 79759 28326 34369 65828 18422 
38 51381 28189 64074 90113 08031 73800 90213 73888 70004 84869 
39 17224 39087 89394 98652 75330 15481 45766 99252 06301 44897 

40 46921 41501 27624 95452 34771 68474 69458 02509 17047 71517 
41 88102 66680 66351 84489 98890 33189 81778 08815 74502 97816 
42 49233 73950 33481 61711 96374 33743 14554 86507 27965 57100 
43 06157 98505 10789 29164 98387 48474 62190 37600 34005 05193 
44 43059 38031 25733 72242 10579 85250 51987 45500 98119 85256 

45 01206 48280 08241 75151 20140 82057 04259 08605 05865 49120 
46 34217 60177 22855 05355 40398 97922 61407 05282 47333 82461 
47 10247 99029 04580 18576 61429 67653 67768 72896 16318 31316 
48 56087 93312 69915 78988 62339 13001 96733 09723 52424 41321 
49 20334 71022 97069 62706 52937 13808 83818 25275 12313 94352 
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Table of uniformly distributed random numbers (continued) 

 

 Column 

Row 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99 

0 81063 48840 49585 81371 69254 71574 24286 00369 39178 62839 
1 06868 61649 56507 24503 39761 92498 07999 23115 07205 25238 
2 09911 36640 60022 29224 19215 40812 13340 29988 20609 86668 
3 56366 51173 72451 77304 58466 81759 15976 21789 31661 75958 
4 33144 89861 24828 29244 66531 25377 57700 73831 25509 83083 

5 67524 74639 63887 46609 09893 88758 53505 14253 44827 70354 
6 49768 95279 27107 46150 59060 87314 87682 06260 07681 23651 
7 85748 91866 67644 14486 74300 67067 14210 01997 80698 10670 
8 35068 48989 26700 40573 96764 05028 77579 70708 23955 31291 
9 77948 97843 91396 11486 14606 93765 85726 01658 35412 68600 

10 77522 24674 62214 42349 77011 38665 91845 13203 68666 33376 
11 86964 58562 32668 70214 10042 42672 53845 25011 37367 84726 
12 52896 12128 69356 32841 77106 84577 63687 24108 33057 30275 
13 90869 27963 21534 43212 79036 65698 01354 19691 80080 27912 
14 69922 01213 12562 50437 49102 89791 21765 65197 33086 65396 

15 60660 99942 00060 87017 63407 70815 43045 74454 80056 18844 
16 65259 48911 61274 01822 60161 93475 23829 59465 47991 65667 
17 45505 99205 47287 27764 99397 51848 18446 70538 54561 20858 
18 23610 66464 46231 85481 07976 75277 56745 53838 04772 06283 
19 28162 08150 73322 45027 76538 43435 23671 66372 36829 08832 

20 67018 46682 82628 50507 86056 20875 59825 38760 56695 90245 
21 25028 01378 21068 01895 94855 93510 01408 76503 84427 51950 
22 72248 86042 01018 17327 81929 44773 47022 56794 18463 78029 
23 07869 67993 20519 21254 97380 59230 76180 11895 38977 46836 
24 95283 33355 63965 80130 22010 57971 60440 72815 25354 50157 

25 83996 45206 87192 49381 96561 45002 36514 79262 40605 04549 
26 63396 61623 33875 46356 12583 96858 02275 84846 00810 74554 
27 82737 33969 39743 86170 08214 32621 96890 81702 37739 60019 
28 62532 60921 25055 79189 40988 01989 42503 20000 00344 00246 
29 92938 00021 62631 77949 20404 53889 31776 87542 94112 11284 

30 92163 01840 24296 95823 42477 71399 24102 34082 33144 85359 
31 82052 58508 07576 27130 04037 22681 41782 68776 23184 48763 
32 56269 01164 01249 35781 49097 63223 10951 32640 18353 30281 
33 05444 83487 02665 69588 13857 45096 27022 07246 34935 87710 
34 34246 56529 63892 82535 08560 39909 01687 13356 78215 58027 

35 33788 08985 88608 38279 52472 08687 32878 11956 42187 65732 
36 50513 91800 75364 88296 25549 94138 87102 14889 71115 45573 
37 22348 52082 66569 25934 96691 04926 66624 60681 28640 25272 
38 84865 22743 80597 11959 01114 89071 73403 98546 80052 90712 
39 85411 87416 40597 21356 91908 57225 52952 12140 10643 75146 

40 37413 31794 32382 38200 79472 03939 70620 91482 06762 70991 
41 27019 20297 02471 22637 08455 37761 59291 98680 11263 23649 
42 02694 70423 52261 74799 31107 49616 20747 51509 41116 18250 
43 87314 95138 25460 32941 09847 03802 36890 41406 39428 77854 
44 22984 74790 76474 84295 92192 03710 98500 78493 87191 22803 

45 18650 72743 71909 66768 21687 23253 88932 55826 09244 33864 
46 73911 43490 25188 23548 34900 92446 09181 67548 66539 97764 
47 20690 41250 20542 61036 50562 45634 55762 28606 92830 52986 
48 39595 01975 13008 02100 55605 20239 04690 66195 70139 28889 
49 85944 45469 33030 44230 27312 65585 06685 95747 19440 31179 
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