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Evaluation of Measurement Series

1 Introduction

Statistics are an area of mathematics whose task is that of describing, evaluating and as-
sessing data. Their final objective is the preparation of decisions.

Statistics are generally named in the same breath as probability theory and are combined
under the generic term of stochastics. This term, which comes from Greek, means rough-
ly “the art of skillful presumption”. It expresses that the user of statistical methods at-
tempts to select one of the theories appropriate to the situation, on the basis of limited
knowledge of the facts of the case, which will allow for the best possible decision.

In doing so, the user often goes through a series of steps several times which can be
summarized approximately in the following:

1. Description, representation (visualization) and illustration of experimentally de-
termined or “observed” data.

2. The putting into concrete terms of a “presumption” about one of the “simple”
mathematical models upon which the data set is based under consideration of the
situation present during the data collection.

3. Inspection of the model for compatibility with the present data (observations).

4. The finding of a decision on the basis of the model postulated in 2. and not refuta-
ble in 3.

In this correlation, statistical tests are applied in order to examine whether or not a se-
lected model is basically suitable to describe a data set. Here, it is given how large the
deviation of the real data from the corresponding model data in its totality may be
through the selection of an appropriate level of significance (appropriate to the effects of
the decision made in step 4) in order to still be able to accept the model as adequate.
Such a test occurs, naturally, only on the basis of purely mathematical points of view.
Correspondingly, it can make no assessment on the extent to which it is principally at all
sensible to describe the physical reality with a fictitious mathematical ideal in a concrete
case.

The objective of this document is to represent several of the procedures considered sig-
nificant in the correlation described above and to show the difficulties associated with
them in individual cases.
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2 Representation and lllustration of Data

Due to the constantly improving computer equipment and the various well-priced statis-
tics software being offered, practically nobody today is forced to assess measurement da-
ta “by hand”. Naturally, the easy availability of efficient statistics programs is basically to
be welcomed; however, they can tempt the user to consider the evaluation of measure-
ment data as a purely statistical problem. The term “evaluation” is here all too easily lim-
ited to or even equated to the application of mathematical computation sequences. In
actuality, though, “evaluation” should be understood as a result of thought processes
which assess and finally lead to the further sequence within the framework of the deter-
mined measurement data under consideration of the physical/technical facts and circum-
stances. Therefore, the intent of explaining the “evaluation of measurement series” in
this sense would mean wanting to explain human thought and the process of gaining
knowledge.

The treatment of this rather philosophical topic can, naturally, not be the objective of this
document. Rather, a collection of possibilities of graphic representation and self-
contained statistical and general mathematical individual procedures should here be pre-
sented which support the “evaluation”, but which can never replace it. Otherwise, an ex-
pert system would be programmable which, for example, would conduct an analysis of
these data at the push of a button according to the inputting of the measurement data
gained within the framework of an experiment and would supply a clear report (answer),
without knowledge of the facts and circumstances examined in the experiment as well as
the questions upon which the experiment is based. This is obviously a self-contradiction.
In Chapter 2, it should be clarified that the illustration of data is an essential and all-too-
often neglected component of the evaluation of measurement series.

2.1 Original Value Diagram

Let’s consider the following table of 100 determined measurement values in temporal
order and imagine that we should describe this data set in only a few words. How would
one proceed? Would it be helpful to enter the values into a pocket calculator in order to
calculate the average and the standard deviation?

1-10 11-20 | 21-30 | 31-40 | 41-50 | 51-60 | 61-70 | 71-80 | 81-90 |91-100

23.85 | 23.82 | 23.83 | 24.08 | 24.08 | 24.06 | 24.04 | 24.30 | 24.34 | 24.25
23.90 | 23.88 | 23.85 | 24.12 | 24.09 | 24.08 | 24.04 | 24.33 | 24.30 | 24.31
23.89 | 23.86 | 23.92 | 24.16 | 24.14 | 24.08 | 24.12 | 24.07 | 24.38 | 24.33
23.96 | 23.94 | 23.88 | 23.92 | 24.15 | 24.13 | 24.12 | 24.15 | 2437 | 24.31
23.95 | 23.93 | 23.95 | 2392 | 24.16 | 24.17 | 24.16 | 24.14 | 24.40 | 24.42
23.99 | 23.93 | 23.94 | 23.96 | 24.20 | 24.17 | 24.17 | 24.10 | 24.16 | 24.40
23.97 | 23.96 | 23.97 | 23.96 | 23.95 | 24.21 | 24.22 | 24.20 | 24.19 | 24.44
23.79 | 23.98 | 24.05 | 24.07 | 23.95 | 24.28 | 24.22 | 24.23 | 24.20 | 24.37
23.79 | 24.01 | 24.00 | 23.98 | 24.02 | 24.24 | 24.26 | 24.26 | 24.23 | 24.25
23.80 | 24.05 | 24.07 | 24.05 | 24.02 | 24.03 | 24.24 | 24.29 | 24.26 | 24.24

Table 2.1

© Robert Bosch GmbH | Edition 01.2016 -6 -
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Evaluation of Measurement Series

Even with longer considerations of the values in Table 2.1, it is only possible with a great
deal of difficulty to find considerable qualities of this data set. On the contrary, upon
looking at the following graphic representation of the values in their temporal order
(original value diagram) characteristic qualities such as increase behavior, periodicity,
largest and smallest values can be immediately understood.

A picture is worth more than a thousand words!

24.6
245
24.4
243
24.2
24.1
24.0

239 +-

Measurement value x

23.8

23.7

23.6 i i i i i i i i i i
Time / arbitrary units

Fig. 2.1: Original value diagram of the data set from Table 2.1

2.2 Histogram

If one divides the number line (x axis) into individual areas which border one another in
which one sets their borders, it is referred to as a grouping. By sorting the values of a da-
ta set into the individual classes, a number of values is produced for each class which is
allotted to that class. This number is called the absolute frequency.

If one divides the absolute frequency n; respectively by the total number n of all values,
one obtains the relative frequency h;. An application of this relative frequency to the

classes in the form of rectangles lined up alongside each other is called a histogram. The
histogram conveys an image of the value distribution.

For the “appearance” of the histogram, the selection of the grouping can be of decided
significance. There are, however, no uniform, rigid rules for the determination of group-
ings, but rather merely suggestions, which are listed in the following. Statistics programs
naturally require a clear, pre-set mathematical sequence for the creation of a histogram.
As we will see below, the outcome of these operations does not always, however, corre-
spond to the preconception of the user. For this reason, the programs offer, as a rule, the
possibility of manually changing the number of classes and the class width. Finally, one
must orient himself to the individual particulars of the present data set during the crea-
tion of a histogram.

© Robert Bosch GmbH | Edition 01.2016 -7-


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Evaluation of Measurement Series

Sequence for the manual creation of a histogram
from n individual values x; of a data set:

1. Select a suitable grouping
Determine the number of classes k
Rule of thumb: 25<n<100 k:ﬁ
n>100 k=5-log(n)

The grouping should be selected with a fixed class width (if possible) so that “simple
numbers” are produced as class limits. The first class should not be open to the left
and the last should not be open to the right. Empty classes, i.e. those classes into
which no value from the data set falls, are to be avoided.

2. Sort the values x; into the individual classes

Determine the absolute frequencies n; for j=1,2,... k

n.
3. Calculate the relative frequencies h; = —L for j=1,2, ...,k
n

4. Plot the relative frequencies h; (y axis) over the individual classes of the grouping

(x axis)

max — X min
k—l (Xmin
the largest value of the data set), usually results in

The suggestion of calculating the class interval b in accordance with b =
designates the smallest value, x .,
class limits with several fractional digits, which is impractical for the manual creation of a
histogram and, beyond that, can lead to empty classes. Within the scope of a computer
program, such a determination is, however, definitely usable, since it guarantees, in con-
nection with an automatic, data-dependent sub-division and the marking of the coordi-
nate axes (auto-scaling) that the histogram contains all values and that the histogram it-
self can be reproduced in full on the monitor. It does, though, have its dangers. An “outli-
er”, for example, which is considerably larger than all remaining values can lead to the
class interval being very large. In an unfavorable case, this can result in this value being
allocated to the rightmost class and all other values ending up in the leftmost class. The
classes in between then remain empty.

© Robert Bosch GmbH | Edition 01.2016 -8-
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EXAMPLE 2.1:

We consider a sample of 42 pieces for which a tolerance T=0.1mm is given for their charac-

teristic “length”. The individual values listed in Table 2.1 are deviations of the respective
length of the target value C (midpoint of the tolerance zone) in 1/100mm . They were sorted in

increasing order. The resolution of the measuring instrument used is 0.002mm, thereby ful-
filling the condition Resolution < 5% -T within the scope of the measuring systems capability
study (for currently valid value see [6]).

Deviation from target value C/ 1/100mm
-3.8 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8
-1.6 -1.6 -1.4 -1.2 -1.2 -1.0 -0.8
§ -0.8 -0.8 -0.6 -0.6 -0.4 -0.2 -0.2
Ué 0.0 0.0 0.2 0.2 0.4 0.6 0.6
§ 0.8 0.8 1.0 1.2 1.2 1.4 1.6
W 1.6 1.8 2.0 2.4 2.6 2.8 3.2
Table 2.2

According to the rule of thumb, k=,/42 ~6.48. The number of classes should then be selected

to equal either six or seven. Table 2.3 describes the groupings created by a computer program
after manual input of the number of classes k=7 as well as the respective absolute and rela-

tive frequency. The program calculated the class interval as the value

p=22 287 1166

Class 1 2 3 4 5 6 7
Lower class limit -4.383 | -3.217 | -2.050 | -0.883 | 0.283 | 1.450 | 2.617
Upper class limit -3.217 | -2.050 | -0.883 | 0.283 | 1.450 | 2.617 | 3.783
Absolute frequency 1 4 8 12 9 6 2
Relative frequency 24% | 95% | 19.0% | 28.6 % | 21.4% | 14.3% | 4.8%
Cumulative Rel. frequency 24% |11.9% | 30.9% | 59.5% | 80.9% | 95.2% | 100 %
Table 2.3

Figure 2.2 shows the associated histogram. In the retention of the number of class seven and
manual determination of the class interval to 1.2 and the lower limit of the first class to -4.4,
the histogram is created in accordance with Figure 2.3.

The Figures 2.4 and 2.5 display the resulting histograms for the selection of the class number
6. The adjustment of the class width is b=1.4 in both cases, and merely the lower limit of the

first class was changed in the given manner. In the histogram in accordance with Figure 2.5,
the upper limit of the 5th class corresponds to the maximum value of Table 2.2. The sixth class
thereby remains empty.

© Robert Bosch GmbH | Edition 01.2016 -9-
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35 4 35 -

30 4 30 4

25 A N

25 / =
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15 1 4 \

Relative frequency / %
Relative frequency / %

Fig. 2.2: Number of classes k=7
Class width b=1.166
Lower limit of the 1st class: -4.383

Fig. 2.3: Number of classes k=7
Class width b=1.2
Lower limit of the 1st class: -4.4

35 - 35 1 -
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c / \ e / \
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T 4 A3 i Ay
7] / s e ~ .
e | / . 5 - s X
el . .| s
P P SO I N I N B, L=t 0 R =
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Fig. 2.4: Number of classes k=6
Class width b=1.4
Lower limit of the 1st class: -4.5

Fig. 2.5: Number of classes k=6
Class width b=1.4
Lower limit of the 1st class: -3.8

It is clearly a mistake to assume that the creation of a histogram is a process with a clear
outcome. The examples shown are rather of harmless nature. If one selects the class
width smaller than the resolution of the measuring instrument, “gaps”, i.e. empty classes,
are inevitably produced in the histogram.

Finally, another particularity should be referred to in reference to the Figures 2.2 to 2.5.

The relative frequency allotted to a class from a histogram corresponds to the probability
with which a value of the examined population will end up in this class. Expressed math-
ematically, the relative frequency to a class corresponds with an estimation of the proba-
bility with which the random variable X upon which the population is based assumes val-
ues within the class limits (of the class considered).

The sum of the relative frequencies of all classes of a histogram has the value of one
(100 %). If one interprets the total area of a histogram as the probability with which the
random variable X assumes values within the range covered by the histogram on the x ax-
is, this total area must also have the value of one.

This is, however, only correct for the class width b=1; otherwise, the total area corre-
sponds to the class interval.

This results in the histogram areas and the areas under the Gaussian bell curve in Figures
2.3 and 2.4 being respectively different.

© Robert Bosch GmbH | Edition 01.2016 -10 -
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Evaluation of Measurement Series

In practice, it can therefore occur that one obtains two histograms for two measurement
series of the same examined facts and circumstances (e.g. internal measurement and cus-
tomer measurement) which convey varying optical impressions due to differing class
widths and make a direct comparison difficult or completely impossible.

The most significant aspect in the creation of a histogram is the loss of information about
the original values and particularly their temporal order. In order to clarify this, we will
display special value sequences with Figures 2.6, 2.7 and 2.8, which must clearly have
completely different physical origins. How, then, would the associated histograms look?

5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0

Measurement value x

Time / arbitrary units

Fig. 2.6: Original value diagram for Table 2.2

The stunning thing about these Figures is the fact that the values represented therein,
except for the temporal order, correspond to the data set according to Table 2.2 and all
lead to the same histogram (Fig. 2.2) according to the grouping in accordance with Table
2.3. This example is admittedly constructed. It does, however, show in a remarkable way
how significant the representation of an original value sequence can be if the parameter
of time or the order of the values play a role in the developmental history of the data
material.
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Fig. 2.7: Original value diagram for Table 2.2
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2.3 Value Ray Representation and Dot Diagram

The difficulties named in correlation with the histogram can be avoided if one selects one
of the following representation options. In Figures 2.9 and 2.10, the values from Table 2.2
are illustrated through the absolute frequency over the value ray, whereby they are rep-
resented as arrows in Fig. 2.9 and as circles in Fig. 2.10. Both types of representation en-
able, in contrast to a histogram, the reconstruction of the individual values, whereby,
however, the temporal order is lost in all three cases. As long as the original values were
not rounded off during their recording, the resolution of the measurement instrument
can be estimated directly from the smallest lateral interval between the arrows or the
dots.

Frequency
N

BT

-1 0 1 5

Deviation from target value C / 0.01 mm

Fig. 2.9: Schematic representation of the absolute frequency of the individual values
over the value ray

With the dot diagram, the scales of the x-axis and the y-axis must correspond with one
another due to the symmetry of the circles (dots), since otherwise horizontal or vertical
gaps will occur in the representation, or the circles will be too small or will overlap. This is
a disadvantage of this type of representation versus the value ray representation accord-
ing to Fig. 2.9.

[y

Frequency
OFRNWPAUIONOWLOO

L

-@ foeeoooee o

1'-00--0:.--“4-0--0- ; -1

000000000000000--000- 0 - boooonoees .

-5 -4 -3 -2 -1 0 1 2 3 4 5
Deviation from target value C / 0.01 mm

Fig. 2.10: Dot diagram of the values from Table 2.2
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2.4 Stratification

The term “stratification” means basically “data separation”. It should always remind of
the consideration of the developmental history of the values present during the evalua-
tion of the data material. A suitable separation (grouping, stratification) of measured val-
ues supplies frequently valuable information on the facts being examined.

As an example, 25 averages from samples (of size n=5) of an x—s control chart are repre-

sented in Figures 2.11 and 2.12. With the individual values, we are dealing with outcomes of a
dry inspection of magnetic valves within the scope of hydraulic modulator (ABS) production.
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Fig. 2.11: Schematic representation of a diagram from the quality control chart
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Fig. 2.12: Schematic representation of a diagram from the quality control chart
(separation of the averages in correspondence with the early and late shifts)

If one considers the times which are recorded on the control chart during the sampling and
connects the dots recorded respectively during the early and late shifts at approximately the
same times (Fig. 2.12; the dots which were recorded at other times were clearly disregarded),
a clear difference becomes obvious. Due to the temperature motion of the measurement appa-
ratus used, the values ascertained during the late shift were always higher than those in the
early shift.
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Evaluation of Measurement Series

Stratification is an elemental tool of quality technology (compare with [8]), which also,
for example, is expressed as a method in solving problems in the multi-vari-charts rec-
ommended by Shainin (compare with [7] and [21]), among others.

What a “suitable” data separation is and under which superordinate standpoints it occurs
is not a mathematical problem, but rather a question which always must be answered in
a problem-oriented manner.

2.5 Box Plot

A box plot is a graphic representation for the illustration of statistical qualities of a data
set. Usually, several “boxes” which belong to various data sets are represented within a
representation. They enable a quick visual comparison of essential statistical characteris-
tics of these data sets ([11], [12], [21]).

An example for such a representation is shown in the following, Fig. 2.13.

100 -
90 A
80 A I

70 - | '

%0 | é

50 | I !

40 -

Characteristic value

30 A

20 A

10 A

O T T T T T
0 1 2 3 4 5

Number of production line

Fig. 2.13: Box plot of the characteristic values of injection valves which are
manufactured on different production lines.

The individual characteristics of each box are of following significance:

e The height of the box marks a range (an interval) in which 50 % of the values of
the data set lie.

e The width of the box marks the size of the accompanying sample relative to the
remaining sample sizes (relative size of the data set).

e The line drawn within the box corresponds to the median (frequently, the arith-
metic mean is additionally drawn in as a perforated line).

e The vertical lines above and below the box connect it with both extreme values
(largest value and smallest value).

In the literature and during the realization of the box plot in statistics programs, variants
are frequently found which deviate from these determinations. In particular, the boxes
can also be represented horizontally over the x-axis as the characteristic axis.
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The lines going out from the box are called “whiskers”, and this type of representation is
therefore also called the box and whisker plot.

100
90 1 ——
80 A ‘
Q 70 - o a» a» a» e an)
= -
S 60 A . %
Q
=
2 50 1 X
bt
3 40 A . —
2
O 30 4
0 _
3 20
O
@} 10 4
7
8 0 T T T T T
g 0 1 2 3 4 5
o
g Number of production line
(9]

Fig. 2.14: Box plot of the data sets upon which Fig. 2.13 is also based. A com-
parison of the figures shows that the visual impression can be varied despite
having the same data basis and depends on the conventions according to
which the representation occurs.

The individual characteristics of the representation are of following significance in this
case:

e The height of the box marks a range (an interval) in which 50 % of the values of
the population lie, as long as it is normally distributed.

e The width of the box marks the size of the accompanying sample relative to the
remaining sample sizes.

e The line drawn within the box corresponds to the arithmetic mean, and the perfo-
rated line corresponds to the median.

e The vertical lines mark the x+3s range.

e The stars on the vertical lines above and below the box mark both extreme values
(largest and smallest values of the sample).

Additional Representation Options:

Should one wish to compare sample outcomes with various specified characteristics, it is
helpful if the tolerances or the specification limits are represented in a normalized man-
ner. The upper limiting value then corresponds to the number +1 and the lower limiting
value corresponds to the number -1. With such a representation, the respective position
in the tolerance zone and the relative tolerance exploitation can be assessed quite well.

Some statistics programs offer the option of additionally marking confidence intervals of
the average or the median within the box in the representation according to Fig. 2.14
through (smaller) frames.
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3 Modelling

The methods of the descriptive statistics which are represented in Section 2 are used in
order to make the data gained more accessible, so to say, to human examination. The
wish that stands in the foreground here is that of preparing the information contained in
the individual values so that they can be described with few words or with a smaller
amount of data.

This is not necessarily a consciously controlled process. If one records a value sequence in
correspondence with the temporal order of its occurrence as dots in an original value di-
agram, then one is always unconsciously attempting to uncover characteristic qualities
(maximum, minimum, starting point, end point, approximate “middle”) or simple struc-
tures of this image. It is here dependent on the “appearance” of the image, to which de-
tail attention is directed and which structure is recognized.

A data set with nearly identical values supplies a representation of dots whose intervals
from dot to dot are comparably small (of course, the scaling plays a role here), through
which the mental eye is forced to place a compensating line through the dots.

The same applies for “non-linear” dot sequences. The spatial proximity of adjacent dots
also forces the approximation here through “smooth” curves. Recognizable regularities
(constancy, tendency, periodicity) are therefore often spoken of. An unconscious simplifi-
cation can already be found here, in which the eye can hardly disconcert through few
dots which do not fit into this structure (“outliers”). If their number increases, however,
i.e. if the intervals (temporal) between the adjacent dots increases, it will generally also
become more difficult to detect a structure in the dot sequence and one will tend to
speak of a chaotic (random) “course” or “behavior”.

The transition to the representational type of “histogram” is a step in abstraction, by
which it is attempted, under declination of a portion of the original information (the indi-
vidual values and their temporal order), to find an order on the basis of the absolute or
relative frequencies within a (strictly speaking) arbitrary grouping.

One also orientates himself here to the “appearance” of the histogram — for example, its
width, gaps (empty classes), distinctions in the bar height, symmetry — and attempts to
find a “recognizable regularity”, i.e. allocating a simple two-dimensional structure (rec-
tangle, triangle, trapezoid) to the formation of the adjacently bordering vertical bars in
their entirety. This corresponds to an inductive manner of thinking.

With a graphic evaluation, then, one attempts, at last, to remove himself from the indi-
vidual measured values and to draw conclusions on the unknown and in many cases (ex-
ample: machine and process capability study) not really existent population.
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3.1 Smoothing of Dot Sequences

The tendency for the human “eye” to smooth dot sequences which was addressed above
is offered assistance by way of a procedure described in this section. This is a first step in
the direction of a frequently striven for data description via simple mathematical func-

tions. The procedure consists simply of replacing each dot in a dot sequence with an av-

erage, which is calculated from its 2-m adjacent dots and itself. The k" value xf'd is then

replaced by

m old old old old
_Xk—m +Xk—m+1 +"'+Xk+m—1+xk+m

new 1 old
X e X .=
k 2-m+1 Z e 2-m+1

i=-m

Since the first m values of a sequence of n numbers have less than m adjacent dots to
the left, these first m values are left unchanged during the smoothing. The same applies
for the last m values of the number sequence. For the index k, the following is therefore
valid: k=m+1,m+2,...,n—m.

The manner of functioning of such a smoothing should be clarified by Fig. 3.1.

246
24.5
24.4
24.3
24.2
24.1
24.0

23.9

Characteristic value x

23.8

23.7

' ' ' ' ' ' ' ' ' '
23.6 T T T T T T t t t 1

Time / arbitrary units

Fig. 3.1: Outcome of a smoothing algorithm. Hollow circles: Original measured values;
Filled circles: “Measured values” according to the smoothing

The hollow circles correspond to the dots in the representation of Fig. 2.1. The accompa-
nying values from Table 2.1 were handled in correspondence to the above rule with

XoId +X0|d +X0|d
_ H th old new _ k-1 k k+1 . _
m=1, i.e. the k™ value x,;° was replaced by x,*" = 3 , with k=2,3,...,99.

There are several variants for both the handling of the starting and end values of the
number sequence as well as for the algorithm itself. For example, weighting factors could
be used in the formation of the average which would weaken the effect of the kth value
on dots which lie “farther away”. The procedure resembles the moving average for-
mation, in which, however, merely the previous m values can be taken into considera-
tion. The “filter effect” of the moving average formation is occasionally used in order to
create a stable indication with continuously occurring values of a measurement signal af-
flicted with errors.

From Fig. 3.1, it is clear that the desired smoothing of the dot sequence is, in fact,
achieved, but this leads, on the other hand, to a modification which can lead to false con-
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clusions. For example, the increase of the right flank of a “tooth” as opposed to the origi-
nal increase is clearly reduced (compare with Fig. 2.1)

It can thereby be determined that through the smoothing the original information con-
tained in the data is falsified. Moreover, it can never be founded as to why the “smooth-
er” curve should be the “more correct”, i.e. the curve which better describes reality.

3.2 Linear Interpolation

The linear interpolation is a useable procedure in determining intermediate values of a
tabulated function, for example. Here, the bent curve course of the function y=f(x) be-
tween two base points (explanation of term in Section 3.5) x, and x, approximates a
part of a line, which runs through the dots (x,, f(x;)) and (x,, f(x,)).

3
o 80 -
8 AR L LT Y L ke L L T s
. ]
Q 70 - |
: :
S 60 L &actvaluevt) . . '
15 ' . :
L I i © '
interpol. value g(x) et :
40 N ..0'. ' ]
o’ : :
30 1.V e m : '
] 1 :
' '
] 1 :
10 A | | .
Xy X X,
0 ! T ; T T , 1
0 10 20 30 40 50 60 70
Fig. 3.2: Linear interpolation
Y—Y; _ Y=Y,

From the relation —=—= the equation for the linear interpolation is produced

X=X X,—X;

Yam¥y (x=x,).

2 1

through resolution according to y: y=g(x)=y, +

If one enters the interested value x with x, < x <x, into this linear equation, one will

obtain the intermediate value sought after.
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EXAMPLE 3.1:

With the assistance of a table of the standard normal distribution, a quantile u can be deter-
mined for the probability P=®(u)=99 % . The values u are given only in steps of 0.1 in the ta-

ble:

u=2.1 ®(u)=0.9821
u=2.2 ®(u)=0.9861
u=2.3 ®(u)=0.9893
u=2.4 ®(u)=0.9918
u=2.5 ®(u)=0.9938

The sought after value u clearly lies between 2.3 and 2.4.

If one enters the pairs x;=0.9893, y,=2.3 and x,=0.9918, y,=2.4 as well as x=0.99 into
the above equation, one obtains the desired value:

u=g(0.99)=2.3+—224723 _1099_0.9893)=2.328.
0.9918—0.9893

As is clear from Fig. 3.2, it is a prerequisite in the application of linear interpolation that
the considered function behaves somewhat “properly” in the range between the base
points x, and x,, i.e. that the interpolation error y(x)—g(x) is adequately small.

Such an estimation is generally problem-free if one is dealing with a known function, as in
the example, and the interval of the base points x, —x; is small enough. It is clear from

the selected formulations that the giving of concrete prerequisites for the applicability of
the linear interpolation is not possible for general cases. It must be decided in individual
cases as to what “proper behavior” or “adequately small interpolation error” respectively
indicates.

In textbooks on design of experiments, procedures are described in which several factors
(parameters) are varied on two respective levels on the basis of pre-given experiment in-
structions (orthogonal arrays). From the measurement results obtained, a so-called re-
sponse function (described by a multi-linear form) can be calculated in a purely formal
manner from which one assumes that it properly describes the examined physical facts in
first proximity. Without additional experiments with intermediate positions of the exper-
iment parameters, however, it cannot be examined as to whether this assumption is justi-
fied or not (compare with [7]).

If one concentrates in this case on one of the examined parameters, the problem thereby
present corresponds to the situation according to Fig. 3.2, in which both values y, and

y, of the unknown function y=f(x) at the base points x, and x, are estimated on the
basis of the experiment results. The calculation of theoretical intermediate values of the

response function through linear interpolation holds the danger of false interpretations if
the “linear correlation” model describes the reality only inadequately or completely false-

ly.

The calculation of intermediate values is particularly entirely nonsensical if one is dealing
with values of a discrete parameter (for example, supplier A, supplier B, machine no. 1,
machine no. 2) with the base points x; and x, .
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3.3 Linear Regression
In practice, often the problem occurs of adjusting a line to the points accompanying the
n pairs (x;; vy;) in an x-y diagram. For the following considerations, it is insignificant

whether the basic physical facts is known to be described by a linear function or whether
simply the “form” of the “dot cluster” produced allows for the sensible appearance of the
approximation through a “best fitting” straight line (regression line).

The starting point for the solution of this problem is the demand that the sum of the
square deviations at the positions x; is minimal:

n n

Z (Vi_gi)2 :Z (Vi—(a+b-xi))2 = Min.

i=1 i=1

The procedure is therefore also called the method of least squares. The slope b and the
intercept a of the fitted least squares line y=g(x)=a+b-x should be calculated.

Fig. 3.3

The following formulas for a and b are produced if one partially derives the above sum
of squares respectively according to a and b and determines the zero positions of the
derivatives:

1 N - -
ﬁ-;(xi—xr(yi—v) )

b:

=]
N
Q
1
<I
|
o
x|

- . . -_1< .
x and s’ designate therein the mean x=—-in and the variance of the x;.
n A
i=1
n

- >y, is the average of the y,. The quantity b is also called the regression coeffi-
i=1

y=

=

cient. The expression s, is called the covariance and can be calculated with the formula
1 n
Sy = 1 ;xi y;—n-x-y| (compare with correlation).

If one solves the expression for the intercept a=y—b-Xx according to y, it becomes clear
that the best fitting line runs through the center (x; y) of the dot cluster: y=a+b-X.
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As already mentioned, a and b are determined in such a manner that the sum of the ver-
tical square deviations of the measured values y, from the values g, =g(x;) given by way

of the compensating line becomes minimal. There are, however, situations in which it is
unclear as to whether the first or second respective value of a pair should be allocated to
the x-axis. Then, both a recording of the points (x;; y;) and of the points (y;; x,) is pos-
sible. For both of these cases, two different least squares lines are generally produced
which intersect below a specific angle at the point (X; y). This angle becomes smaller the
less the points “scatter around the fitted line”.

The “quality” of the assumed or known correlation between the variables Y and X can
be assessed with the assistance of the correlation coefficient r.

n—fl-Zm—i)-(vi—V)

r= =

Sy 'Sy Sy 'Sy

x and y designate the means, s, and s, designate the standard deviations of x; or of

Yi- S,, isthe covariance of X and Y.

r can assume values between -1 and +1. A value in the proximity of +1 (-1), e.g. 0.9 (-0.9)
corresponds to a dot cluster which can be approximated very well with a best fitting line
with positive (negative) slope; one then refers to a strong positive (negative) correlation.

A strong correlation does not inevitably signify that Y is directly dependent upon X; it
can be produced, through the dependency of both quantities X and Y, from a third
quantity Z (illusory correlation).

If an exponential correlation of the form z=v-u" is presumed between a quantity Z and
a quantity U, the constants v and w can also be calculated with the assistance of the
least-squares method. If this equation is done logarithmically, the following linear equa-
tion is produced: log(z)=log(v)+w-log(u).

After the renaming of the individual terms, this equation assumes the form y=a+b -x

used in the above: log(z)=y, log(v)=a, log(u)=x, w=b.

If one determines, then, the constants a and b with the assistance of the pairs
(x,=log(u,); y;,=log(z,)), v can easily be calculated: v=10°. w is identicalto b.

EXAMPLE 3.2:

At an air-mass flow sensor, the signal voltage U was measured as dependent on the air mass
M flowing through a cross-section. The 8 measured values present should be approximated

through a characteristic function in the form U=v-m" .

i 1 2 3 4 5 6 7 8

mi / kg/h 15 30 60 120 280 370 480 640

ui/v 2.2782 | 2.5531 2.8835 | 3.2739 | 3.9796 | 4.2574 | 4.5030 | 4.8251

Finding the logarithms of the 8 pairs (U;, m;) and the recording of the pairs (log(U; ), log(m;) )
in a coordinate system with linear scaling supplies the representation shown in Fig. 3.4. The
regression line is drawn in.
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Fig. 3.4: Linear regression with the assistance of transformed
measured values
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The following values are produced for the intercept and the regression coefficient:

a=0.109 and b=0.202.
The value v is found by way of reconversion: v=10° =10 0109 _ 1 285.

With w=b=0.202, U=1.285-m °?% s finally produced.

In Fig. 3.5, the original measured values as well as the graph of the regression function U are
drawn in (solid line ).

6.0 1
5.0
4.0

3.0

Voltage U/ V

2.0

1.0 A

0.0 L e e e e L o e e e e B L B e e e e e e e B B e e e

0 100 200 300 400 500 600 700
Air mass m / kg/h

Fig. 3.5: Representation of the original values and two approx-
imation curves

The perforated curve also drawn in Fig. 3.5 is the graph of the function U=1.91+0.29 ‘/%
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Clearly, the measurement points were approximated quite well by both curves. It is, of course,
not possible to decide which of the two function formulations is the “better” or “right” one
through the assessment of the “quality” of the approximation (for example, through compari-
son of the accompanying sums of squares) if nothing on the physical effects in the examined
sensor and their mathematical description is known.

Naturally, another problem arises in that different dot sequences and thereby different pa-
rameter values of the approximation functions can be produced again and again during re-
peated measurements on the same sensor or during comparative measurements on different
sensors of the same type.

3.4 Quadratic Regression

If it is known during an experimental examination that no linear relations can be present,
it would be nonsensical to wish to describe the corresponding facts by way of a linear
equation. If one knows, however, that the assumption of a quadratic function is sensible,
or if this is suggested through the form of the dot sequence in an x-y diagram, then this
leads to the problem of determining the coefficients a, b, and b, of the regression func-

tion y=a+b1-x+b2-x2. This is also possible with the assistance of the least-squares

method.

As in the linear case, the starting point for the solution of the current problem is the de-
mand that the sum of the squared deviations at the positions x, become minimal:

n

Z(vi—(a+b1-xi+ bz.xf))zzwnn_

i=1

After calculation of the auxiliary quantity

= () (xt) 2 (S (£)-(200)
(k) -n (e ) - (X0 ) (2x)

A=(Z) (Tt (TP 2 s=lnTne-(ZxF) 2

c=fn- Y -(Tx ) 2 o= (LX) (S (Tt 2

= () (Z0)-(Zaf) 2 o= (S (Ex)n3)

the sought after coefficients of the regression parabola are produced:
a=A 'ZV1+D'in'Vi+ E -Z:xiz‘yi
b1=D-Zyi+ B -in-yi+G -Z:xiz-yi
b,=E ‘Zyi+ G -in-yiJrC -Z:xiz-yi .

The summations extend in all expressions over i=1,...,n.

Rl
Il

R
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Fig. 3.6: Quadratic regression

Fig. 3.6 shows an application example of this procedure. In the representation, the power of a
starter is applied over the current. This power is the product of torque and speed (number of
revolutions). The speed reduces in an approximate linear manner (negative slope) depending
on current, and the torque conversely increases in an approximate linear manner with the cur-
rent (positive slope). The product of torque and speed is therefore inevitably, in an approxi-
mate manner, a parabola which curves downwards.

The selection of the model in the above example can be based, then, on the knowledge of the
physical correlation.

3.5 Interpolation by Polynomials

If one knows the functional values y,=f(x,), y, =f(x;), ..., y,=f(x,) of a function y=f(x)
for the arguments x=x,,x=x,, ..., X=X, then one also calls the latter base positions,
and the functional values are then called base values.

In the procedures of the linear or square regression represented in Sections 3.3 and 3.4,
one attempts to determine an approximation function whose values most closely approx-
imate the base values at the base positions. It is taken for granted that due to the “sim-
plicity” of the selected class of functions, only at a few points — if at all — can an exact
agreement of the approximation functional values and base values be achieved.

If such an agreement is desired at all base positions, one must use correspondingly more
complex functions for the modelling. One of the functional classes frequently selected for
this purpose is that of polynomials, expressions of the form

2 n .
P.(x)=ag+a;-x+a,-x"+...4+a,-X n integral, n>0

Their selection appears favorable at first glance, since various mathematical operations
such as differentiation and integration can be applied problem-free in this case. Disad-
vantageous in a formulation of this type is, however, the comparably great calculation
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expenditure, particularly with a large quantity n (degree of the polynomial) which is nec-
essary for the determination of the coefficients. Moreover, considerable deviations
P,(x)—f(x) can be produced in the ranges between the base positions, which can be

shown through the application of corresponding approximation procedures to a known
function y=1(x).

It is to be observed that the functions selected in 3.3 and 3.4 also correspond to such a
formulation.

In this relation, considerably satisfactory outcomes can be achieved if one uses the so-
called cubic spline functions for interpolation. They are combined individually from third
degree polynomials (n=3) in such a manner that they agree exactly with the measure-

ment values at the base positions and, moreover, supply a “smooth” curve

As an example, Fig. 3.7 shows a correspondingly “smooth” curve course through the
points from Fig. 3.6.

In no way do we wish to describe the mathematical procedure for curve approximation in
detail in this third section. The corresponding calculations are generally only manageable
in an acceptable amount of time by way of a computer program, anyway. Moreover, it
should become clear that one can, principally, approximate or even exactly describe any
dot sequences through the application of numeric interpolation procedures. The data
analysis cannot, however, supply information on which of the selected models is the best
or the “right” one.

T e
1.0 fmmmmmmmm e

0.9 fmmmmmmmmmmmm e

0.8 f-----mmmmmmmmmemeas

0.7 Jmmmmmmmm e e e e el

0.6 mmmmmmmmmm e e e N

R R G

Power / kW

0.4 mmmmmm e e e

0.3 mmmmmmm e e

0.2 mmmmm e e e oo

0.1 mmmm e oo

0.0 T T T T T T T T 1

Current / A

Fig. 3.7: Interpolation through a spline function (compare with Fig. 3.6)
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3.6 Statistical Modelling

In Sections 3.3 and 3.4, procedures were explained with which measurement data were
allocated to a mathematical model in the form of a “simple” function. On the basis of the
Figures 3.4, 3.5 and 3.6, it becomes clear that one accepts slight deviations of the meas-
urement points from the approximation curve. This occurs from the experience that
(aside from measurement errors), individual measurement values can practically never be
exactly reproduced, even under apparently unchanged conditions under which the meas-
urement data were gained. A random component, then, comes into play here which is
the subject of a statistical modelling.

Let's consider again the Figures 2.6, 2.7 and 2.8 in Section 2.2. In all three cases it is pos-
sible to describe the measurement points by way of a function f(t) which is dependent on

the time t. Through the dot sequence from Fig. 2.6, one can put down a compensating
line with positive slope (Fig. 3.8a), in Fig. 2.8 one can select a periodic, individually linear
function for the approximation (Fig. 3.8c) and in the case of Fig. 2.7, a line parallel to the
time axis is “fitting” (Fig. 3.8b).

a) 5.0
4.0

3.0
2.0
1.0
0.0

Measurement value x
e
o O O

&
o

&
o

b) 5.0

4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0

Measurement value x

T
0 5 10 15 20 25 30 35 40 45

5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0

c)

Measurement value x

T
0 5 10 15 20 25 30 35 40 45
Time / arbitrary units

Fig. 3.8: Dot sequences from the Figures 2.6, 2.7 and 2.8 with com-
pensating lines
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Evaluation of Measurement Series

In the cases a) and c), the deviation of the individual points from the compensating lines
is comparatively small, while in case b) considerable deviations are produced. In all three
cases, however, these deviations clearly show no systematic behavior, but rather appear
to be of random nature.

It is, then, conceivable to describe the measurement values x through a function which
contains a temporally dependent f(t) as well as a random component X:

x=f(t)+ X

X is a so-called random variable (compare with Section 4.). In the situation according to
Fig. 3.8b), f(t)=0; the measurement values x are then values of the random variable X.

The histogram from Fig. 2.2 gives an impression of the distribution of this random varia-
ble.

© Robert Bosch GmbH | Edition 01.2016 -28-


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Evaluation of Measurement Series

4 Mathematical Distributions

4.1 Basic Statistical Terms

An introduction to the basic procedures of statistics generally begins with the definition
of the random experiment: An experiment with a non-predictable outcome is called a
random experiment. All possible outcomes of a random experiment are elements of an
“event space”. The random variable is a depiction (or function) which allocates a real
number to each element of this set.

These terms seem somewhat displeasing at first. They will, however, become quickly un-
derstandable on the basis of an example.

The toss of a (standard) die is a random experiment. The outcomes of such tosses are given
through the symbols which are visible on the side of the die facing upwards as soon as the die
has settled.

The set of these six symbols (toss outcomes, events) is the “event space”. The random variable
X (“dot count”) allocates a real number to each element of this set. X can, then, assume the
values 1, 2, ..., 6.

If we are dealing with a die game where the highest possible “dot count” is to be reached, and
player A has already tossed a “4”, then the toss outcomes of “5” and “6” are favorable events
for player B (because he will win). From such a game situation, the classic definition of proba-
bility (according to Bernoulli and Laplace) can be derived:

_ Number of all favorable cases g

Number of all possible cases ~ m

The “favorable” or “possible” cases naturally always refer to the “experiment” being consid-
ered at the moment. In the given example, the probability for player B to win is:

p-9_2

m 6
If one applies these statistical terms to a production process, the production or pro-
cessing of a raw material or unworked piece corresponds to a random experiment. All
possible outcomes of the process (manufactured parts) are elements of the “event
space”. The random variable allocates a real number to each element of the “event
space”, for example, a dimension for the characteristic of diameter with the measure-
ment unit being mm.

Contrary to the example of the die game, the “event space” can neither be described in
advance (a-priori) on the basis of knowledge of the machine functions and process or
general conditions before a machine capability study nor (a-posteriori) after a machine
capability study on the basis of a finite number of measured characteristic values.
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Evaluation of Measurement Series

The elements of an “event space” are, of course, seen physically, not really random (any
production planning would then be nonsensical) and the random variable of diameter can
merely assume a rational value between zero and a finite, positive number given by the
machine size or the maximum size of the unworked piece. Two different values (realiza-
tions) of the random variable must hereby distinguish themselves by at least the resolu-
tion of the measurement instrument or measurement procedure.

Strictly speaking, then, the random variable is not the diameter of the manufactured
components, but rather the measurement value indicated by the measurement instru-
ment at the moment of the reading.

Because of the non-definable “event space” and the non-equiprobable events due to the
machine functions, the definition of probability according to Bernoulli and de Laplace
(P=number of favorable cases/number of possible cases) can clearly not be applied. On
the basis of the process experience with a “large” number of manufactured parts, an a-
posteriori probability can be determined, for example in the form of the share of charac-
teristic values which are allotted to the jth class (a half-open interval, then) of grouping K
(given by way of the class limits). The mathematical probability is then equated in this
case to a relative frequency (empirical probability). It is consequently a number between
zero and one.

Corresponding to Table 2.3 and Fig. 2.2, one can make the following statements, for ex-
ample, for the process considered there (in consideration of the explanation in Section
4.2):

e 92.8% of the sample values (deviations of target value C) lie between

— 3.217-imm and + 2.617-imm.
100 100

e The probability that the random quantity X (deviation from target value C) will
assume a value within the interval [-0.03217mm; +0.02617mm] is 92.8 %.

Although both of these statements appear quite similar, there is a considerable differ-
ence between them. While the first statement refers to the concrete, present measure-
ment values, a transition to a fictitious random quantity takes place in the second state-
ment whose realizations are the observed measurement values x; .

On the basis of Table 2.3 and Fig. 4.1, it becomes comprehensible how one reaches the
first statement. In the bottom-most line of Table 2.3, the accompanying cumulative fre-
guency is given for each class. These numbers are produced when the relative frequen-
cies from the first class to (and including) this class are summed up.

The statement of 59.5 % cumulative relative frequency for the 4th class signifies that
59.5% of the values of the data set lie below the upper class limit of the 4th class (2.4 % +
9.5% + 19.0 % + 28.6 % = 59.5 %). The same information can be taken from Figure 4.1.

One reaches the first of the above statements by subtracting the cumulative relative fre-
quency of the first class from the cumulative relative frequency of the sixth class (95.2 % -
2.4 % =92.8%).

© Robert Bosch GmbH | Edition 01.2016 -30-


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Evaluation of Measurement Series

90%

80% """ TTTTTTTTTTTTTTTTooTTmoommmms

70%

60%

50%

40%

Relative Frequency

30%

20%

10%
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Deviation from target value C/ 0.01 mm

Fig. 4.1: Representation of the cumulative relative frequency (solid line: normal distri-
bution)

If one interprets the measurement values from Table 2.2 as realizations of a random val-
ue X, then the relative frequency of a class gives the probability with which a value of X
will be allotted to this class. The relative frequency can be understood, then, as a proba-
bility function, and a histogram can be understood as a graphic representation of this
function.

A function F(x), which gives the probability P with which a random variable X will assume

values for each real number which are smaller than x is called the distribution function
of the random variable X.

The distribution function is therefore defined by the equation F(x)=P(X <x).

Correspondingly, the cumulative relative frequency is to be equated to a distribution
function. Fig. 4.1 shows a graphic representation of this distribution function.

The following, for example, can be taken from it (and from Table 2.3):
F(2.617)=P(X<2.617)=95.2% and F(-3.217)=P(X<-3.217)=2.4%.
From this follows directly the above second statement:

P(-3.217<X<2.617)=F(2.617)—F(-3.217)=95.2%—-2.4 % =92.8 %

X is the deviation (in %mm) from the target value C (midpoint of the tolerance zone)

in this example.

If all limitations to the measurement quantity X are neglected which are inevitable pro-
duced by the production conditions and the measurement procedure, and if X is consid-
ered exclusively as a real number (random variable), which can assume any values be-
tween — o0 and + o, then one finally reaches a purely mathematically defined probability
term.
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Evaluation of Measurement Series

The probability is produced by the integration of a probability density function over an in-
terval. The term “density” is a reminder of the analogy between the probability calcula-
tion and the mechanics of rigid bodies (see e.g. [13]).

The solid curves in Fig. 2.2 and Fig. 4.1 represent the density function (Fig. 2.2) and the
distribution function (Fig. 4.1) of the normal distribution (see Section 4.1).

The transition from “real” measurement values to a fictitious random quantity and its dis-
tribution opens the gate, so to say, to inductive statistics, whose terms and procedures
are the subject of the following sections.

It is clear that one is placing himself in an isolated world of mathematical models. These
can definitely be helpful to the practician in many cases in the evaluation and assessment
of measurement series. On the other hand, however, it should not be forgotten that the
information gained from these models are always associated with the models, and to
transfer these to practical problems without thinking can lead to completely false conclu-
sions.

4.2 Normal Distribution

If a normal distribution is being spoken of, one usually associates this term with the
Gaussian curve. The Gaussian bell-shaped curve is a representation of the probability
density function f(x) of the normal distribution:

1 (x=wY’
2 c

1
flx) = ——— .
(x) \/_ e

The normal distribution gives the probability for each value x that the random variable X
will assume a value between —o and x. One obtains the distribution function F(x) of the

normal distribution by integrating the density function given above:

X 1 (v—p 2
1 *5‘(
F(x)=—-je °/ dv.
G4J2n 7
F(x) corresponds to the area below the Gaussian curve up to the value x.

The special significance of the normal distribution in statistics is founded via the central
limit theorem. Formulated somewhat freely, it states that through the random interac-
tion (addition) of many independent random variables a random variable is produced
which is approximately normally distributed.

If one formally considers the factors associated with a production process — man, ma-
chine, material, method, milieu (“the 5 Ms”) — as independent random variables, then
the central limit theorem explains the fact that one will frequently find a distribution of
the characteristic values of the manufactured parts during a process study which can at
least be approximately described by the Gaussian normal distribution (apart from pro-
cesses with systematic changes of the process average such as tendencies and batch dis-
continuities).

The normal distribution is clearly fixed by both parameters p (average) and o (standard
deviation). u determines the position of the distribution on the x-axis, and o determines
its width (compare with Fig. 4.2).
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Evaluation of Measurement Series

Both of these theoretical parameters are, naturally, not known in a concrete situation in
which a data set is to be described by a normal distribution, but must rather be estimated
on the basis of the data on hand (samples).

The best possible estimates i1 and 6 for u and o are given by the arithmetic mean

n

X = 1 -in and the standard deviation s = . (xi —i)z (n =sample size).

n n-1

i=1 i=1

Fig. 4.2: Density functions of the normal distribution with p=23.8 and standard
deviations 6=0.6, 0=1.2 and 6=2.3

A normally distributed random quantity X with the average [i and standard deviation &
is converted to an equally normally distributed random quantity U through the transfor-

—i

G
normal distribution N(0,1) is called standard normal distribution..

X
mation U= The average of U is zero, and its standard deviation is one. The special

The distribution function ® (u) gives the probability with which the random quantity U
will assume a value between —o and u. ®(u) corresponds to the area under the Gaussi-

an curve all the way to value u. The total area under the bell-shaped curve has the value
of one. The values for ® (u) can be taken from the table.

With the assistance of the tabulated standard normal distribution, proportions noncon-
forming of any normal distribution can, for example, be calculated in reference to pre-
given specification limits.
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EXAMPLE 4.1:
The limits LSL=0.63 mm and USL=0.71mm are given for the characteristic of a valve seat.

From the measurement values of a sample of 125 valves, the average n=x=0.674mm and
the standard deviation 6=s =0.0166 mm were produced.
On the basis of these values, the proportion of the population which go below the lower limit-

ing value or exceed the upper limiting value are to be calculated under the prerequisite of a
normal distribution.

[7p]
o
(@)
o
w
©
<
3
o
S
|
| — T l T T T T T l T L
-4 -3 : -2 -1 0 1 2: 3 u 4
' '
T T T T T T T T T T T T T T
0.62 LSL 0.64 0.66 0.68 0.70 USL 0.72 0.74
x/ mm

Fig. 4.3: Scale transformation for the calculation of proportions nonconforming
with the assistance of the standard normal distribution

LSL—X 0.63-0.674
s 00166

-2.65.

The following is produced in this example: u=

One finds the following table value: @(—2.65)=0.004.

The proportion of all X which are smaller than LSL = 0.63 mm corresponds to the proportion
of all U which go below the value u=—2.65. This is 0.4 % of the population.
USL-x 0.71-0.674

The following is produced analogous to this: u= =2.17.
f gisp g s 0.0166

Table value: @(2.17)=0.015

The proportion of all X which are greater than USL=0.71 mm corresponds to the proportion
of all U which exceed the value u=2.17 . This is 1.5 % of the population.
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Evaluation of Measurement Series

4.3 Confidence Interval of Proportions Nonconforming

The estimation of one-sided or two-sided proportions nonconforming with the assistance
of the standard normal distribution contains several “error sources”. The quantities X
and s used in the calculation of proportions nonconforming are estimations of the un-
known characteristics p and o of the normal distribution. From sample to sample, dif-

ferent values for x and s can be produced, despite an unchanged population.

If one now calculates a proportion nonconforming as described in the example in 4.2 in
reference to the upper specification limit USL on the basis of the dimensionless auxiliary

U
quantity u= , then a random variation range for u and thereby one for the pro-

portion nonconforming p=1— ®(u) is produced due to the variations of x and s.

One could tend to insert the limits of the confidence interval for p and o handled in the
Sections 6.4 and 6.5 for u in the formula, to calculate the smallest possible and the
greatest possible u, and to determine a confidence interval for p. This procedure would,
however, not be correct, statistically speaking, since both estimations X and s are calcu-
lated from the same measurement values and are therefore not random quantities which
are independent of one another.

The confidence interval for p is instead determined with the assistance of the non-central
t-distribution [18]. It can be taken from the nomogram according to Fig. 4.4 dependent
on the sample size n and the interval of the average x of one of the limiting values
a=LSL or a=USL given as a multiple of the standard deviation s.

100.00%

10.00%

o

—
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c

()]

.-9 TR

e

c

o Voo

(@]

0.10%
NG
2 N RS ﬁ
A T T RO N
:::::::::::::::::::::\::::::\50
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Fig. 4.4: Representation for the determination of (two-sided) 95 % confidence limits for
the proportion nonconforming p in reference to a limit a. Sample size n as parameter.
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In the example from Section 4.2, the interval of the average from the upper limit value is

=125.

2.17. The sample size is n

0.71-0.674
0.0166

a—x
s

u=

According to Fig. 4.4, the interval [0.6%; 3.2% ] is produced in an approximated manner as the

confidence interval for p.

In correlation with the Statistical Process Control (SPC; compare with [5]), the process

capability is assessed, as a rule, on the basis of the capability index C, .

USL—Xx
d .
S

an

3.

x —LSL
S

C, is the smallest of the two values

Under the prerequisite of a normally distributed population, the C value is usually di-

. A confidence in-

3-C,

in a similar manner as p. This can be easily deter-

rectly associated with an accompanying proportion nonconforming p. Whether or not
this association has a production-technical reference is an open question. The interval u

considered above can also be given in this case in the form u

mined on the basis of Figure 4.5 or Table 4.1.

terval can also be determined for C,,

SOO0S - 90-10-0¢0¢

9% Ul JO 9IN|OSCE ‘|EAIDIUI BOUSPLUOD

Standard deviation s or coefficient of variation v

Representation for the determination of (two-sided) 95 % confidence intervals

for C, . Sample size n as parameter.

Fig. 4.5
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C =10 C,=1.33 C,=1.67 C,=2.0
n C L;:Ir/er C :Eper C IF;)l:Ner C :Eper C Ipokwer C :Eper C I’;)kwer C :Eper
50 078 122 | 104 162 | 131 203 | 157 243
60 080 120 | 1.07 159 | 134 200 | 1.60  2.40
70 082 118 | 109 157 | 136 198 | 1.63 237
80 083 117 | 110 156 | 138 196 | 1.66  2.34
v 90 084 116 | 112 155 | 140 194 | 1.68 232
g) 100 | 0.85 115 | 113 153 | 141 193 | 169 231
§ 110 | 085 115 | 1.14 152 | 143 191 | 171  2.29
3
§ 120 | 086 114 | 1.14 152 | 144 190 | 172 2.8
130 | 087 113 | 115 151 | 145 189 | 173  2.27
140 | 087 113 | 1.16 150 | 145 189 | 174  2.26
150 | 0.88 113 | 1.16 150 | 146 188 | 175  2.25
200 | 089 111 | 119 147 | 149 185 | 178  2.22
500 | 093  1.07 | 124 142 | 156 178 | 186  2.14

Table 4.1: Confidence limits for C,

The representations in Figures 4.4 and 4.5 and Table 4.1 were calculated with the assis-
tance of the approximation formula given in [19].

Corresponding to [19] the limits (two-sided, P,=95%) of the confidence interval

[C'F;’,f’er;cg‘k’per] for C_, can be calculated as follows (see also [20]):

. 1 1
cower—¢c .11-1,96- |———+—
pk pk [ g'n'CSk 2.n
CurPe =C [ 1+1,96- ;ﬂz+i

9:n-C;, 2:n

épk is therein the calculated estimation of the C, value by way of the characteristic val-

ues x and s of the sample, and n is the total sample size. Normal distribution of the
population is a prerequisite.
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4.4 Lognormal Distribution

A skewed distribution often occurs when a characteristic cannot go below (e.g. rough-
ness, eccentricity, roundness) or exceed (e.g. flow rate, hardness) a limiting value.

For example, the characteristic of surface roughness can only assume values greater than
zero. An asymmetric, zero-limited curve of the density function is produced which runs
flat on the right side. If one applies a logarithm to such a distribution, he finds that the
logarithmic values are approximately normally distributed. The application of a logarithm
converts the number range between 0 and 1 into the range — o« to 0; the left portion of

the distribution is, then, heavily stretched and the right portion is heavily compressed.
Definition:

A continuous random variable X is called lognormally distributed if In(X) is normally dis-
tributed.

g
g
g
Pl
-
-

-
-
- -
- -
- -
- -
- -
.-
-
-

Pig
Pid
-
Pid
-

N .

z=1In(x)

Fig. 4.6: lllustration of a lognormally distributed random variable

Fig. 4.6 should clarify that the function z=In(x) converts lognormally distributed charac-
teristic values x; to normally distributed values z;.

. - 13 1% . , L
The expression In(xg):z:;-Zzi:;-Zln(xi):ln n l_Ixi defines the quantity x,, the
i=1 i=1 i=1
geometric mean. With the normal distribution, respectively 50 % of all values lie below
and above the average. This fact remains unchanged with the reconversion x=e’. The
quantity x, therefore corresponds to the median of the lognormal distribution, and the

z

following applies: X,=X=e".
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In Section 4.2, it is described how in cases of the normal distribution the proportion non-
conforming with respect to an upper specification limit USL can be determined in a rela-
tively simple manner. Here, only the average X and the standard deviation s are neces-
sary in addition to USL.

With the lognormal distribution, the shape parameter ¢ (epsilon) plays a similar role to
that of s with the normal distribution. If one assumes s,=In(g) and g=e"* in a purely

formal manner, the following relationship suggests a presumption as to how the variation
limits of the distribution can be calculated:

z+u-s,=In(x,)+u-In(e)=In(x -€").

X
Between —% and X, € lie 68.3 % of all values of a lognormal distribution
€

X
Between —i and ?g-sz lie 95.4 % of all values of a lognormal distribution
€

X
Between —i and Yg-sa lie 99.7 % of all values of a lognormal distribution
€

1. The determination of specification limits LSL and USL in such a manner that re-
spectively a% of all values lie outside of the interval [LSL, USL].

Calculation of the geometric mean x, with the assistance of the average z of the

. _ 1\ — 7
logarithms of the values x;: z=—-ZIn(xi), ngez_
n i=1
Calculation of the shape parameter & with the assistance of the standard devia-
tion of the logarithms of the x.:

n n

1 —\2 1 2 —2 s
s, = |—- In(x;,)-z)" = |—- In(x;))"—n-z g=e’.
== Z( ()-2)" = |— Z( (x,)
Extraction of the quantity u with ®(u)=1-a and the quantity —u with
O (—u)=a from the table of the standard normal distribution.
ig

LSL =ig-g’”=— and USing-su

u

m

2. Determination of a proportion nonconforming with respect to a pre-given limiting
value

Calculation of the geometric mean X, and the shape parameter & with assistance

of the logarithms of the characteristic values x, as in item 1.
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{USLJ
In| —
~ In(e)

(LSLJ
_ In| =—
-u Xg Xg

Lower specification limit given: LSL =X,-&¢ "=— = u=-—
g" In(e)

Upper specification limit given: USL =X, - g" <

Extraction of the proportion nonconforming o with ao=1—-® (u) from the table of
the standard normal distribution.

Example for 2.:

In connection with a flanging process, torque measurements are conducted. With ten of the

§ parts inspected, the measurement values x; were produced and are given in the following ta-
S ble. The proportion of the parts of the population whose characteristic values go below the
- lower specification limit LSL=400Ncm is to be determined.
3
<
Q
B Part No. x;/N-cm z;=In(x;)
1 540 6.29
2 745 6.61
3 580 6.36
4 605 6.40
5 900 6.80
6 655 6.48
7 705 6.56
8 480 6.17
9 810 6.70
10 690 6.54

The following is produced: z=6.49 and s,=0.19
and thereby: )_(g —e? =e%¥ =659, aswellas ¢ = e% =e%® = 1.21.
| Bt (400
Xg 659

u=- =— =2.62 a=1-®(2.62)=1-0.9956 =0.0044
In(g) In(1.21)

The lower specification limit is gone below by 0.44% of the parts of the population.

© Robert Bosch GmbH | Edition 01.2016 -40 -



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Evaluation of Measurement Series

4.5 Lognormal Probability Plot

The lognormal probability plot contains the same subdivision of the y-axis as the conven-
tional probability plot (see [1]); however, it also contains a logarithmic subdivision of the
X-axis.

In using this plot type, a data set can be inspected in a simple manner with regards to a
lognormal distribution of the values. Should the assumption of a lognormal distribution
be justified, the parameters x, and ¢ as well as proportions nonconforming regarding

given limiting values can be additionally graphically determined.

As long as the number of the given values is large enough, one can create a histogram of
these values and determines, then, the relative frequency of values within the classes of
a grouping. If one records the relative cumulative frequencies over the right class limit in
the probability plot and a sequence of points is thereby produced which lie in an approx-
imated manner on a line, one can conclude from this that the values of the data set are
approximately lognormally distributed.

If the number n of the present values x, are not adequate for the creation of a histo-
gram, one can allocate cumulative frequencies to the individual values x, by way of the

following procedure so that a recording in the lognormal probability plot is also possible
in this case.

1. The values x,,X,,...,x, are arranged in order of magnitude:
X(l) SX(Z) <... SX(n).

The smallest value x(;) has rank 1, and the largest value x(, has rank n.

2. Every X(i) (i=1,2,...,n) is allocated a relative cumulative frequency H;(n):

H,(n), H,(n),..., H (n).

The cumulative relative frequency H;(n) for rank number i can be calculated with

one of the approximation formulas

i—0.5 i—0.3
H.(n)="""> and H.(n) =
n n+0.4

The deviation from exact table values is insignificant here.

3. Representation of the points (x(i), H;(n)) in a probability plot.
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H,(10)
6.2%
15.9%
25.5 %
35.2%
45.2 %

x;/N-cm
480
540
580
605
655

Priority i

We will assume the values from the above example (torque measurement) for the demonstra-

tion of this procedure and arrange them in order of magnitude.
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Evaluation of Measurement Series

X
If one draws a compensating line through the points, the estimated values —, X, and X -&
£

can be read as abscissa values of the ordinate values 5.9 %, 50 % and 84.1 %.

In a similar manner, estimated values can be read directly for proportions nonconforming
or proportions going below with respect to a given limit, or a limiting value can be set on
the basis of a given proportion nonconforming. In all cases, however, it must be clear that
such estimates are always full of uncertainties which become greater with fewer meas-
urement values present. “Extrapolations” through extensions of the compensating lines
beyond the ranges covered by the measurement points should particularly be avoided.

Special Cases

If it is not possible to approximate the points in the lognormal probability plot by way of
a straight line, but it is possible by way of a curved line to the x-axis, it is possible that the
qguantity X is not lognormally distributed, but rather X - a. In this case, the characteristic X
possesses a natural limit a > 0, which cannot be gone below (compare with [10] p. 98).

If the points can be approximated well by a curved line moving out from the x-axis in the
log probability plot, a - X is possibly lognormally distributed. In this case, the character-
istic X possesses a natural limit a > 0, which cannot be exceeded. Examples of such char-
acteristics with a natural upper limit are the hardness of a metal surface and the tensile
strength of a welded joint.

Skewed to the left
Skewness g <0

Skewed to the right
Skewness g >0

Fig. 4.8: Conversion of a lognormal distribution which is skewed to the left to one which
is skewed to the right

In both cases the question is how quantity a is to be selected. As long as a is not known
due to the technical facts, an estimated value for a must be determined. Here, the ab-
scissa values (on the x-axis) x, x' and x'' for the relative cumulative frequency H=50%,

H'=15.9% and H''=84.1% are read at the curve in the lognormal probability plot.
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2 1 "
. R X“—=x"-x L
The estimated value a=|——————| is finally calculated.
x'+x"=2-x

Through the conversion Y=a—X and Y=X-a, one obtains, then, a lognormally distrib-
uted quantity Y, to which the formulas of Section 4.4 can be applied.
Should limiting values for Y be calculated in this manner, they must afterwards be recon-

verted to limiting values for X.

COMMENT:

In the formula for the density function of the lognormal distribution

f(X):;.e—%.[%jz,

xoy2r

the natural (base e ) logarithm In(x) occurs. Correspondingly, the given relations )_(g =e? and
e=e’* are produced in Section 4.3.

If one uses the common (base 10) logarithm log(x) instead of the natural one as well as its in-
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verse function 10, one finds the expressions )_(g=10z and £=10°* (compare with e.g. [17]).

The x-axis of the log probability plot is subdivided in correspondence with the common loga-
rithm. This fact is, however, insignificant with respect to the comparability with numerical cal-

culation in accordance with the formulas from Section 4.4, since in the calculation of )79 and

&, a reconversion to the original coordinate system always occurs, and calculations of propor-
tions nonconforming or limiting values are only conducted with assistance of both of these
quantities.
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4.6 Sample Characteristics
Sample outcomes (individual values) can be combined and represented by illustration in
e dot frequency diagrams
e gar graphs
e histograms and
e cumulative curves.

The information on the temporal order of the individual values, though, is lost. Statistical
characteristics can be calculated from the individual values which characterize the distri-
bution of the sample values.

These (empirical) characteristics are estimated values for the corresponding characteris-
tics of the (theoretical) distribution of the (parent) population from which the sample was

[7p]
§ taken (compare with Table 4.2).
[%2]
©
<
3 Characteristic Population Sample
S
N
of location: Median 50 % value X
Arithmetic mean n X
Geometric mean Mg Xg
of variability: Variance c? s?
Standard deviation c s
Shape parameter I3 €
Range - R
of shape: Skewness T g
Excess €
Kurtosis Ew

Table 4.2: Usable designations of the characteristics for the population and the sample
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4.6.1 Characteristics of Location

The following are usable as dimensions of the average location:

Characteristic Calculation

Median n odd X =

n even X =
2

3
0O ) . -1 >
2 Arithmetic mean X n X;
' =1
© I
<
<
2 . .
=] Geometric mean Xg
o
N

Table 4.3: Characteristics of location

arithmetic mean

geometric mean

mode

Fig. 4.9: Characteristics of location with a lognormal distribution

The median is the value within a sequence of individual values arranged in order of mag-
nitude which halves the sequence. Due to its definition, the same number (50 %) of val-
ues of a data set always lie below and above the median (compare with [3]).

The most frequent value (the density average) of a (continuous, unimodal) distribution is
the position at which the density function assumes its maximum. If we are dealing with a
discrete distribution, the most frequent value corresponds to that with the greatest
probability.
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4.6.2 Characteristics of Variability

The variability is a measure for the deviations of characteristic values with respect to the
average.

Characteristic Calculation
: , 1 —\2
Variance s =n_1~;(xi—x)
Standard deviation s = \/572
Range R =X ax =X min

Coefﬂuerrt of varia- v -5, 100%
tion X
g=e’
Shape parameter
1 < < )2
s= |2 (In(x)~In(x,))

i=1

Table 4.4: Characteristics of variability

The standard deviation has a significance as the characteristic of variability similar to that
of the arithmetic mean as the characteristic of location. It has the same unit of measure
as the characteristic values and is calculated from the variance.

Since the range is calculated from only two values, its information content is fundamen-
tally less than that of the standard deviation.

With the coefficient of variation, the extent of the variability of the individual values re-
fers to the arithmetic mean. The variation coefficient is used, for example, in association
with the giving of harmful substance concentrations (HC, CO and NO, ) in exhaust from

combustion engines. The averages of these concentrations distinguish themselves very
greatly from one another. The assessment of the effect of improvement measures on the
variation of the individual values of the three types of harmful substance is made easier
through the giving of the variation coefficients, since these are directly comparable.

The shape parameter is used as the characteristic of variability with the lognormal distri-
bution. It is calculated from the standard deviation of the logarithms of the characteristic
values (compare with Section 4.4).
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4.6.3 Characteristics of Shape

Table 4.5 gives an overview of characteristics of “shape” of the distribution accompany-
ing the measurement values. Strictly speaking, one thinks of the representation of the
probability density function of the distribution when the term “shape” is used. The com-
mon usage is usually very inexact with respect to this.

Characteristic Calculation
= > (x;=X)
Skewness n ; :
g=—"—="—
s3
8 1 n
O -\ 4
= X.—X
3 Kurtosis n ;( =)
g B = st
<
@
I
;5
Excess e=g,—3

Table 4.5: Characteristics of shape

The skewness is a measure of the asymmetry of a distribution. If the steep curve incline
of a distribution lies to the left of the average, then the value is positive (the distribution
is skewed to the right); in the other case, it is negative (the distribution is skewed to the
left, compare with Fig. 4.8). The greater the amount of the skewness, the less symmetric
the accompanying distribution will be.

An examined population approximately underlies a normal distribution if the limiting val-
ues for the skewness g (dependent on sample size n) given in Table 4.6 are not exceeded.

Sample size n Limits for the skew-
ness g, P,=95%
10 0.95
15 0.85
20 0.77
25 0.71
30 0.66
40 0.59
50 0.53
80 0.43
100 0.39
200 0.28
500 0.18
1000 0.13

Table 4.6: Limiting values for the skewness g
for sample size n
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Evaluation of Measurement Series

Since the interval x; —x occurs to the third power in the expression for the skewness, an

individual outlier can lead to a very great skewness, even though all other values are ap-
proximately normally distributed.

The kurtosis (flat- or peaked-‘topness’) and the excess are measures for how greatly flat-
tened or pointed the representation of the density function of a distribution appears in
comparison to the density function of the normal distribution (see Fig. 4.10).

The excess is equal to the kurtosis minus three.

The kurtosis of the normal distribution has the number value of three, and the excess of
this distribution is correspondingly zero.

Fig. 4.10: Representation of the density functions of three distributions. e=0

with the normal distribution.

© Robert Bosch GmbH | Edition 01.2016 -49 -


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Evaluation of Measurement Series

4.6.4 Examples of Sample Characteristics

EXAMPLE 4.2:
n; 2| s|13[13]10] 4] 3
G; 2| 7120[33]43] 47|50
H; /% 414|240 | 66| 86| 94| 100
Fig. 4.11
EXAMPLE 4.3:
n; 3] 6|8|9]13] s8] 3
G; 3| 9|17]26]39]47]|50
H /% 6 | 18|34 |52 78] 94100
Fig. 4.12

© Robert Bosch GmbH | Edition 01.2016
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m, =136
m; =0.53
m,=9.14

g=0.21 (skewness)
gw =26 (kurtosis)

e=-04 (excess)

m;=92=X

m, =0.0142
m,=-242-10"*
m,=-4.0-10""
g=-0.14 (skewness)
gw =20 (kurtosis)

e=-10 (excess)
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EXAMPLE 4.4:
m;=82=X
m,=17.0
m, =12.67
m, =557
" g=0.18 (skewness)
O .
=1.9 (kurtosis
3 n; s|wo]2]o]7]a]s 9w ( )
0 G s 15| 2736434750 e=-1.1 (excess)
Q H; /% 1030547286 94100
<
o .
o Fig. 4.13
o
N
EXAMPLE 4.5:
m;=67=X
m, =234
m; =3.44
m, =30
g =0.55 (skewness)
m AR gw =26 (kurtosis)
G 5 14|26 | 35|41 |45 48|50 e=-04 (excess)
H /% 102852 | 70] 8] 9096|100
Fig. 4.14
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5 Direct and Indirect Inference

As shown in Section 4, statistics deal, on one hand, with distributions (statistical models)
which can describe real or fictitious populations, and on the other, with characteristics of
real samples.

In correspondence with both possible starting points (prerequisites), the following fun-
damentally different types of conclusions are produced:

1. Direct (deductive) inference on the sample from the population

Prerequisite: The distribution of the population and its characteristics (parame-
ters) are known (or are assumed as known).

Typical applications can be found within the scope of probability calculation in as-
sociation with the games theory, but also in probability statements in industrial
practice.

EXAMPLES:

e Chances of winning at roulette
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e Sampling plans for the examination of discrete characteristics (box model, compare
with [2])

e  Calculation of proportions nonconforming in the calculation of tolerances

2. Indirect (inductive) inference on the population from the sample

Prerequisite: Individual outcomes of a sample are present which were taken from
the population according to the principle of chance and can thereby be considered
as representative for the population. The type of characteristic distribution (distri-
bution function) of the population is assumed as known.

EXAMPLES:

e Estimation of distribution parameters (point estimation) or their confidence intervals
(interval estimation)

e Comparison of parameters (statistical tests)

The most significant methods and tests used here will be explained in the following sec-
tions. Only the mean p or x and the standard deviation o or s will be used as charac-

teristics in these procedures.
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Distribution of Sample Averages
The calculation of the distribution of averages provides a good starting point for the

problem of the direct and indirect inference.

EXAMPLE 5.1: Length measurement

The following list of 50 original values is given:

n

Length /mm
8.0 7.4 6.5 7.0 6.0 7.5 8.3 8.0 5.8 9.0
7.0 7.8 7.5 7.5 8.0 8.4 7.3 7.5 7.8 8.0
7.4 7.5 7.6 7.1 7.0 6.8 7.0 7.0 6.3 7.1
[%2]
o
3 8.0 7.7 7.3 7.4 8.0 8.3 7.5 6.5 7.5 7.0
[%2]
© 7.0 6.9 8.0 8.6 6.9 8.0 7.9 7.8 7.9 7.4
3
S
o
N

If we calculate the average from the 2, 3, 4, ..., n values with Yziz X;, starting with the
n
i=1
first two values in the first row (8.0 and 7.4), we will obtain the following averages as functions

of n:

8.00(7.70|730|723(6.98|7.07 724734717 |735|7.32|7.36|737|7.38

x|

742|748 |7.47 | 747749752 751|751 |751|750|7.48|7.45|7.43|7.42

x|

738|737 (739|740 (7.40(7.40(7.41(7.44(7.44(7.42|7.42(7.41|7.40|7.39

x|

n 43 | 44 45 | 46 | 47 | 48 | 49 50

X |740|7.43|7.42|7.43|7.44|7.45|7.46| 7.45

In Fig. 5.1, these averages are marked with a dot.

If one starts with the last value (7.4) on the list in the calculation of averages, then he obtains
the values marked with an “x”.

The average of all 50 values on the list is 7.45 mm. In the example, the average calculated
from 20 values is closer than that from 10 values, and this is, in turn, more accurate than the
average calculated from 5 values. This applies for both the “dot curve” and the “x curve” (see
Fig. 5.1).

The more measurement values that are brought into play in the calculation of the aver-

age, the more accurate the estimated value of the true calculated average is. This is a sta-
tistical regularity. The accuracy of the estimated values can also be given.
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Length / mm

6.5 i i i i i i i i i
0 5 10 15 20 25 30 35 40 45 50
Number of individual values

Fig. 5.1: Estimated values for the average

As suggested in Fig. 5.1, the estimated values vary around the average of the population.
The extent of the variation is a measure of the accuracy of the estimated values with var-
ious n.

A characteristic for the variability of the averages is the standard deviation o;. The

standard deviation o is calculated from the standard deviation o of the individual val-

ues of the population according to the formula:

(o)
Oy =—F

X \/; .
n is the number of values brought into play in the calculation of the average .

If the n individual values originate from any distribution other than the normal distribu-
tion, a normal distribution (from roughly n = 4) is nevertheless approximately produced
as the distribution of the averages (from the respective n values). The greater the sample
size n, the better the approximation to the normal distribution (central limit theorem of
statistics).

Correspondingly, 68.3 % of all averages x lie in the range between n—-c; and p+oy.
This statement corresponds to a direct inference on the sample from the population.

With respect to the average u and the standard deviation c of the population, the state-
ment can be made that the average of a sample of n individual values lies between

and p+ with a probability of 68.3 %.
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Evaluation of Measurement Series

f(x)
Hx —Ox MHx Hx+Ox X

Fig. 5.2: Probability density function of the averages x calculated from n
individual values

With the assistance of the normal distribution, a random variation range can be given for
each pre-given probability (confidence level). Here, for example, the confidence levels of

\/_

Lo I e
95.4 % and 99.7 % accompany the limits of random variation u+— and pt

G

The reversed inference (indirect inference) is likewise possible.

With a probability of 68.3 %, for example, the following applies for the average p of the

c c _ . A

population: X —— < u < Xx+—, whereby X is the average of a sample of n individual
Jn Jn

values. With the indirect inference, one is dealing with a confidence interval rather than a

random variation range.

With the confidence IeveIs of 95.4 % and 99.7 %, u lies within the respective confidence

interval x+— and x+—

N

The confidence levels listed in the following table are used frequently in association with

the respective factor u in the expression x fu -in.
Pa Factor u

90 % 1.64

95 % 1.96

95.4 % 2.0

99 % 2.58

99.7 % 3.0
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Let’s assume that the average of the population in Example 5.1 has the value u=7.5mm, and
the standard deviation is c=0.5mm.

The random variation range of x with a 95 % confidence level for a sample with 10 values
would then be calculated as

0.5mm
=75mm + 1.96 -

ﬂiui
Jr [0

A sample with the size n=10 belongs to the population with the characteristics u=7.5mm

=75+0.3mm.

and o=0.5mm with a 95 % confidence level, if the accompanying estimated value X lies be-
tween 7.2mm and 7.8mm.

The confidence level of 95 % can be interpreted in the following ways:

If such samples were conducted very often with 10 measurement values and the same popula-
tion, then the accompanying estimated value x lay within the limits 7.2mm and 7.8mm in 95%
of the cases, and did not do so in 5 % of the cases.

In a reverse manner, in Example 5.1 with unknown u, an average x can be calculated as an
estimated value with the assistance of a sample, e.g. x=7.3 from 10 values.

Through an indirect inference, one then obtains the statement that u lies within the confi-
0.5mm

[0

The more individual values that are brought into play in the estimate, the smaller the
confidence interval will be.
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dence interval 7.3mm + 1.96 -

with a confidence level of 95 %.

The sample size must, then, orient itself to the demanded accuracy of the statement.

It was assumed in this section that the standard deviation o of the population is known.
This is the case, for example, in production when o of all manufactured parts (popula-
tion) has been determined.
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Evaluation of Measurement Series

6 Statistical Tests

6.1 Principle Sequence of a Statistical Test

1. Enumeration of the prerequisites. The individual values of empirically determined
data are considered to be the realization of a theoretical random variable. One or
more qualities of this random variable are presupposed as known.

2. Formulation of two mutually exclusive statements, a null hypothesis H, and an al-
ternative hypothesis H,. With comparative tests, these hypotheses can refer to

two or several random variables (that is, data sets named under 1.).
3. Calculation of a test statistic from the present data.

4. Selection of a significance level o (error probability). A statistical test enables no
correct decision with absolute certainty between the null hypothesis and the al-
ternative hypothesis. A small probability must be granted with which the test deci-
sion can be false.

5. Comparison of the test statistic with a tabulated percentage point (quantile) ac-
companying the significance level a determined in 3.

Test decision: If the test statistic is greater than the percentage point, then the
null hypothesis is rejected.

The alternative hypothesis contains two cases with the two-sided test. Corre-
spondingly, the comparison of the test statistic occurs with a lower or an upper
percentage point. The null hypothesis is rejected if the upper percentage point is
exceeded or if the lower percentage point is gone below.

Mathematically speaking, the central component of a statistical test is a random variable
with a known probability distribution. This random variable can either be the random var-
iable given in 1. itself or an auxiliary quantity constructed through the linking of several
random variables named in 1.

As long as the null hypothesis is correct, the test statistic calculated from the data which
is, so to speak, a realization of the considered random variable, would assume values in
repeated data gaining (sampling) which lie below a percentage point clearly determined
by the level of significance in the majority of the cases. An exceeding of the threshold
would, then, only occur very rarely.

If this is the case in the sample actually considered, one accepts this not as a possible rare
case, but rather concludes from it that the null hypothesis is false.

Depending on the formulation of the alternative hypothesis, an interval can also be given
which is limited by an upper and a lower percentage point.
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Evaluation of Measurement Series

6.2 z Test

As an example of a test and the accompanying test statistic z, the knowledge of Section 5
on the distribution of sample averages with known standard deviation of the population
will be of help.

Prerequisites for the z Test:

e the standard deviation o of the population is known
e the distribution of the population is a normal distribution N(u, c?)

We will assume that a sample of size n with an average of x is present. The decision is to
be made as to whether this sample can originate from a population whose average is
n=u, ([10] comparison of the expected value with a pre-given value in the case of a

normal distribution).
It is assumed as a basis for the test that p is actually equal to p,, that is, that the null

hypothesis reads Hy: p=p,.

If the null hypothesis is false, either p<p, or p>p,.

We will presuppose at this point that it doesn’t matter at the moment which of these two
cases is concerned in the rejection of the null hypothesis. The alternative hypothesis is
therefore:

Hi:t p#p,.

In the next step, the test statistic z is determined by using the sample average X, the as-
sumed average n=p, and the known presupposed standard deviation of the average

O. =

G .

g ="
N

X

The actual test consists of a comparison of this test statistic z with a lower quantile (per-
centage point) Zy) and an upper quantile Zy_qp (significance limits).

After the selection of a (small) error probability (significance level) a (e.g. 1 %), Zy) and
Z,_,), can be taken from the table of the standard normal distribution for the probability
P,=1-a (e.g. P,=99%). Here, z corresponds to the quantity u in Table 12.1. For
a=0.01=1%, z,, =2q4 =—2.58 and z,_,, =2 g9 =+2.58.

One should already determine and also maintain the significance level a before the cal-
culation of the test statistic z. Otherwise, the risk exists of “stealing a glance” at the test

statistic z while finding the percentage point in the table and influencing the test out-
come through spontaneous modification of o.

Test decision:

If z<z,, or z>z,_,,, then H, is rejected, i.e. the sample cannot originate from a popu-

lation with p=p, with the significance level of a.
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Ho: L< g
Hi: > pg

Acceptance range Rejection range

Ho: 12 1
Hy: < o
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Rejection range Acceptance range

Ho: =Ko
Hi:u# W

Rejection range Acceptance range Rejection range

Fig. 6.1: Representation of the acceptance and rejection range with one-sided and
two-sided tests
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Evaluation of Measurement Series

The test is based on the fact that the distribution of the test statistic z is known. It is a
standard normal distribution. It is examined as to whether the calculated value z still lies
within the random variation range which is given by the probability P, and by the level of

Ill

significance a=1-P,. Due to the alternative hypothesis p#p,, both external “points” of

the standard normal distribution must be taken into consideration with respect to o (Fig.
6.1 bottom). A two-sided question is therefore spoken of in this context. With the one-
sided test, the null hypothesis is rejected when z>z,_  (Fig. 6.1 top) or z<z_, (Fig. 6.1

center).

EXAMPLE: For ¢ =0.01=1%, 2, =244, =—2.33 and z,_, =2;,49 =+2.33.

Summary:
The previous example contains all of the essential steps of a statistical test:
1. Formulation of a null hypothesis
Calculation of a test statistic whose distribution is known
Selection of a level of significance

2
3
4. Finding of a quantile (percentage point) in the distribution table
5. for the test statistic

6

Comparison of the test statistic with the quantile; test decision.

6.3 Erroneous Decisions with Statistical Tests

In Section 6.2, a two-sided question was considered, i.e. the null hypothesis H,: p=p, is

tested against the alternative hypothesis H,: n#p,.

With a one-sided question, the null hypothesis reads, for example, H,: p<p, and the al-
ternative hypothesis correspondingly reads H,: p>p, (Fig. 6.1 top). The background of

this one-sided test could be the question, for example, as to whether the shear strength
of a soldered joint as opposed to the average up to now increases (alternative hypothesis
is correct) or decreases (alternative hypothesis is false) through the initiation of a process
modification.

Two types of erroneous decisions are possible within the scope of this test:

e Type | Error (Error of the first kind): The null hypothesis is rejected falsely. In the
named example, this means that one conducts a process modification on the basis
of the test outcome, even though this has no effects or possibly even decreases
the strength. The accompanying significance level is a=1-P,.

e Type Il Error (Error of the second kind): The null hypothesis is maintained falsely.
This means that one declines a process modification on the basis of the test out-
come, even though this would increase the strength considerably. The accompany-
ing significance level is f3.

Both erroneous decisions are “uncomfortable”. In the first case, one makes an expensive
investment unnecessarily, while in the second case a competitive advantage is lost, for
example.
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Error types, acceptance probabilities and risks with statistical tests:

Accepted facts due to a test unknown, true facts
outcome
H, is correct (n<p,). H, is correct (u>p,).
) Correct decision! Type Il Error
H, is correct P-1—0 P=B
. Type | Error Correct decision!
H, is correct P=aq P=1-P

Density function of z
when null hypothesis
is accurate

Density function of z
when alternate hyp-
othesis is accurate
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Mo Zy My

Acceptance range | Rejection range
Fig. 6.2: Risks in a statistical test (schematic)

The probability a for type | error is called the significance level in statistical literature. A
test outcome is “very significant”, then, when o is very small. Since this allocation can
easily lead to misunderstandings in general usage, P=1—a is usually designated instead

as the level of significance and one speaks of “great significance” when, for example,
P=1-0>99%.

The determination in this document that a test outcome from P=95% is designated as
significant and one from P=99% is designated as “highly significant” occurs arbitrarily.

As long as the results of an erroneous decision make things very difficult in concrete situ-
ations (e.g. the endangering of human lives), one will first speak of great significance with
numbers which are considerably greater than 99 %.
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6.4 Confidence Interval of Averages (o of the population unknown)

6.4.1 t Distribution

As a rule, the standard deviation o of a population is unknown. The confidence interval
of the average p of the population can, then, no longer be calculated by way of the
standard normally distributed quantity u (compare with Section 4.2), but is rather de-
termined with the assistance of the quantity

t=\/ﬁ-§_H

S

which is subject to the so-called Student’s t distribution.

The representation of the density function of the t distribution is very similar to the rep-
resentation of the normal distribution (see Fig. 6.3). Both are symmetrical, bell-shaped
and contain a value range of minus infinity to plus infinity. The smaller the sample size n,
the flatter the curve proceeds, i.e. the probability of finding a t value in the runouts is a
bit greater in proportion to the standard normal distribution, and the probability of find-
ing a t value in the central area is a bit slighter.

With a large sample size, the t distribution approaches the normal distribution (i.e. the
guantity t approaches u).

Since the sample size n is contained in the expression for t, each n has its own t distribu-
tion; it is said that the t distribution has f degrees of freedom. This quantity corresponds
to the sample size decreased by one: f=n-1.

Fig. 6.3: Probability density function of the t distribution for f=1,2,5,20 degrees
of freedom. For f — w0, the t distribution approaches the normal distribution.
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The sought after confidence interval for the average p of the population can be given in

the form

ﬁ.

Here, x and s are the average and the empirical standard deviation calculated from the

sample of size n.

<X+t

<u

ﬁ

X—t-

n—-1

The quantity t is a value of the tabulated t distribution (Appendix, Table 12.2) for f

degrees of freedom and the probability P,. The above expression correspondingly signi-

N

X+t 1005

and

N

X=1, 1.005"

fies that the unknown average p lies between

with a probability of P, (of 95 %, for example).
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(it corresponds to the interval of the confidence lim-

ﬁ

its for u from sample average x) is allocated to every abscissa value s dependent on the

In Fig. 6.4, the ordinate value t-

sample size n.

-64 -
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Evaluation of Measurement Series

If one selects the coefficient of variation v==-100% as abscissa value, one obtains, due

s
X

-100% = V-L-loo% as the ordinate value the confidence in-

e I

terval for p with respect to the average x. This value is also called the relative error. In

to the association

both cases, the scale of the abscissa and ordinate axis can be adjusted to the given order
of magnitude through equal shifting of the decimal point on both axes.

EXAMPLE 6.1:

From n=25 measurement values of a sample, the average x=44.0 and the standard devia-
tion s=2.2 were calculated.

In Fig. 6.4, the ordinate value 9 can be read for the abscissa value 22 and n=25.

If one considers the decimal position, then t ~%:O.9.
n

With a 95 % confidence level, then, 43.1 < u <44.9.

The coefficient of variation is: v:% -100%=5% .

With abscissa value 5 and n=25, 2.1 can be read as the ordinate value in Fig. 12.

The relative error is thereby +2.1 %.

With the assistance of the nomogram in Fig. 6.4, the sample size can also be determined which
is necessary in order to remain within a pre-given relative confidence interval.

EXAMPLE 6.2:

A sample average of x=1.2 and a standard deviation of s=0.029 are expected.
The coefficient of variation is hereby v=2.4% .

The sample size with a permitted relative error of 0.5 % at a 95 % confidence level is sought af-
ter.

The line for n=90 is drawn by way of the points accompanying the abscissa value of 24 and

the ordinate value of 5 in the coordinate field. A sample of 90 measurement values is hereby
necessary.
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6.5 Random Variation Range and Confidence Interval of the Stand-
ard Deviation

The inductive statistics also enable the calculation of the random variation range of the
empirical standard deviation s and the confidence interval of the standard deviation c

of the population. This happens with the assistance of the y* function (chi-squared func-

tion), from which the given values B,,,., and B, . were calculated in Table 6.1.
P, =90 % P, =95% P, =99 %

f =n-1 n B lower B upper B lower B upper B lower B upper
1 2 0.06 1.96 0.03 2.24 0.01 2.81
2 3 0.24 1.73 0.16 1.92 0.07 2.30
3 4 0.34 1.61 0.27 1.76 0.16 2.07
4 5 0.42 1.54 0.35 1.67 0.23 1.93
5 6 0.48 1.49 0.41 1.60 0.29 1.83
6 7 0.52 1.45 0.45 1.55 0.34 1.76
7 8 0.56 1.42 0.49 1.51 0.38 1.70
8 9 0.58 1.39 0.52 1.48 0.41 1.66
9 10 0.61 1.37 0.55 1.45 0.44 1.62
11 12 0.64 1.34 0.59 1.41 0.49 1.56
13 14 0.67 1.31 0.62 1.38 0.52 1.52
15 16 0.70 1.29 0.65 1.35 0.55 1.48
17 18 0.71 1.27 0.67 1.33 0.58 1.45
19 20 0.73 1.26 0.68 1.31 0.60 1.42
24 25 0.76 1.23 0.72 1.28 0.64 1.38
29 30 0.78 1.21 0.74 1.26 0.67 1.34
34 35 0.80 1.20 0.76 1.24 0.70 1.32
39 40 0.81 1.18 0.78 1.22 0.72 1.30
49 50 0.83 1.16 0.80 1.20 0.75 1.26
59 60 0.85 1.15 0.82 1.18 0.77 1.24

119 120 0.89 1.11 0.88 1.13 0.84 1.17

Table 6.1: Factors for the calculation of the random variation range of s and the confi-
dence interval of o with confidence levels (two-sided) of P, =90%, P, =95% and

P,=99%. f is the number of the degrees of freedom, and n is the sample size.

When the standard deviation of the population is known or when a hypothetical value
can be assumed for it, it can be calculated in which random variation range the standard
deviation s of a sample of size n with the pre-given confidence level must lie so that it can
belong to this population.

The random variation range for s is given by

B -0<s<B ‘O,

lower upper
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If o is unknown and one wants to know in which range the true o lies around an esti-
mated value s with a pre-given confidence level, then the confidence interval for o is
calculated from the estimated value s and the values from Table 6.1 in the following
manner:

‘s <o<

upper lower

EXAMPLE 6.3:

From the n=40 individual values of a sample, the average x =100 and the standard deviation
s=24 were calculated.

The following then applies with a confidence level of 95 %:

i-24<o-<i~24 thatis 20< o < 31.
1.22 0.78

Unlike with the confidence limits for the average, the intervals of the confidence limits here
are not of equal size to the estimated value.

6.6 Test for Randomness

With several tosses of a coin, one expects that the toss outcome “heads” (H) and “tails”
(T) will change in an irregular manner. One would particularly look at an outcome se-
quence like ... THHHHHHHTTH ...” as unusual. With the coin toss, the probability
for each outcome (“H” or “T”) is equal at 0.5.

Due to the independence of the individual tosses, the probability of the occurrence of
seven “H” tosses is (0.5)" ~0.8%.

Such a sequence of identical symbols is called iteration. The outcome sequence “T H H H
THHHTT H” consists of the 6 iterations (T), (H H H), (T), (H HH H), (T T) and (H), that is,
3 iterations of “H” and 3 iterations of “T”".

If one gives a number n of tosses, he expects that the number of iterations is not too
great, but also not too small. In the first case, “H” and “T” would change too frequently
(too regularly), and in the second case, conversely, too rarely.

The number r of the iterations of the symbol “H” or the symbol “T” in a sequence of n
coin tosses is a random quantity. The randomness of a sequence of toss outcomes can be
tested with the assistance of this random quantity r.

If the total number of the individual outcomes “H” is equal to n; and the total number of
individual outcomes “T” is equal to n,, then a range can be given in which r lies with the
probability P, =1—a (compare with [10]).

In the two-sided test, the null hypothesis H,: “the outcome is random” is rejected when
Q<P Orr>r, 0 oy

rnl;nz;(x/

This test can be applied to a sequence of measurement values if one converts the indi-
vidual values x; (i=1,2,...,n) into a sequence of plus and minus signs by way of the fol-

lowing rule (X is the median of the measurement series):

e Replace x; with “+”if x,>X and

e replace x; with “-” if x, <X.
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The test statistic in this so-called run test is the number r of the iteration of the symbols
“+” and “-”. A detailed description of this test and the accompanying table of critical val-
ues (upper and lower limits of r) can be found, for example, in [10] or [11].

In the similar test according to Wallis and Moore, the sequence of plus and minus signs is
formed by respectively calculating the difference between two values which follow one
another. This test is also described in the given literature.

A test for randomness can be helpful if doubt exists as to the independence of measure-
ment values which follow one another. This is conceivable, for example, in association
with a process data analysis or a machine capability study.

The test responds, for example, when the data set contains one or more “concentrations”
of similar values (batch discontinuities), or when a tendency or periodicity is present.
Such facts, however, should also be recognizable in this case on the basis of an original
value diagram (Section 2.1).

6.7 Outlier Test According to Grubbs

The Grubbs test presupposes that a normally distributed population is present whose av-
erage and standard deviation are unknown.

First of all, the empirical average x and the standard deviation s are calculated from all n
sample values.

is suspected as an outlier, the test statistic ——— is
s

is suspected as an outlier, the

If the smallest sample value x,

n

calculated; conversely, if the greatest sample quantity x,,

X

X
test statistic ——— is formed.
s

The critical value belonging to the confidence level P, =1—a is taken from Table 12.5

and is compared with the test statistic. If the test statistic is greater than the critical val-
ue, then a real outlier is present with the probability P,.

EXAMPLE 6.4:

In the determination of the strength of 15 pieces of wire, the following breaking loads (N) were
measured: 76, 84, 82, 88, 89, 83, 72, 70, 82, 54, 82, 76, 88, 87, 78

The value 54 N is suspected as an outlier.

From the n=14 values (including the value suspected as an outlier), the following are pro-
duced:

the average xX=794N,
the standard deviation s=9.12N.

In Table 12.5, the critical value 2.409 is found for n=14 and P,=95%.

X—Xpin 79.4-54
Because = 912 =2.785 > 2.409, the test result reads:
s .

The measurement value 54 N is a real outlier with P,=97.5%.

REMARK:

In the inspection of the prerequisite (normal distribution), one can record the individual values
with the assistance of median ranks in a probability plot. In this example, it is already visible
that the points can be approximated quite well with a line with the exception of the point ac-
companying the outlier value.
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Evaluation of Measurement Series

7 Comparing Two Measurement Series

7.1 F Test

In the assessment of two measurement series which, for example, were conducted be-
fore or after a procedure modification, a clear difference between both of the empirical

variances s? and s5 can be produced.

The question as to whether this difference is accidental or whether it can be led back to
the procedure modification can be answered with the assistance of the F test.

First, the proportion of both variances is calculated:
1

F= —2
S,
s2 is the greater of the two variances and above the fraction line. n, is the sample size
accompanying s’ .
Finally, the test statistic F is compared with the table values F(95%) and F(99%) with
referenceto f;, =n,—1 and f, =n,—1 degrees of freedom (Table 12.3, two-sided).

Test results:

If ... ... is the statistical difference
between both variances

F > F(99%) highly significant
F(99%) > F > F(95%) significant
F(95%) > F insignificant

ExAmPLE 7.1:

Within the scope of a comparison examination, breaking loads (N) of pieces of wire were de-
termined from two differently handled batches.

The statistical characteristics of the measurement series are:
Batch A: X, =82.3N s2=18N? n, =10
Batch B: X, =90.0N s;=128N?  n,=12

While the averages are similar at first glance, the deviation of the variances appears quite

great.
2 2
S; 128N
One calculates: F=—2= 3 =7.1.
S5 18N

Degrees of freedom: f;=n; —1=11 and f,=n,-1=9.

In Table 12.3 (two-sided) of the F distribution in the appendix one finds for f; =10 and f, =9
degrees of freedom the quantile F(99%)=6.42. Since the table contains no column for the 1st
number of degrees of freedom f, =11, the next smaller given number (w.r.t. f, =10) can be

selected problem-free as the 99 % point. This means merely a negligible shifting of the signifi-
cance level.

Because F > F(99 %), the test decision then reads:
The difference between both of the variances is highly significant.
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The F test in the form represented here tests the null hypothesis p,

ternative p, #u,. A two-sided question is then present.

Table 12.3 (two-sided) in the appendix gives the two-sided 95 % and 99 % points of the F
distribution in accordance with the two

7.2 tTest

7.2.1 t Test for Samples with Equal Variances

With the assistance of a t test, it should be decided as to whether the averages x; and
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Evaluation of Measurement Series

The upper limit of the 99 % random variation range (percentage point; quantile) of tis in
this case t4 49 =2.88, i.e. only in 1 % of all cases can a random value greater than 2.88

be produced. If this case should actually occur during the comparison of two samples
with n=10, one would conclude that the samples cannot originate from the same popu-
lation.

The quantiles of the t distribution are tabulated for various significance levels dependent
on the degrees of freedom f=2-(n—1) (Table 12.2). The procedure during the t test is
based on the correlation represented above.

It should be decided as to whether the arithmetic mean of two present measurement se-
ries (each of size n) can or cannot belong to one and the same population. It is then as-

sumed as the so-called null hypothesis that the averages of the respective accompanying
population are equal.

From the averages X, and X, and the variances s> and s, the following test statistic is

then calculated:

t=4n-

[, %]

[ 2 2
S, +5s,

Through comparison of the test statistic t with the table values t(95%) and t(99%) for
f=n,+n, -2 degrees of freedom (Table 12.2, two-sided), one finally obtains the

for n;=n,=n

Test outcome:

If ... ... is the statistical difference
between both averages

t > t(99%) highly significant
t(99%) > t > t(95%) significant
t(95%) > t insignificant

The t test in the form represented here tests the null hypothesis p,=p, against the al-
ternative p,#p,. A two-sided question is then present. For this reason, the amount of
the average difference stands for t in the expression.

t can consequently only assume values >0, so that the distribution shown in Fig. 7.1 is
produced.

Table 12.2 (two-sided) in the appendix gives the two-sided 95 %, 99 %, and 99.9 % points
of the t distribution, among others, in accordance with the two-sided question. They cor-

respond to the one-sided 97.5 %, 99.5 % and 99.95 % points (percentage points; quan-
tiles).

The expression for the test statistic t is only applicable in this simple form when the var-
iances of the population and the sample sizes are presupposed respectively as being

2 2 . . . .
equal (o; =0, and n;=n,=n). The prerequisite of equal variances can be inspected

with the assistance of an F test (compare with 7.1).

© Robert Bosch GmbH | Edition 01.2016 -71-


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Evaluation of Measurement Series

In the case n,;#n,, the expression for t, in using the auxiliary quantity,

(n,—1)-s2+(n,—1)-s> n,+n, ) ‘il_xz‘
Sp = . obtains the form t=-——
n,+n,—2 n;-n, ShH

The test decision occurs as above; however, due to n,#n, an alternate number of de-

grees of freedom must be calculated for t and must be taken into consideration in finding
the table values (compare with 7.2.2).

7.2.2 t Test for Samples with Unequal Variances

If the variances of the population from which the samples originate are not necessarily
equal, the calculation of the test statistic t occurs with the assistance of the expression:

An alternate number of degrees of freedom f is to be calculated according to the follow-
ing formula [14]:

f= . (round f down to a whole number!)

The rather laborious calculation of f can frequently be replaced by an estimate.

If ... ..., then select
51

a) —r— f=n,+n,-2
nl n2
5153

b) — >> — f=n,-1
nl n2
5153

c) — << — f=n,-1
nl n2

Through comparison of the test statistic t with the table values t(95%) and t(99%) for f
degrees of freedom (Table 12.2, two-sided) the following is produced:
Test outcome:

If ... ... is the statistical difference
between both averages

t > t(99%) highly significant
t(99%) > t > t(95%) significant
t(95%) > t insignificant
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Evaluation of Measurement Series

EXAMPLE 7.2:

In the example 7.1 for the F test, the following statistical characteristics were determined:

X,=823N s?=18N? n,=10

X,=90.0N s2=128N° n,=12

18N? 128 N?

Here, |)_(1—)_(2|:7.7N and sDz\/

+ = 3.5N are produced,
10 12
7.7N
and consequently t=——=2.2.
35N
4
f= 3.5 ~14

18\ (128Y°
10 12
+
10-1 12-1
For f=14 degrees of freedom, one finds the value t(95 %)=2.145 in Table 12.2 (two-sided).

Because t(99%) >t > t(95 %), the difference between the averages is significant with a signif-
icance level of « < 5%.

COMMENT:

Since the null hypothesis H, : u; =, is to be tested against the alternative H; : u; # u,, we
are dealing with a two-sided question. The test statistic t is to therefore be taken from Table
12.2 (two-sided).

In statistics textbooks and table volumes, usually only the table of t values is conveyed for the
one-sided question. If such a table is to be used, it is to be observed that the confidence level
P, =95% (one-sided) corresponds to the confidence level P,=90% (two-sided).

The value of the test statistic t(95%)=2.145 (compare with example) can be found, then, in

Table 12.2 (two-sided) in the 95 % column, as expected, but in column 97.5 % in common ta-
bles of the t distribution (one-sided) (each for f=14 degrees of freedom).

7.3 Difference Test

If the selection of components is measured several times, varying measurement series
can occur due to modified basic conditions (e.g. measurement system, procedure, loca-
tion, time, inspector). The question as to whether the difference between two measure-
ment series is of random nature or not can be answered with the assistance of the differ-
ence test (compare with [17], paired comparison with the t test [10]).

The prerequisite with this test is that both measurement series are of equal size
(n;=n,=n) and that a paired allocation of the measurement values of both series is pos-

sible.

A tabular arrangement of the measurement outcomes eases the implementation of the
test. It is to be observed that the differences d,=x,—y, are given in consideration of the

sign.
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Object No. Measurement Measurement Difference d, di2
series 1 series 2

1 Xy Y1 di=x;-v, di

2 X, Y2 d=%,-Y, d;

3 X3 Y3 dy=xX3-VY; dg

n X, Ya d,=x,—v, d’

Table 7.1: Designations with the difference test

Procedure for the difference test:
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1. Creation of the table (as above). Calculation of the differences d;.

2. Calculation of the average d and the standard deviation s, of the differences d,
(pocket calculator).
. » d
3. Calculation of the test statistic t:\/ﬁ-—.
Sq

4. Comparison of the test statistic t with the table values t(95%) and t(99%) for
f=n—-1 degrees of freedom (Table 12.2, two-sided).

Test outcome:

If ... ... is the statistical difference
between both measurement series

t > t(99%) highly significant
t(99%) > t > t(95%) significant
t(95%) > t insignificant
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8 Linking of Random Variables

Within the scope of the statistical process control (SPC), samples of parts are taken from
a production process in regular intervals. The interested characteristic (e.g. diameter) is
measured with each part of the sample and the outcome is recorded on a quality control
chart. On the basis of a completed control chart, an estimated value 6 for the standard
deviation o of the population of all parts manufactured within the observation time pe-
riod can be determined. Since o is a measure of the quality of the process considered,
among others, the question is frequently discussed as to how the measurement uncer-
tainties of the measuring instrument used affect the process standard deviation.

If we disregard a systematic measurement error, a measured characteristic value z is
combined with the “true” value x of the characteristic and a random measurement error
y: Z=X+Yy.

Let’s assume that a process in control with a stable average position and stable variation

is being considered. The standard deviation o, is a measure for the variability of the pro-
duction, and o, is a measure for the variability of the measurement. The standard devia-

tion of the measured characteristic value is then given by 6,=,/ 6} + oy, .

It is clear that the random measurement error will lead to an increase of the standard de-
viation of the measured characteristic value in any case, thereby decreasing the product
quality. In a purely formal manner, the eclipsing of production variation and measure-
ment variation corresponds to the addition of two independent random quantities:
Z=X+Y.

It is generally applicable for this case that the average of Z is produced by the addition of
the averagesof Xand Y: p, =p +u,.

The variance of Z is obtained through the addition of the variances of X and Y:
ol=cl+ 62,

The calculation rules for p and ¢ for several simple linkings (functions) of two inde-
pendent (correlation coefficient p, =0) random quantities X (average p,, standard de-

viation c,) and Y (average p, standard deviation o) are listed in the following table

(compare with [10]).

Function Average Variance
— 2 2 2
Z=X+Y Mz_ux+l’ty GZZGX+GY
Z:X_Y l"lzzl’lx_“y G§:G§+G$
Z=X-Y M=Ky ly SRR TRRE SRR TRAN o
2 2 2 2
il c il c c
Z:ﬁ n,~ -, 1+—: sz ;—:4——;
Y l’lY “y My X My

Table 8.1: Calculation rules for linkings of independent random quan-
tities
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COMMENTS:

The same calculation rules apply for x (or s) as for u (or o).

These calculation rules apply only under the prerequisite that the individual quantities X and Y
are independent of one another, i.e. that the special value of X does not influence the random
selection of Y.

It is expressly emphasized that the variance of the quantity resulting from both the addition as
well as the subtraction of two random quantities is calculated by the addition of both individu-
al variances (compare with Table 8.1).

ExamPLE 8.1: Addition of two lengths
X,=30mm, s,=0.02mm

X,=50mm, s, =0.02 mm

wn

o - - —

S X. =X, +X,=80mm

(2}

. 2 2 2

S Sc=S5,1S5,

I

2

8 5. =4/ (0.02mm)? +(0.02 mm)? =0.028 mm
N
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9 Decomposition of Mixed Distributions

With some empirically gained distributions, the suspicion exists that a mixture of two or
more distributions is present (especially when the frequency distribution is bimodal or
multimodal). Here, only the case of the mixed distribution of two normal distributions
will be dealt with.

This occurs in technology, for example, when the partial collectives of two different pro-
duction processes or production lines are mixed with one another.

If information is to be gained on the averages and standard deviations of the affected
partial collectives, a decomposition of the mixed distribution must be conducted in two
normally distributed partial collectives with the corresponding characteristics x and s.

The procedure will be explained in an example. Fig. 9.1 shows the control chart with probabil-
ity plot for the example.

The decomposition of mixed distributions is only sensible if a greater number of values is avail-
able (at least n=100 to n=250).

The representation of the cumulative frequency appears in the probability plot as a curve
which curves partially downwards and partially upwards, indicating a mixed distribution.
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The columns 3-5 of Table 9.1 contain the values n;, G; and H; taken from the control chart.

The class limits are listed in column 2.

The relative frequencies h; can be calculated from the cumulative relative frequencies H;
(column 6). The hj are finally plotted against the accompanying classes. The frequency distri-
bution of the mixed collective is obtained in this manner.

The left partial collective | should now be determined. For this, the relative frequency hj is
transferred to Table 9.1 (column 6, starting with h; to the first maximum of the h;) into col-
umn 7. In our example, hj attains its first maximum in the 9th class (j=9 ).

Corresponding to the incline up to this first maximum value, the same values are then assumed

in reverse sequence into the following classes; that is, the frequency of class 8 into class 10,
etc.

The relative frequency values h}(l) gained in this manner belong to partial collective | and can

be recorded for illustration in Fig. 9.2.

The relative frequency values h;-(ll) of partial collective Il are produced by the difference from

the relative frequencies h; of the total distribution (column 6) and the relative frequencies

h} (1) (column 7). They are recorded in column 8 of Table 9.1.

These values are also finally drawn into Fig. 9.2. The given mixed distribution is hereby subdi-
vided into two symmetrically formed partial collectives | and II.
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1 2a 2b 3 4 5 6 7 8 9 10 11 12
Class Lower Upper Absolute Cumul. Cumul. Relative Not Not Standard. | Standard. | Cumul. Cumul.
No. class limit | class limit | frequency | frequency | rel. freq. | Frequency | stand. stand. rel. freq. | rel. freq. | rel. freq. | rel. freq.

n; G; H; h; rel. freq. | rel. freq. h;(1) h; (1) H;(1) H;(l)
h;(1) h; (1)

1 -13.5 -12.5 1 1 0.25 0.25 0.25 0.5 0.5

2 -12.5 -11.5 2 3 0.75 0.50 0.50 1.0 1.5

3 -11.5 -10.5 4 7 1.74 0.99 0.99 1.98 3.48

4 -10.5 -9.5 7 14 3.5 1.76 1.76 3.52 7.0

5 -9.5 -8.5 11 25 6.2 2.7 2.7 5.4 12.4

6 -8.5 -7.5 16 41 10.2 4.0 4.0 8.0 20.4

7 -7.5 -6.5 21 62 15.4 5.2 5.2 10.4 30.8

8 -6.5 -5.5 25 87 21.6 6.2 6.2 12.4 43.2

9 -5.5 -4.5 27 114 28.4 6.8 6.8 13.6 56.8

10 -4.5 -3.5 26 140 34.8 6.4 6.2 0.2 12.4 0.4 69.2 0.4

11 -3.5 -2.5 23 163 40.6 5.8 5.2 0.6 10.4 1.2 79.6 1.6

12 -2.5 -1.5 22 185 46.0 5.4 4.0 1.4 8.0 2.8 87.6 4.4

13 -1.5 -0.5 24 209 52.0 6.0 2.7 3.3 5.4 6.6 93.0 11.0

14 -0.5 0.5 31 240 59.7 7.7 1.76 5.94 3.52 11.88 96.52 22.88

15 0.5 1.5 39 279 69.4 9.7 0.99 8.71 1.98 17.42 98.5 40.3

16 1.5 2.5 41 320 79.6 10.2 0.50 9.7 1.0 19.4 99.5 59.7
17 2.5 3.5 36 356 88.6 9.0 0.25 8.75 0.5 17.5 100 77.2
18 3.5 4.5 24 380 94.5 5.9 5.9 11.8 89.0
19 4.5 5.5 13 393 97.8 3.3 3.3 6.6 95.6
20 5.5 6.5 6 399 99.3 1.5 1.5 3.0 98.6
21 6.5 7.5 2 401 99.8 0.5 0.5 1.0 99.6
22 7.5 8.5 1 402 100 0.2 0.25 0.4 100

) - - 402 - - 100 50.0 50.0 100 100 - -

Table 9.1: Value table for the explanation of the decomposition process
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Fig. 9.2: Frequency distribution of the mixed collective

COMMENT:

Due to the procedure described here, the distribution of the left partial collective is inevitably

symmetrical. If the population of the left collective were in actuality subject to a distribution

with positive slope, values would be falsely allotted to the right partial collective from the

transition range between the averages!

Since the relative frequencies h;(l) and h(ll) were determined through a decomposi-

tion, their respective sums will not be the value one. It is necessary, then, to still stand-

ardize the frequency distributions of both partial collectives.

((11)=50.

22
50 and Zh

17
In our example, Z h}(/)

j=10

The standardization to one is attained in this case by the multiplication of the relative frequen-

cies h;-(l) and h}(ll) with the factor 2.

In general, the standardization equation reads as follows:

100-h';(I1)
ol

(all statements in percent!)

(1

and hj

(1)

(1)

~100-h
2h

h,(1)

COMMENT:

The summation indices were consciously disregarded. It is useful to renumber the values in

both columns 7 and 8, since otherwise confusion could ensue with respect to the indexing.

-80 -
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Fig. 9.3: Cumulative frequency curves of the mixed collective and the partial collec-

tives in a probability plot

The cumulative relative frequencies H;(1) and H(ll) can finally be calculated from the deter-

mined values h;(1) and h;(ll) (columns 11 and 12). In the example, the dot sequences appear-

ing in the probability plot can be approximated quite well by two separated compensating
lines (Fig. 9.3). The mixed collective considered was produced in this case from two normally

distributed partial collectives.

The characteristics for both of the partial collectives were read from the probability plot in the

usual manner.

$,=2.9

=-5.0

Partial collective I:

x,=19 s,=2.1

Partial collective Il

The decomposition of mixed distributions which are composed of more than two popula-

tions occurs in an analogous manner.
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Evaluation of Measurement Series

10 Law of Error Propagation

The Gaussian law of error propagation describes how the measurement errors of several
independent measurands x; affect a target quantity z, which is calculated in accordance

with a functional correlation z=f(x1,x2, v Xy ):

2 2 2
oz 0z 0z
si=|——| -si+|—| ‘So+.t|—| -si.
0x, 0X, X,

z is, then, generally only an indirectly measurable quantity. The accuracy with which z
can be given depends on the accuracy of the measurands x,. In general, the average X,
and the standard deviation s; of a sequence of measurements are given for each respec-

tive x;.

Application example:

1. The area F(a,b)=a-b of a rectangle is determined by multiply measuring the re-

spective side lengths a and b and multiplying the averages a and b with each
other. The average measurement outcome for F is F=a-b. The standard devia-

. . 2 2 =2 2
tion of F is st\/b sy+a‘ts, .
2. The law of error propagation can be represented very easily when the function f,

which describes the linking of the independent measurands x;, is a sum. The par-

tial derivatives are all equal to one and the following is produced:
2 2 2
si=si+s,+..+s,.

The following is correspondingly applicable to the variances of the accompanying
populations:

2 _ 2 2 2
c,=0;+05,+..+0,.

The variance of an indirect measurand which is determined by the addition of in-
dependent individual measurands is equal to the sum of the variances of the indi-
vidual measurands. This fact is made use of within the scope of statistical toleranc-
ing. (compare with [4]).

3. A simple application case similar to no. 2 can be found in association with the cal-
culation of control limits within the scope of Statistical Process Control [5].

1 . - oz 1
For z=x==-(x,+x,+...+x,) all partial derivatives are —==.
n ox, n
2 2 2 . Ox .
If ci=05=...=0,, then the following ensues: ¢;=—= (compare with Sec. 5.).

Jn
This means that the standard deviation of the average of n individual values is

1 L. C g
—— smaller than the standard deviation of the individual values.

T
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Evaluation of Measurement Series

11 Sampling Scheme for Continuous Characteristics

A sampling scheme is a combination of short instructions which produce a decision about
the acceptance or rejection of a lot.

In the application of the Bosch single-sampling scheme (compare with [2]) for the inspec-
tion of discrete characteristics (e.g. within the scope of receiving inspection), delivered
lots are accepted when no nonconforming part is found within the sample (acceptance
number c = 0).

This type of inspection enables no statement on the distribution of characteristics of the
delivered lot and its statistical characteristics.

In the case of quantitative (measurable) characteristics the application of the scheme de-
scribed below provides an alternative to the inspection of discrete characteristics accord-
ing to the principle “To measure what is measurable”. A prerequisite for its application is,
therefore, that the interesting characteristic is a measurable quantity.

For inspection of continuous characteristics, indicating measuring instruments are needed
which are suitable for the inspection (capable).

Examples for the application:
e destructive or very expensive inspection
e Quality inspections (tests)
e receiving inspections

The advantages are:

e Possibility for assessment of the distribution of the characteristic and of the loca-
tion of the individual values within the tolerance zone.

e For identical operating characteristics, the sample size is smaller than in the case
of inspection by attributes.

Prerequisite: The considered quality characteristic is approximately normally distributed.

© Robert Bosch GmbH | Edition 01.2016 -83-


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

BOSCH Sampling Scheme for Inspection of Continuous Characteristics

It is not permissible to use the sample sizes Hint: If there are justified doubts with respect to normality of the
indicated here for inspection by attributes. measured values the “single-sampling scheme for discrete character-
istics” or 100% inspection is to be applied.

Lot size N 101..... 251..... 501..... 1001..... 2001..... 1. Find sample size n and acceptability constant k for the given lot size
..... 250 | .....500 |{.....1000{.....2000 | ..> 5000 N and the desired test in the table.
corresp. n 100 % 33 42 44 46 2. Draw a sample of n units from the considered lot!
to k - 3.0 3.0 3.1 3.1 ) ) o )
Test EX P'a0 ) 0.03 0.02 0.02 0.018 3. Measure the interesting characteristic of these units!
discrete P10 - 0.7 0.5 0.5 0.39 4. Record the measurement values!
» corresp. n 27 27 30 33 35 5. Calculate the mean X and the standard deviation s of these values!
§ to k 2.6 2.6 2.7 2.8 2.9
® Test EV P'90 0.08 0.08 0.06 0.05 0.04
8 discrete | p'jy 1.8 1.7 1.3 1.1 0.9 At least yes
§ corresp. n 19 21 23 25 27 One:;l:;::;_(szlgieovf the Reject lot!
S to k 2.4 2.4 2.5 2.6 2.6 )
- TestEl | p'sg 017 | 014 | 011 | 01 0.08
discrete P'10 3.6 3.0 2.4 2.0 1.7
corresp. n 12 13 16 17 19
to k 2.0 2.1 2.2 2.3 2.4 Inspection according
Test El P'90 0.42 0.34 0.26 0.21 0.17 to the “single-
discrete P'10 8.7 7.2 5.5 4.4 3.7 sampling scheme for
discrete characteris-
n Sample size tics” with the sample
k Acceptability constant size indicated there
P'90 Nonconforming proportion in the lot (in %) for which the
lot has 90 % acceptance probability
P'10 Nonconforming proportion in the lot (in %) for which the Accept lot!
lot has 10 % acceptance probability
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Example of procedure (cf. flow chart):

For a flange diameter the target value C=225mm, the lower specification limit
LSL=22.35mm and the upper specification limit USL=22.65mm are given.

1. Aninspection according to the test EV should decide on acceptance or rejection of a lot of
N =480 parts.

In the table one finds the values n=27 and k= 2.6 in the row “Test EV” and the column

corresponding to the lot size N =251...... 500.
2. Asample of n=27 partsis drawn from the lot.

3. The interesting characteristic of the parts is measured.

4. The measurements have the following results:

Flange diameter in mm

22.57 | 22.52 | 22.54 | 22.51 | 22.56 | 22.57 | 22.55 | 22.61 | 22.54 | 22.53

22.55 | 22.56 | 22.54 | 22.57 | 22.56 | 22.58 | 22.54 | 22.56 | 22.53 | 22.57

)
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22.55 | 22.56 | 22.57 | 22.54 | 22.55 | 22.56 |22.56

A probability plot for these results shows that the values are approximately normally dis-
tributed.

5. The calculation of the mean and the standard deviation produces:

X =22.55mm $s=0.02mm

No value is out of tolerance.

X—k-s=2255-26-002=225 > 2235=1SL
X+k-s=2255+26-003=226 < 22.65=USL

Decision: The lot is accepted.

HINTS:

1. The values for k and n indicated in the table are calculated in such a way that the same op-
eration characteristic is produced as is valid for the corresponding inspection of a discrete
characteristic (equal values pg, and p', respectively). For the selection of a test (individual

inspection instruction) the applicant can orientate himself to the quantity p’eo. If this is the
nonconforming fraction in the lot, the lot is accepted with 90 % probability. The smaller pg,

the more tight is the inspection.

2. Normality of the quality characteristic is a prerequisite for the application of inspection us-
ing continuous characteristics. As a result of non-compliance of this prerequisite the case
can occur where x —k-s < LSL and/or x + k-s > USL despite the fact that the characteris-

tic values of all parts of the lot are within the tolerance zone. This is possible for example if
the lot has been inspected as to both sides by the supplier.

In order not to unjustly reject a totally conforming lot in this case, the single sampling
scheme for inspection of discrete characteristics with the sample size indicated there must
be applied in the interests of certainty.

3. The previous text refers only to one inspection characteristic. The literature in this section
also deals with only one measurement quantity. In the case of several characteristics to be
inspected, each of these characteristics must be measured on each part of the sample. One
then obtains a measurement series per characteristic. The steps given from no. 3 on are to
be implemented for each characteristic.
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Evaluation of Measurement Series

4. According to [27], the procedure is only permissible if py, concerns the exceeding of a one-
sided limit. As long as pg, concerns the exceeding of a two-sided limit in the case of two-

sided limited characteristics, a graphic procedure given in [27] for “combined double speci-
fication limits” must be used (compare with the hint in [25] Sections 1.2.2 and 2.). This dif-
ference is, however, negligible for pg,<1%.

Since the average and the standard deviation of the inspected population are unknown,
but are rather estimated via x and s of the sample, the mathematical theory for the
sampling scheme for inspection by continuous characteristics is based on the non-central
t distribution. A description of the mathematical background can be found in [22], for ex-
ample.

o ___

><|-----|---

X+k-s

Fig. 11.1: For the illustration of the rejection criterion x +k-s > USL
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Evaluation of Measurement Series

12 Tables

12.1

12.2

12.3

12.4
12.5

Standard normal distribution ®(u) (one-sided, left)
Standard normal distribution ®(u) (one-sided, right)
Standard normal distribution ®(u) (two-sided)

t distribution (one-sided)

t distribution (two-sided)

F distribution (significance level 90 %, one-sided)
F distribution (significance level 95 %, one-sided)
F distribution (significance level 99 %, one-sided)
F distribution (significance level 95 %, two-sided)
F distribution (significance level 99 %, two-sided)
Chi-squared function

Critical values for the outlier test according to Grubbs
with normal distribution
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12.1 Standard normal distribution ®(u) (one-sided left)

u 0 1 2 3 4 5 6 7 8 9

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

-0.0 || 5000 | 4960 | 4920 | 4880 | 4840 | 4801 | 4761 | 4721 | 4681 | 4641
-0.1 || 4602 | 4562 | 4522 | 4483 | 4443 | 4404 | 4364 | 4325 | 4286 | 4247
-0.2 || 4207 | 4168 | 4129 | 4090 | 4052 | 4013 | 3974 | 3936 | 3897 | 3859
-0.3 || 3821 | 3783 | 3745 | 3707 | 3669 | 3632 | 3594 | 3557 | 3520 | 3483
-0.4 || 3446 | 3409 | 3372 | 3336 | 3300 | 3264 | 3228 | 3192 | 3156 | 3121

-0.5 || 3085 | 3050 | 3015 | 2981 | 2946 | 2912 | 2877 | 2843 | 2810 | 2776
-0.6 || 2743 | 2709 | 2676 | 2643 | 2611 | 2578 | 2546 | 2514 | 2483 | 2451
-0.7 || 2420 | 2389 | 2358 | 2327 | 2297 | 2266 | 2236 | 2206 | 2177 | 2148
-0.8 || 2119 | 2090 | 2061 | 2033 | 2005 | 1977 | 1949 | 1922 | 1894 | 1867
-0.9 1841 | 1814 | 1788 | 1762 | 1736 | 1711 | 1685 | 1660 | 1635 | 1611

-1.0 1587 | 1562 | 1539 | 1515 | 1492 | 1469 | 1446 | 1423 | 1401 | 1379
-1.1 1357 | 1335 | 1314 | 1292 | 1271 | 1251 | 1230 | 1210 | 1190 | 1170
-1.2 1151 | 1131 | 1112 | 1093 | 1075 | 1056 | 1038 | 1020 | 1003 | 0985
-1.3 || 0968 | 0951 | 0934 | 0918 | 0901 | 0885 | 0869 | 0853 | 0838 | 0823
-1.4 (| 0808 | 0793 | 0778 | 0764 | 0749 | 0735 | 0721 | 0708 | 0694 | 0681
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-1.5 [ 0668 | 0655 | 0643 | 0630 | 0618 | 0606 | 0594 | 0582 | 0571 | 0559
-1.6 [ 0548 | 0537 | 0526 | 0516 | 0505 | 0495 | 0485 | 0475 | 0465 | 0455
-1.7 | 0446 | 0436 | 0427 | 0418 | 0409 | 0401 | 0392 | 0384 | 0375 | 0367
-1.8 || 0359 | 0351 | 0344 | 0336 | 0329 | 0322 | 0314 | 0307 | 0301 | 0294
-1.9 || 0287 | 0281 | 0274 | 0268 | 0262 | 0256 | 0250 | 0244 | 0239 | 0233

-2.0 || 0228 | 0222 | 0217 | 0212 | 0207 | 0202 | 0197 | 0192 | 0188 | 0183
-2.1 || 0179 | 0174 | 0170 | 0166 | 0162 | 0158 | 0154 | 0150 | 0146 | 0143
-2.2 || 0139 | 0136 | 0132 | 0129 | 0125 | 0122 | 0119 | O1l1le | 0113 | 0110
-2.3 || 0107 | 0104 | 0102 | 0099 | 0096 | 0094 | 0091 | 0089 | 0087 | 0084
-2.4 || 0087 | 0080 | 0078 | 0075 | 0073 | 0071 | 0069 | 0068 | 0066 | 0064

-2.5 || 0062 | 0060 | 0059 | 0057 | 0055 | 0054 | 0052 | 0051 | 0049 | 0048
-2.6 || 0047 | 0045 | 0044 | 0043 | 0041 | 0040 | 0039 | 0038 | 0037 | 0036
-2.7 || 0035 | 0034 | 0033 | 0032 | 0031 | 0030 | 0029 | 0028 | 0027 | 0026
-2.8 | 0026 | 0025 | 0024 | 0023 | 0023 | 0022 | 0021 | 0021 | 0020 | 0019
-2.9 || 0019 | 0018 | 0018 | 0017 | 0016 | 0016 | 0015 | 0015 | 0014 | 0014

-3.0 | 0013 | 0013 | 0013 | 0012 | 0012 | 0011 | OO11 | OO11 | 0010 | OO10
-3.1 | 0010 | 0009 | 0009 | OOOS | 0008 | 0008 | 0008 | 0OO8 | 0007 | 0007
-3.2 || 0007 | 0007 | 0006 | 0006 | 0006 | 0006 | 0006 | OOO5 | 0005 | 0005
-3.3 || 0005 | 0005 | 0005 | 0004 | 0004 | 0004 | 0004 | 0004 | 0004 | 0003
-3.4 || 0003 | 0003 | 0003 | 0003 | 0003 | 0003 | 0003 | 0003 | 0003 | 0002

u corresponds to test statistic

N
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Standard normal distribution ®(u) (one-sided right)

u 0 1 2 3 4 5 6 7 8 9

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.0 5000 | 5040 | 5080 | 5120 | 5160 | 5199 | 5239 | 5279 | 5319 | 5359
0.1 5398 | 5438 | 5478 | 5517 | 5557 | 5596 | 5636 | 5675 | 5714 | 5733
0.2 5793 | 5832 | 5871 | 5910 | 5948 | 5987 | 6026 | 6064 | 6103 | 6141
0.3 6179 | 6217 | 6255 | 6293 | 6331 | 6368 | 6406 | 6443 | 6480 | 6517
0.4 6554 | 6591 | 6628 | 6664 | 6700 | 6736 | 6772 | 6808 | 6844 | 6879

0.5 6915 | 6950 | 6985 | 7019 | 7054 | 7088 | 7123 | 7157 | 7190 | 7224
0.6 7257 | 7291 | 7324 | 7357 | 7389 | 7422 | 7454 | 7486 | 7517 | 7549
0.7 7580 | 7611 | 7642 | 7673 | 7703 | 7734 | 7764 | 7794 | 7823 | 7852
0.8 7881 | 7910 | 7939 | 7967 | 7995 | 8023 | 8051 | 8078 | 8106 | 8133
0.9 8159 | 8186 | 8212 | 8238 | 8264 | 8289 | 8315 | 8340 | 8365 | 8389

1.0 8413 | 8438 | 8461 | 8485 | 8508 | 8531 | 8554 | 8577 | 8599 | 8621
1.1 8643 | 8665 | 8686 | 8708 | 8729 | 8749 | 8770 | 8790 | 8810 | 8830
1.2 8849 | 8869 | 8888 | 8907 | 8925 | 8944 | 8962 | 8980 | 8997 | 9015
1.3 9032 | 9049 | 9066 | 9082 | 9099 | 9115 | 9131 | 9147 | 9162 | 9177
1.4 9192 | 9207 | 9222 | 9236 | 9251 | 9265 | 9279 | 9292 | 9306 | 9319
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1.5 9332 | 9345 | 9357 | 9370 | 9382 | 9394 | 9406 | 9418 | 9429 | 9441
1.6 9452 | 9463 | 9474 | 9484 | 9495 | 9505 | 9515 | 9525 | 9535 | 9545
1.7 9554 | 9564 | 9573 | 9582 | 9591 | 9599 | 9608 | 9616 | 9625 | 9633
1.8 9641 | 9649 | 9656 | 9664 | 9671 | 9678 | 9686 | 9693 | 9699 | 9706
1.9 9713 | 9719 | 9726 | 9732 | 9738 | 9744 | 9750 | 9756 | 9761 | 9767

2.0 9772 | 9778 | 9783 | 9788 | 9793 | 9798 | 9803 | 9808 | 9812 | 9817
2.1 9821 | 9826 | 9830 | 9834 | 9838 | 9842 | 9846 | 9850 | 9854 | 9857
2.2 9861 | 9864 | 9868 | 9871 | 9875 | 9878 | 9881 | 9884 | 9887 | 9890
2.3 9893 | 9896 | 9898 | 9901 | 9904 | 9906 | 9909 [ 9911 | 9913 | 9916
2.4 9918 | 9920 | 9922 | 9925 | 9927 | 9929 | 9931 [ 9932 | 9934 | 9936

2.5 9938 | 9940 | 9941 | 9943 | 9945 | 9946 | 9948 | 9949 | 9951 | 9952
2.6 9953 | 9955 | 9956 | 9957 | 9959 | 9960 | 9961 [ 9962 | 9963 | 9964
2.7 9965 | 9966 | 9967 | 9968 | 9969 | 9970 | 9971 | 9972 | 9973 | 9974
2.8 9974 | 9975 | 9976 | 9977 | 9977 | 9978 | 9979 | 9979 | 9980 | 9981
2.9 9981 | 9982 | 9982 | 9983 | 9984 | 9984 | 9985 [ 9985 | 9986 | 9986

3.0 9987 | 9987 | 9987 | 9988 | 9988 | 9989 | 9989 [ 9989 | 9990 | 9990
3.1 9990 | 9991 | 9991 | 9991 | 9992 | 9992 | 9992 | 9992 | 9993 | 9993
3.2 9993 | 9993 | 9994 | 9994 | 9994 | 9994 | 9994 | 9995 | 9995 | 9995
3.3 9995 | 9995 | 9996 | 9996 | 9996 | 9996 | 9996 | 9996 | 9996 | 9997
3.4 9997 | 9997 | 9997 | 9997 | 9997 | 9997 | 9997 | 9997 | 9997 | 9998

u corresponds to test statistic

N
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Standard normal distribution ®(u) (two-sided)

u 0 1 2 3 4 5 6 7 8 9

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0.0 0000 | 0080 | 0160 | 0239 | 0319 | 0399 | 0478 | 0558 | 0638 | 0717
0.1 0797 | 0876 | 0955 | 1034 | 1113 | 1192 | 1271 | 1350 | 1429 | 1507
0.2 1585 | 1663 | 1741 | 1819 | 1897 | 1974 | 2051 | 2128 | 2205 | 2282
0.3 2358 | 2434 | 2510 | 2586 | 2661 | 2737 | 2812 | 2886 | 2961 | 3035
0.4 3108 | 3182 | 3255 | 3328 | 3401 | 3473 | 3545 | 3616 | 3688 | 3759

0.5 3829 | 3900 | 3969 | 4039 | 4108 | 4177 | 4245 | 4313 | 4381 | 4448
0.6 4515 | 4581 | 4647 | 4713 | 4778 | 4843 | 4908 | 4971 | 5035 | 5098
0.7 5161 | 5223 | 5285 | 5346 | 5407 | 5468 | 5528 | 5587 | 5646 | 5705
0.8 5763 | 5821 | 5878 | 5935 | 5991 | 6047 | 6102 | 6157 | 6211 | 6265
0.9 6319 | 6372 | 6424 | 6476 | 6528 | 6579 | 6629 | 6680 | 6729 | 6778

1.0 6827 | 6875 | 6923 | 6969 | 7017 | 7063 | 7109 | 7154 | 7199 | 7243
1.1 7287 | 7330 | 7373 | 7415 | 7457 | 7499 | 7540 | 7580 | 7620 | 7660
1.2 7699 | 7737 | 7775 | 7813 | 7850 | 7887 | 7923 | 7959 | 7995 | 8030
1.3 8064 | 8098 | 8132 | 8165 | 8198 | 8230 | 8262 | 8293 | 8324 | 8355
1.4 8385 | 8415 | 8444 | 8473 | 8501 | 8529 | 8557 | 8584 | 8611 | 8638
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1.5 8664 | 8690 | 8715 | 8740 | 8764 | 8789 | 8812 | 8836 | 8859 | 8882
1.6 8904 | 8926 | 8948 | 8969 | 8990 | 9011 | 9031 | 9051 | 9070 | 9090
1.7 9109 | 9127 | 9146 | 9164 | 9181 | 9199 | 9216 | 9233 | 9249 | 9266
1.8 9281 | 9297 | 9312 | 9328 | 9342 | 9357 | 9371 | 9385 | 9399 | 9412
1.9 9426 | 9439 | 9451 | 9464 | 9476 | 9488 | 9500 [ 9512 | 9523 | 9534

2.0 9545 | 9556 | 9566 | 9576 | 9586 | 9596 | 9606 | 9616 | 9625 | 9634
2.1 9643 | 9651 | 9660 | 9668 | 9677 | 9684 | 9692 | 9700 | 9707 | 9715
2.2 9722 | 9729 | 9736 | 9743 | 9749 | 9756 | 9762 | 9768 | 9774 | 9780
2.3 9786 | 9791 | 9797 | 9802 | 9807 | 9812 | 9817 | 9822 | 9827 | 9832
2.4 9836 | 9841 | 9845 | 9849 | 9853 | 9857 | 9861 | 9865 | 9869 | 9872

2.5 9876 | 9879 | 9883 | 9886 | 9889 | 9892 | 9895 [ 9898 | 9901 | 9904
2.6 9907 | 9910 | 9912 | 9915 | 9917 | 9920 | 9922 | 9924 | 9926 | 9929
2.7 9931 | 9933 | 9935 | 9937 | 9939 | 9940 | 9942 | 9944 | 9946 | 9947
2.8 9949 | 9951 | 9952 | 9954 | 9955 | 9956 | 9958 | 9959 | 9960 | 9962
2.9 9963 | 9964 | 9965 | 9966 | 9967 | 9968 | 9969 | 9970 | 9971 | 9972

3.0 9973 | 9974 | 9975 | 9976 | 0076 | 9977 | 9978 | 9979 | 9979 | 9980
3.1 9981 | 9981 | 9982 | 9983 | 9983 | 9984 | 9984 [ 9984 | 9985 | 9986
3.2 9986 | 9987 | 9987 | 9988 | 9988 | 9989 | 9989 [ 9989 | 9990 | 9990
3.3 9990 | 9991 | 9991 | 9991 | 9992 | 9992 | 9992 | 9992 | 9993 | 9993

u corresponds to test statistic z
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12.2 t distribution (one-sided)

Significance level
Degrees of 90 % 95 % 99 % 99.9 %
freedom f
1 3.078 6.314 31.82 318.30
2 1.886 2.920 6.965 22.33
3 1.638 2.353 4.541 10.21
4 1.533 2.132 3.747 7.173
5 1.476 2.015 3.365 5.893
6 1.440 1.943 3.143 5.208
7 1.415 1.895 2.998 4.785
Q 8 1.397 1.860 2.896 4.501
3 9 1.383 1.833 2.821 4.297
@ 10 1.372 1.812 2.764 4.144
8
S 11 1.363 1.796 2.718 4.025
§ 12 1.356 1.782 2.681 3.930
N 13 1.350 1.771 2.650 3.852
14 1.345 1.761 2.624 3.787
15 1.341 1.753 2.602 3.733
16 1.337 1.746 2.583 3.686
17 1.333 1.740 2.567 3.646
18 1.330 1.734 2.552 3.610
19 1.328 1.729 2.539 3.579
20 1.325 1.725 2.528 3.552
21 1.323 1.721 2.518 3.527
22 1.321 1.717 2.508 3.505
23 1.319 1.714 2.500 3.485
24 1.318 1.711 2.492 3.467
25 1.316 1.708 2.485 3.450
26 1.315 1.706 2.479 3.435
27 1.314 1.703 2.473 3.421
28 1.313 1.701 2.467 3.408
29 1.311 1.699 2.462 3.396
30 1.310 1.697 2.457 3.385
40 1.303 1.684 2.423 3.307
50 1.299 1.676 2.403 3.261
60 1.296 1.671 2.390 3.232
80 1.292 1.664 2.374 3.195
100 1.290 1.660 2.364 3.174
200 1.286 1.652 2.345 3.131
500 1.283 1.648 2.334 3.107
0 1.282 1.645 2.326 3.090
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Evaluation of Measurement Series

t distribution (two-sided)

Significance level
f 80 % 90 % 95 % 99 % 99.8 % 99.9%
1 3.078 6.314 12.71 63.66 318.30 636.600
2 1.886 2.920 4.303 9.925 22.33 31.60
3 1.638 2.353 3.182 5.841 10.21 12.92
4 1.533 2.132 2.776 4.604 7.173 8.610
5 1.476 2.015 2.571 4.032 5.893 6.869
6 1.440 1.943 2.447 3.707 5.208 5.959
7 1.415 1.895 2.365 3.499 4.785 5.408
8 1.397 1.860 2.306 3.355 4.501 5.041
Q 9 1.383 1.833 2.262 3.250 4.297 4.781
S 10 1.372 1.812 2.228 3.169 4.144 4.587
w
8 11 1.363 1.796 2.201 3.106 4.025 4.437
§ 12 1.356 1.782 2.179 3.055 3.930 4.318
8 13 1.350 1.771 2.160 3.012 3.852 4.221
N 14 1.345 1.761 2.145 2.977 3.787 4.140
15 1.341 1.753 2.131 2.947 3.733 4.073
16 1.337 1.746 2.120 2.921 3.686 4.015
17 1.333 1.740 2.110 2.898 3.646 3.965
18 1.330 1.734 2.101 2.878 3.610 3.922
19 1.328 1.729 2.093 2.861 3.579 3.883
20 1.325 1.725 2.086 2.845 3.552 3.850
21 1.323 1.721 2.080 2.831 3.527 3.819
22 1.321 1.717 2.074 2.819 3.505 3.792
23 1.319 1.714 2.069 2.807 3.485 3.768
24 1.318 1.711 2.064 2.797 3.467 3.745
25 1.316 1.708 2.060 2.787 3.450 3.725
26 1.315 1.706 2.056 2.779 3.435 3.707
27 1.314 1.703 2.052 2.771 3.421 3.690
28 1.313 1.701 2.048 2.763 3.408 3.674
29 1.311 1.699 2.045 2.756 3.396 3.659
30 1.310 1.697 2.042 2.750 3.385 3.646
40 1.303 1.684 2.021 2.704 3.307 3.551
50 1.299 1.676 2.009 2.678 3.261 3.496
60 1.296 1.671 2.000 2.660 3.232 3.460
80 1.292 1.664 1.990 2.639 3.195 3.416
100 1.290 1.660 1.984 2.626 3.174 3.390
200 1.286 1.652 1.972 2.601 3.131 3.340
500 1.283 1.648 1.965 2.586 3.107 3.310
o0 1.282 1.645 1.960 2.576 3.090 3.291

© Robert Bosch GmbH | Edition 01.2016 -92-



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

Evaluation of Measurement Series

12.3 F distribution (Significance level 90 %, one-sided)

f;

f, 1 2 3 4 5 6 8 10 12 20 50 0

1 399 [ 495 | 53.6 | 55.8 | 57.2 | 58.2 | 59.4 | 60.2 | 60.7 | 61.7 | 62.7 | 63.3
2 8.53 | 9.00 [ 9.16 | 9.24 | 9.29 | 9.33 [ 9.37 | 9.39 | 9.41 | 9.44 | 9.47 | 9.49
3 554 | 5.46 | 539 | 5.34 | 5.31 | 5.28 | 5.25 | 5.23 | 5.22 | 5.18 | 5.15 | 5.13
4 454 1432|419 |4.11|405 | 401 (395|392 |390 | 384 (3.80] 3.76
5 4.06 | 3.78 | 3.62 | 3.52 | 3.45 | 3.40 | 3.34 | 3.30 | 3.27 | 3.21 | 3.15 | 3.10
6 3.78 | 3.46 | 3.29 | 3.18 | 3.11 | 3.05 | 2.98 | 2.94 | 2.90 | 2.84 | 2.77 | 2.72
7 3.590 | 3.26 | 3.07 | 296 | 2.88 | 2.83 | 2.75 | 2.70 | 2.67 | 2.59 | 2.52 | 2.47
8 346 | 3.11 | 292 | 2.81 | 2.73 | 2.67 | 2.59 | 2.54 | 2.50 | 2.42 | 2.35 | 2.29
9 3.36 | 3.01 | 2.81 | 2.69 | 2.61 | 2.56 | 2.47 | 2.42 | 2.38 | 2.30 | 2.22 | 2.16

10 | 3.29 (292 | 2.73 | 2.61 | 2.52 | 2.46 | 2.38 | 2.32 | 2.28 | 2.20 | 2.12 | 2.06

12 | 3.18 | 2.81 | 2.61 | 248 | 239 | 233 | 2.24 | 2.19 | 2.15 | 2.06 | 1.97 | 1.90
14 | 3.10 | 2.73 | 2.52 | 239 | 231 | 2.24 | 2.15 | 2.10 | 2.05 | 2.96 | 1.87 | 1.80
16 | 3.05 | 2.67 | 246 | 233 | 2.24 | 2.18 | 2.09 | 2.03 | 1.99 | 1.89 | 1.79 | 1.72
18 | 3.01 | 2.62 | 2.42 | 2.29 | 2.20 | 2.13 | 2.04 | 195 | 1.93 | 1.84 | 1.74 | 1.66
20 | 297 | 259|238 | 225|216 |2.09| 200|194 |189 179|169 | 161

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

25 292 (253|232 | 218 |2.09 202|193 187|182 | 172|161 | 1.52
30 | 2.88 | 2.49 | 228 | 214|205 (198|188 | 182 | 1.77 | 1.67 | 1.55 | 1.46
35 285|246 (225|211 (202|195 (185|179 (174|163 | 151|141
40 | 2.84 | 2.44 | 223 |1 2.09 (200|193 (183|176 (171|161 | 1.48 | 1.38
45 282|242 (221|207 (198|191 (181|174 | 170|158 | 146 | 1.35
50 [ 2.81|241 220|206 (197|190 (180|173 (168 | 157 | 144 | 1.33

60 [ 2.79 | 239|218 | 204 (195|187 177 | 171|166 | 154 | 1.41 | 1.29
80 | 2.77 | 237 (215|202 (192|185 | 175|168 (1.63 | 1.51 | 1.38 | 1.24

100 (| 2.76 | 2.36 | 2.14 | 2.00 | 1.91 | 1.83 | 1.73 | 1.66 | 1.61 | 1.49 | 1.35 | 1.21

o0 2,71 | 230|208 | 194 | 1.85 | 1.77 | 1.67 | 1.60 | 1.55 | 1.42 | 1.26 | 1.00
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Evaluation of Measurement Series

F distribution (P. = 95 %, one-sided)

fl
f2 1 2 3 4 5 6 8 10 12 20 50 o0
1 161 200 216 225 230 234 239 242 244 248 252 254
2 185 | 19.0 | 19.2 | 19.2 | 19.3 | 19.3 | 19.4 | 194 | 194 | 19.4 | 19.5 | 19.5
3 10.1 9.6 9.3 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.53
4 7.71 | 6.94 | 6.59 [ 6.39 | 6.26 | 6.16 | 6.04 | 5.96 | 5.91 | 5.80 | 5.70 | 5.63
5 6.61 | 5.79 | 5.41 [ 5.19 [ 5.05 | 495 | 482 | 4.74 | 4.68 | 4.56 | 4.44 | 4.36
6 599 | 5.14 | 4.76 | 453 | 439 | 4.28 | 4.15 | 4.06 | 4.00 | 3.87 | 3.75 | 3.67
7 559 | 474 | 435 | 4.12 | 3.97 | 3.87 | 3.73 | 3.64 | 3.57 | 3.44 | 3.32 | 3.23
8 5.32 | 446 | 4.07 | 3.84 | 3.69 | 3.58 | 3.44 | 3.35 | 3.28 | 3.15 | 3.02 | 2.93
9 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.23 | 3.14 | 3.07 | 2.94 | 2.80 | 2.71
10 496 ( 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.07 | 298 [ 291 | 2.77 | 2.64 | 2.54
12 475 (3.89 1349 | 3.26 | 3.11 | 3.00 | 2.85 | 2.75 | 2.69 | 2.54 | 2.40 | 2.30
14 460 | 3.74 | 3.34 | 3.11 | 296 | 2.85 | 2.70 | 2.60 | 2.53 | 2.39 | 2.24 | 2.13
16 449 (363 | 3.24 | 3.01 | 2.85 | 2.74 | 259 | 249 (242 (228 | 2.12 | 2.01
18 441 | 355 | 3.16 | 293 | 2.77 | 2.66 | 2.51 | 241 | 234 | 2.19 | 2.04 | 1.92
20 435 (349 |3.10 | 2.87 | 2.71 | 2.60 | 2.45 | 2.35 | 2.28 | 2.12 | 1.97 | 1.84
25 424 | 3.39 | 299 | 2.76 | 2.60 | 2.49 | 2.34 | 2.24 | 2.16 | 2.01 | 1.84 | 1.71
30 417 | 3.32 | 292 | 2.69 | 253 | 2.42 | 2.27 | 2.16 [ 2.09 | 193 | 1.76 | 1.62
35 4,12 | 3.27 | 2.87 | 2.64 | 3.49 | 2.37 | 2.22 | 2.11 | 2.04 | 1.88 | 1.70 | 1.56
40 408 | 3.23 |1 284|261 |245 | 2.34|2.18 | 2.08 |12.00|1.84 | 1.66 | 1.51
45 406 | 3.20 | 2.81 | 2.58 | 2.42 | 2.31 | 2.15 | 2.05 (197 | 1.81 | 1.63 | 1.47
50 403 | 3.18 | 2.79 | 256 |2.40 | 2.29 | 2.13 | 2.03 | 195 | 1.78 | 1.60 | 1.44
60 400 | 3.15| 2.76 | 253 | 2.37 |1 2.25 | 2.10 | 199 (192 | 1.75 | 1.56 | 1.39
70 398 | 3.13 | 2.74 | 250 | 235 | 2.23 | 207 | 197 | 1.89 | 1.72 | 1.53
80 396 | 3.11 | 2.72 | 249 | 233 | 221|206 (195|188 | 1.70 | 1.51 | 1.32
90 395 (3.10 | 2.71 | 2.47 | 2.32 | 220 | 2.04 | 194 | 1.86 | 1.69 | 1.49
100 [ 3.94 | 3.09 | 2.70 | 246 | 2.31 [ 2.19 | 2.03 | 193 | 1.85 | 1.68 | 1.48 | 1.28
150 [ 3.90 | 3.06 | 2.66 | 2.43 | 2.27 | 2.16 | 2.00 | 1.89 | 1.82 | 1.64 | 1.44
200 || 3.89 | 3.04 (| 2.65 | 2.42 | 2.26 | 2.14 | 1.98 | 1.88 | 1.80 | 1.62 | 1.41
300 || 3.87 | 3.03 [ 2.63 | 2.40 | 2.24 | 2.13 | 197 | 1.86 | 1.78 | 1.61 | 1.39
500 || 3.86 | 3.01 | 2.62 | 2.39 | 2.23 | 2.12 | 196 | 1.85 | 1.77 | 1.59 | 1.38
00 3.84 | 3.00 | 260 | 237 (2.21 | 2.10| 194 | 183 | 1.75 | 1.57 | 1.35 | 1.00
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Evaluation of Measurement Series

F distribution (P. = 99 %, one-sided)

fl
f2 1 2 3 4 5 6 8 10 12 20 50 o0
2 98.5199.0 | 99.2 | 99.2 1 99.3 (993 (994 | 994 |99.4 | 99.4 | 99.5 | 99.5
3 34.1 | 30.8 | 29.5 | 295 | 28.2 | 27.9 | 27.5 | 27.2 | 27.1 | 26.7 | 26.4 | 26.1
4 21.2 | 18.0 | 16.7 | 16.0 | 15,5 | 15.2 | 14.8 | 14.5 | 14.4 | 14.0 | 13.7 | 13.5
5 16.3 | 13.3 | 12.1 | 11.4 | 11.0 | 10.7 | 10.3 | 10.1 [ 9.89 | 9.55 | 9.24 | 9.02
6 13.8 | 109 | 9.78 | 9.15 | 8.75 | 8.47 | 8.10 | 7.87 | 7.72 | 7.40 | 7.09 | 6.88
7 12.3 [ 955 | 845 | 785 | 7.46 | 7.19 | 6.84 | 6.62 | 6.47 | 6.16 | 5.86 | 5.65
8 11.3 (| 865 | 7.59 | 7.01 | 6.63 | 6.37 | 6.03 | 5.81 | 5.67 | 5.36 | 5.07 | 4.86
9 10.6 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.47 | 5.26 | 5.11 | 4.81 | 4.52 | 4.31
10 10.0 | 7.56 | 6.55 | 599 | 5.64 | 5.39 | 5.06 | 4.85 | 4.71 | 4.41 | 4.12 | 3.91
12 933 16,93 |595| 541 | 5.06 | 482 (450 (430 | 4.16 | 3.86 | 3.57 | 3.36
14 886 | 6.51 | 5.56 | 5.04 | 4.69 | 4.46 | 4.14 | 3.94 | 3.80 | 3.51 | 3.22 | 3.00
16 853 |1 6.23 | 5.29 | 477 | 4.44 | 4.20 | 3.89 | 3.69 | 3.55 | 3.26 | 2.97 | 2.75
18 829 | 6.01 | 5.09 | 458 | 4.25 | 4.01 | 3.71 | 3.51 | 3.37 | 3.08 | 2.78 | 2.57
20 810 | 5.85 | 494 | 443 | 4.10 | 3.87 | 3.56 | 3.37 | 3.23 | 294 | 2.64 | 2.42
25 7.77 | 5,57 | 468 | 4.18 | 3.86 | 3.63 | 3.32 | 3.13 | 2.99 | 2.70 | 2.40 | 2.17
30 7.56 | 5.39 | 451 | 4.02 (| 3.70 | 3.47 | 3.17 | 298 | 2.84 | 2.55 | 2.25 | 2.01
35 7.42 | 5.27 | 4.40 | 391 | 3.59 | 3.37 | 3.07 | 2.88 | 2.74 | 2.44 | 2.14 | 1.89
40 7.31 | 518 | 431 (383 (351329399 | 280 | 2.66 | 2.37 | 2.06 | 1.80
45 7.23 | 5.11 | 4.25 | 3.77 | 3.45 | 3.23 | 294 | 2.74 | 261 | 2.31 | 2.00 | 1.74
50 7.17 | 5.06 | 4.20 | 3.72 | 3.41 | 3.19 | 2.89 | 2.70 | 2.56 | 2.27 | 1.95 | 1.68
60 7.08 | 498 | 4.13 | 3.65 | 3.34 | 3.12 | 2.82 | 2.63 | 2.50 | 2.20 | 1.88 | 1.60
70 7.01 | 492 | 4.08 | 3.60 | 3.29 | 3.07 | 2.78 | 2.59 | 2.45 | 2.15 | 1.83
80 6.96 | 4.88 | 4.04 | 3.56 | 3.26 | 3.04 | 2.74 | 255 | 2.42 | 2.12 | 1.79 | 1.49
90 6.93 | 4.85 | 4.01 | 3.54 | 2.23 | 3.01 | 2.72 | 252 (239|209 | 176
100 [ 6.90 | 4.82 | 3.98 | 3.51 | 3.21 [ 299 | 2.69 | 2.50 | 2.37 | 2.07 | 1.73 | 1.43
150 |[ 6.81 | 4.75 | 3.92 | 3.45 | 3.14 | 292 | 2.63 | 2.44 | 2.31 | 2.00 | 1.66
200 || 6.76 | 4.71 | 3.88 | 3.41 | 3.11 | 2.89 | 2.60 | 2.41 | 2.27 | 1.97 | 1.63
300 || 6.72 | 4.68 | 3.85 | 3.38 [ 3.08 | 2.86 | 2.57 | 2.38 | 2.24 | 1.94 | 1.59
500 || 6.69 | 4.65 | 3.82 | 3.36 | 3.05 | 2.84 | 255 | 2.36 | 2.22 | 1.92 | 1.56
00 6.63 | 461 | 3.78 (| 3.32 (3.02 280|251 |232]2.18|1.88 | 1.52 | 1.00
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Evaluation of Measurement Series

F distribution (P. = 95 %, two-sided)

1 648 800 864 900 922 937 948 957 963
2 385 | 39.0 | 39.2 | 39.2 | 393 | 393 | 394 | 394 | 394
3 17.4 | 16.0 | 154 | 15.1 149 | 147 | 146 | 145 14.5
4 12.2 10.6 | 9.98 | 9.60 | 9.36 | 9.20 | 9.07 | 8.98 | 8.90
5 10.0 | 843 | 7.76 | 739 | 7.15 | 698 | 6.85 | 6.76 | 6.68

6 881 | 7.26 | 6.60 | 6.23 | 599 | 582 | 570 | 5.60 | 5.52
7 8.07 | 654 | 5,89 | 5,52 | 529 | 512 | 499 | 490 | 4.82
8 7.57 | 6.06 | 542 | 5.05 | 4.82 | 465 | 453 | 443 | 436
9 7.21 | 571 | 5.08 | 472 | 448 | 432 | 420 | 4.10 | 4.03
6.94 | 546 | 483 | 447 | 4.24 | 4.07 | 395 | 3.85 | 3.78

11 6.72 | 5.25 | 463 | 4.27 | 4.04 | 3.88 | 3.76 | 3.66 | 3.59
12 6.55 | 5.10 | 447 | 412 | 3.89 | 3.73 | 3.61 | 3.51 | 3.44
13 6.41 | 497 | 435 | 400 | 3.77 | 3.60 | 3.48 | 3.39 | 3.31
14 6.30 | 486 | 424 | 3.89 | 3.66 | 3.50 | 3.38 | 3.29 | 3.21
15 6.20 | 4.77 | 415 | 3.80 | 3.58 | 3.41 | 3.29 | 3.20 | 3.12

2020-04-06 - SOCOS
[EE
o

16 6.12 | 469 | 408 | 3.73 | 3,50 | 3.34 | 3.22 | 3.12 | 3.05
17 6.04 | 462 | 401 | 3.66 | 3.44 | 3.28 | 3.16 | 3.06 | 2.98
18 598 | 456 | 3.95 | 3.61 | 3.38 | 3.22 | 3.10 | 3.01 | 2.93
19 592 | 451 | 3.90 | 3.56 | 3.33 | 3.17 | 3.05 | 2.96 | 2.88
20 587 | 446 | 3.86 | 3.51 | 3.29 | 3.13 | 3.01 | 2.91 | 2.84

22 579 | 438 | 3.78 | 3.44 | 3.22 3.05 2.93 284 | 2.76
24 572 | 4.32 3.72 3.38 | 3.15 299 | 2.87 2.78 | 2.70
26 5.66 | 4.27 3.67 | 3.33 3.10 | 2.94 | 2.82 2.73 2.65
28 561 | 4.22 3.63 3.29 3.06 [ 290 | 2.78 | 2.69 | 2.61
30 557 | 4.18 | 3.59 | 3.25 3.03 287 | 2.75 2.65 2.57

40 542 | 4.05 3.46 | 3.13 290 | 2.74 | 2.62 2.53 2.45
50 5.34 | 3.97 3.39 | 3.05 2.83 2.67 | 2.55 246 | 2.38
60 5.29 | 3.93 3.34 | 3.01 2.79 2.63 2.51 241 2.33
70 5.25 3.89 3.31 2.97 2.75 2.59 | 247 2.38 | 2.30
80 5.22 3.86 | 3.28 | 2.95 2.73 2.57 | 2.45 2.35 2.28

90 520 | 3.84 | 3.26 | 2.93 2.71 2.55 2.43 2.34 | 2.26
100 5.18 | 3.83 3.25 2.92 270 | 2.54 | 2.42 2.32 2.24
200 509 | 3.76 | 3.18 | 2.85 2.63 247 | 2.35 2.26 | 2.18
500 5.05 3.72 3.14 | 2.81 2.59 2.43 2.31 2.22 2.14
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Evaluation of Measurement Series

F distribution (P, = 95 %, two-sided), cont.

f, 10 15 20 30 40 50 100 o0

1 969 985 993 1.001 1.006 | 1.008 | 1.013 | 1.018
2 394 39.4 39.4 39.5 39.5 39.5 39.5 39.5
3 14.4 14.3 14.2 14.1 14.0 14.0 14.0 13.9
4 8.84 8.66 8.56 8.46 8.41 8.38 8.32 8.26
5 6.62 6.43 6.33 6.23 6.18 6.14 6.08 6.02

6 5.46 5.27 5.17 5.07 5.01 4.98 4.92 4.85
7 4.76 4.57 4.47 4.36 4.31 4.28 4.21 4.14
8 4.30 4.10 4.00 3.89 3.84 3.81 3.74 3.67
9 3.96 3.77 3.67 3.56 3.51 3.47 3.40 3.33
3.72 3.52 3.42 3.31 3.26 3.22 3.15 3.08

11 3.52 3.34 3.22 3.12 3.06 3.03 2.95 2.88
12 3.37 3.18 3.07 2.96 2.91 2.87 2.80 2.72
13 3.25 3.05 2.95 2.84 2.78 2.74 2.67 2.60
14 3.15 2.95 2.84 2.73 2.67 2.64 2.56 2.49
15 3.06 2.86 2.76 2.64 2.58 2.55 2.47 2.40

2020-04-06 - SOCOS
[EE
o

16 2.99 2.79 2.68 2.57 2.51 2.47 2.40 2.32
17 2.92 2.72 2.62 2.50 244 241 2.33 2.25
18 2.87 2.67 2.56 2.44 2.38 2.35 2.27 2.19
19 2.82 2.62 2.51 2.39 2.33 2.30 2.22 2.13
20 2.77 2.57 2.46 2.35 2.29 2.25 2.17 2.09

22 2.70 2.50 2.39 2.27 2.21 2.17 2.09 2.00
24 2.64 244 2.33 2.21 2.15 2.11 2.02 1.94
26 2.59 2.39 2.28 2.16 2.09 2.05 1.97 1.88
28 2.55 2.34 2.23 2.11 2.05 2.01 1.92 1.83
30 2.51 2.31 2.20 2.07 2.01 1.97 1.88 1.79

40 2.39 2.18 2.07 1.94 1.88 1.83 1.74 1.64
50 2.32 2.11 1.99 1.87 1.80 1.75 1.66 1.55
60 2.27 2.06 1.94 1.82 1.74 1.70 1.60 1.48
70 2.24 2.03 1.91 1.78 1.71 1.66 1.56 1.44
80 2.21 2.00 1.88 1.75 1.68 1.63 1.53 1.40

90 2.19 1.98 1.86 1.73 1.66 1.61 1.50 1.37
100 2.18 1.97 1.85 1.71 1.64 1.59 1.48 1.35
200 2.11 1.90 1.78 1.64 1.56 1.51 1.39 1.23
500 2.07 1.86 1.74 1.60 1.51 1.46 1.34 1.14
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Evaluation of Measurement Series

F distribution (P. = 99 %, two-sided)

1 16200 | 20000 | 21600 | 22500 | 23100 | 23400 | 23700 | 23900 | 24100
2 198 199 199 199 199 199 199 199 199
3 55.6 | 498 | 474 | 46.2 | 453 | 448 | 444 | 441 | 438
4 313 | 263 | 243 | 23.2 | 225 | 220 | 216 | 21.4 | 21.1
5 22.8 | 183 | 16.5 15.6 | 149 | 145 142 | 14.0 | 138

6 186 | 145 | 129 | 12.0 | 115 | 111 10.8 | 10.6 | 10.4
7 16.2 12.4 | 109 | 10.1 | 9.52 | 9.16 | 8.89 | 8.68 | 8.51
8 147 | 11.0 | 960 | 880 | 830 | 795 ( 7.69 | 750 | 7.34
9 136 | 10.1 | 872 | 796 | 7.47 | 7.13 | 6.89 | 6.69 | 6.54
128 | 943 | 808 | 734 | 6.87 | 6.54 | 6.30 | 6.12 | 597

11 12.2 | 891 | 760 | 6.88 | 6.42 | 6.10 | 586 | 5.68 | 5,54
12 11.8 | 851 | 7.23 | 6,52 | 6.07 | 5.76 | 552 | 5.35 | 5.20
13 114 | 819 | 693 | 6.23 | 579 | 548 | 5.25 | 5.08 | 4.93
14 11.1 | 792 | 6.68 | 6.00 | 556 | 5.26 | 5.03 | 486 | 4.72
15 10.8 | 770 | 6.48 | 5.80 | 537 | 5.07 | 485 | 4.67 | 454

2020-04-06 - SOCOS
[EE
o

16 10.6 | 7.51 6.30 | 5.64 | 521 | 491 | 469 | 452 | 4.38
17 10.4 | 7.35 6.16 | 550 | 5.07 | 4.78 | 456 | 4.39 | 4.25
18 10.2 7.21 6.03 537 | 496 | 466 | 4.44 | 4.28 | 4.14
19 10.1 7.09 5.92 527 | 485 | 456 | 434 | 4.18 | 4.04
20 9.94 | 6.99 5.82 517 | 476 | 4.47 | 4.26 | 4.09 | 3.96

22 9.73 6.81 5.65 502 | 461 | 432 | 4.11 394 | 381
24 9.55 6.66 | 552 | 489 | 449 | 4.20 | 3.99 3.83 3.69
26 9.41 6.54 | 541 | 479 | 438 | 4.10 | 3.89 3.73 3.60
28 9.28 | 6.44 | 532 | 470 | 430 | 4.02 3.81 3.65 3.52
30 9.18 | 6.35 524 | 4.62 | 4.23 3.95 3.74 | 3.58 | 3.45

40 883 | 6.07 | 498 | 437 | 399 | 3.71 | 3.51 | 3.35 | 3.22
50 8.63 | 590 | 483 | 4.23 | 3.85 | 3.58 | 3.38 | 3.22 | 3.09
60 849 | 580 | 473 | 4.14 | 3.76 | 3.49 | 3.29 | 3.13 | 3.01
70 8.40 | 5.72 | 466 | 4.08 [ 3.70 | 3.43 | 3.23 | 3.08 | 2.95
80 833 | 5,67 | 461 | 403 | 3.65 | 3.39 | 3.19 | 3.03 | 291

90 8.28 | 5.62 | 457 | 399 | 3.62 | 3.35 | 3.15 | 3.00 | 2.87
100 824 | 559 | 454 | 396 | 3,59 | 3.33 | 3.13 | 2.97 | 2.85
200 8.06 | 5.44 | 4.40 | 3.84 | 3.47 | 3.21 | 3.01 | 2.86 | 2.73
500 795 | 536 | 433 | 3.76 | 3.40 | 3.14 | 294 | 2.79 | 2.66
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F distribution (P, = 99 %, two-sided), cont.

f, 10 15 20 30 40 50 100 o0

1 24200 | 24600 | 24800 | 25000 | 25100 | 25200 | 25300 | 25500
2 199 199 199 199 199 199 199 200
3 43.7 43.1 42.8 42.5 42.4 42.2 42.0 41.8
4 21.0 20.4 20.2 19.9 19.8 19.7 19.5 19.3
5 13.6 13.1 12.9 12.7 12.5 12.5 12.3 12.1

6 10.3 9.81 9.59 9.36 9.24 9.17 9.03 8.88
7 8.38 7.97 7.75 7.53 7.42 7.35 7.22 7.08
8 7.21 6.81 6.61 6.40 6.29 6.22 6.09 5.95
9 6.42 6.03 5.83 5.62 5.52 5.45 5.32 5.19
5.85 5.47 5.27 5.07 4.97 4.90 4.77 4.64

11 5.42 5.05 4.86 4.65 4.55 4.49 4.36 4.23
12 5.09 4.72 4.53 4.33 4.23 4.17 4.04 3.90
13 4.82 4.46 4.27 4.07 3.97 3.91 3.78 3.65
14 4.60 4.25 4.06 3.86 3.76 3.70 3.57 3.44
15 4.42 4.07 3.88 3.69 3.58 3.52 3.39 3.26

2020-04-06 - SOCOS
[EE
o

16 4.27 3.92 3.73 3.54 3.44 3.37 3.25 3.11
17 4.14 3.79 3.61 3.41 3.31 3.25 3.12 2.98
18 4.03 3.68 3.50 3.30 3.20 3.14 3.01 2.87
19 3.93 3.59 3.40 3.21 3.11 3.04 2.91 2.78
20 3.85 3.50 3.32 3.12 3.02 2.96 2.83 2.69

22 3.70 3.36 3.18 2.98 2.88 2.82 2.69 2.55
24 3.59 3.25 3.06 2.87 2.77 2.70 2.57 2.43
26 3.49 3.15 2.97 2.77 2.67 2.61 2.47 2.33
28 3.41 3.07 2.89 2.69 2.59 2.53 2.39 2.25
30 3.34 3.01 2.82 2.63 2.52 2.46 2.32 2.18

40 3.12 2.78 2.60 2.40 2.30 2.23 2.09 1.93
50 2.99 2.65 2.47 2.27 2.16 2.10 1.95 1.79
60 2.90 2.57 2.39 2.19 2.08 2.01 1.86 1.69
70 2.85 2.51 2.33 2.13 2.02 1.95 1.80 1.62
80 2.80 2.47 2.29 2.08 1.97 1.90 1.75 1.56

90 2.77 2.44 2.25 2.05 1.94 1.87 1.71 1.52
100 2.74 241 2.23 2.02 1.91 1.84 1.68 1.49
200 2.63 2.30 2.11 1.91 1.79 1.71 1.54 1.31
500 2.56 2.23 2.04 1.84 1.72 1.64 1.46 1.18
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12.4 Chi-squared function

Degrees of freedom

F(X) 1 2 3 4 5 6 7
0.001 0.00 0.00 0.02 0.09 0.21 0.38 0.60
0.005 0.00 0.01 0.07 0.21 0.41 0.68 0.99
0.010 0.00 0.02 0.11 0.30 0.55 0.87 1.24
0.025 0.00 0.05 0.22 0.48 0.83 1.24 1.69
0.050 0.00 0.10 0.35 0.71 1.15 1.64 2.17
0.100 0.02 0.21 0.58 1.06 1.61 2.20 2.83
0.250 0.10 0.58 1.21 1.92 2.67 3.45 4.25
0.500 0.45 1.39 2.37 3.36 4.35 5.35 6.35
0.750 1.32 2.77 4.11 5.39 6.63 7.84 9.04
0.900 2.71 4.61 6.25 7.78 9.24 10.64 12.02
0.950 3.84 5.99 7.81 9.49 11.07 12.59 14.07
0.975 5.02 7.38 9.35 11.14 12.83 14.45 16.01
0.990 6.63 9.21 11.34 13.28 15.00 16.81 18.48
0.995 7.88 10.60 12.84 14.86 16.75 18.55 20.28
0.999 10.83 13.82 16.27 18.47 20.52 22.46 24.32

Degrees of freedom

F(X) 8 9 10 11 12 13 14
0.001 0.86 1.15 1.48 1.83 2.21 2.62 3.04
0.005 1.34 1.73 2.16 2.60 3.07 3.57 4.07
0.010 1.65 2.00 2.56 3.05 3.57 4.11 4.66
0.025 2.18 2.70 3.25 3.82 4.40 5.01 5.63
0.050 2.73 3.33 3.94 4.57 5.23 5.89 6.57
0.100 3.49 4.17 4.87 5.58 6.30 7.04 7.79
0.250 5.07 5.90 6.74 7.58 8.44 9.30 10.17
0.500 7.34 8.34 9.34 10.34 11.34 12.34 13.34
0.750 10.22 11.39 12.55 13.70 14.85 15.98 17.12
0.900 13.36 14.08 15.99 17.28 18.55 19.81 21.06
0.950 15.51 16.92 18.31 19.68 21.03 22.36 23.68
0.975 17.53 19.02 20.48 21.92 23.34 24.74 26.12
0.990 20.09 21.67 23.21 24.73 26.22 27.69 29.14
0.995 21.96 23.59 25.19 26.76 28.30 29.82 31.32
0.999 26.13 27.88 29.59 31.26 32.91 34.52 36.12

© Robert Bosch GmbH | Edition 01.2016

- 100 -



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

Evaluation of Measurement Series

Chi-squared function (cont.)

Degrees of freedom
F(X) 15 16 17 18 19 20 21
0.001 3.48 3.94 4.42 4.90 5.41 5.92 6.4
0.005 4.60 5.14 5.70 6.26 6.84 7.43 8.0
0.010 5.23 5.81 6.41 7.01 7.63 8.26 8.9
0.025 6.26 6.91 7.56 8.23 8.01 9.59 10.3
0.050 7.26 7.96 8.67 9.30 10.12 10.85 11.6
0.100 8.55 9.31 10.00 10.86 11.65 12.44 13.2
0.250 11.04 11.91 12.79 13.68 14.56 15.45 16.3
0.500 14.34 15.34 16.34 17.34 18.34 19.34 20.3
Q 0.750 18.25 19.37 20.49 21.60 22.72 23.83 24.0
S 0.900 22.31 23.54 24.77 25.09 27.20 28.41 29.6
[%2]
8 0.950 25.00 26.30 27.59 28.87 30.14 31.41 32.7
§ 0.975 27.40 28.85 30.10 31.53 32.85 34.17 35.5
§ 0.990 30.58 32.00 33.41 34.81 36.19 37.57 38.0
0.995 32.80 34.27 35.72 37.16 38.58 40.00 41.4
0.999 37.70 39.25 40.79 42.31 43.82 45.32 46.8

Degrees of freedom

F(X) 22 23 24 25 26 27 28

0.001 7.0 7.5 8.1 8.7 9.2 9.8 10.43
0.005 8.6 9.3 9.9 10.5 11.2 11.8 12.5
0.010 9.5 10.2 10.9 11.5 12.2 12.9 13.6
0.025 11.0 11.7 12.4 13.1 13.8 14.6 15.3
0.050 12.3 13.1 13.8 14.6 15.4 16.2 16.9
0.100 14.0 14.8 15.7 16.5 17.3 18.1 18.9
0.250 17.2 18.1 19.0 19.9 20.8 21.7 22.7
0.500 21.3 22.3 23.3 24.3 25.3 26.3 27.3
0.750 26.0 27.1 28.2 29.3 30.4 31.5 32.6
0.900 30.8 32.0 33.2 34.4 35.0 36.7 37.9
0.950 33.9 35.2 36.4 37.7 38.0 40.1 41.3
0.975 36.8 38.1 39.4 40.6 41.9 43.2 44,5
0.990 40.3 41.6 43.0 44.3 45.6 47.0 48.3
0.995 42.8 44.2 45.6 46.9 48.3 49.6 51.0
0.999 48.3 49.7 51.2 52.6 54.1 55.5 56.9
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Chi-squared function (cont.)

Degrees of freedom

F(X) 29 30 40 50 60 70 80

0.001 11.0 11.6 17.9 24.7 31.7 39.0 46.5
0.005 13.1 13.8 20.7 28.0 35.5 43.3 51.2
0.010 14.3 15.00 22.2 29.7 37.5 45.4 53.5
0.025 16.0 16.8 24.4 32.4 40.5 48.8 57.2
0.050 17.7 18.5 26.5 34.8 43.2 51.7 60.4
0.100 19.8 20.6 29.1 37.7 46.5 55.3 64.3
0.250 23.6 24.5 33.7 42.9 52.3 61.7 71.1
0.500 28.3 29.3 39.3 49.3 59.3 69.3 79.3
0.750 33.7 34.8 45.6 56.3 67.0 77.6 88.1
0.900 39.1 40.3 51.8 63.2 74.4 85.5 96.6
0.950 42.6 43.8 55.8 67.5 79.1 90.5 101.9
0.975 45.7 47.0 59.3 71.4 83.3 95.0 106.6
0.990 49.6 50.9 63.7 76.2 88.4 100.4 112.3
0.995 52.3 53.7 66.8 79.5 92.0 104.2 116.3
0.999 58.3 59.7 73.4 86.7 99.6 112.3 124.8
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12.5 Critical Values for the Outlier Test According to Grubbs
with Normal Distribution

n | P,=95% | P,=99% | n | P,=95% | P,=99% | n | P,=95% | P,=99%

41 2.877 3.251 81 3.134 3.525

42 2.887 3.261 82 3.139 3.529

3 1.153 1.155 43 2.896 3.271 83 3.143 3.534

4 1.463 1.492 44 2.905 3.282 84 3.147 3.539

5 1.672 1.749 45 2.914 3.292 85 3.151 3.543

6 1.822 1.944 46 2.923 3.302 86 3.155 3.547

7 1.938 2.097 47 2.931 3.310 87 3.160 3.551

8 2.032 2.221 48 2.940 3.319 88 3.163 3.555

g 9 2.110 2.323 49 2.948 3.329 89 3.167 3.559

e 10 2.176 2.410 50 2.956 3.336 90 3.171 3.563
©

3 11 2.234 2.485 51 2.964 3.345 91 3.174 3.567

< 12 2.285 2.550 52 2.971 3.353 92 3.179 3.570

S 13 2.331 2.607 53 2.978 3.361 93 3.182 3.575

14 2.371 2.659 54 2.986 3.368 94 3.186 3.579

15 2.409 2.705 55 2.992 3.376 95 3.189 3.582

16 2.443 2.747 56 3.000 3.383 96 3.193 3.586

17 2.475 2.785 57 3.006 3.391 97 3.196 3.589

18 2.504 2.821 58 3.013 3.397 98 3.201 3.593

19 2.532 2.854 59 3.019 3.405 99 3.204 3.597

20 2.557 2.884 60 3.025 3.411 | 100 | 3.207 3.600

21 2.580 2.912 61 3.032 3.418 | 101 | 3.210 3.603

22 2.603 2.939 62 3.037 3.424 | 102 | 3.214 3.607

23 2.624 2.963 63 3.044 3.430 | 103 | 3.217 3.610

24 2.644 2.987 64 3.049 3.437 | 104 | 3.220 3.614

25 2.663 3.009 65 3.055 3.442 | 105 | 3.224 3.617

26 2.681 3.029 66 3.061 3.449 | 106 | 3.227 3.620

27 2.698 3.049 67 3.066 3.454 | 107 | 3.230 3.623

28 2.714 3.068 68 3.071 3.460 | 108 | 3.233 3.626

29 2.730 3.085 69 3.076 3.466 | 109 | 3.236 3.629

30 2.745 3.103 70 3.082 3.471 | 110 | 3.239 3.632

31 2.759 3.119 71 3.087 3.476 | 111 | 3.242 3.636

32 2.773 3.135 72 3.092 3.482 | 112 | 3.245 3.639

33 2.786 3.150 73 3.098 3.487 | 113 | 3.248 3.642

34 2.799 3.164 74 3.102 3.492 | 114 | 3.251 3.645

35 2.811 3.178 75 3.107 3.496 | 115 | 3.254 3.647

36 2.823 3.191 76 3.111 3.502 | 116 | 3.257 3.650

37 2.835 3.204 77 3.117 3.507 | 117 | 3.259 3.653

38 2.846 3.216 78 3.121 3511 | 118 | 3.262 3.656

39 2.857 3.228 79 3.125 3516 | 119 | 3.265 3.659

40 2.866 3.240 80 3.130 3521 | 120 | 3.267 3.662
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Symbols and Terms

J. = Integral from minus infinite to plus infinite

= Radical sign

= Product symbol

= Smaller than or equal to

= Greater than or equal to

\/_
Z = Sum symbol
I1

<

>

+*

8
o = Not equal
3
© |x| = Absolute value of x (positive value of x)
o
<
g B ower 7 B upper = Factors for the calculation of limits of random variation of s
o
N D = Difference between the averages of two measurement series
d = Difference between two measurement values
e = Excess of a sample
e = Base of the natural logarithm
f = Number of degrees of freedom
F = Quotient of the variances of two measurement series

(Test statistic in F Test)

f(x) = Probability density function

g = Skewness of a sample

gw = Kurtosis of a sample

G, = Cumulative Frequency

h, = Relative frequency

h,(1), h;(11) = Relative frequency of partial collectives

h'j(I), h'j(II) = Non-standardized relative frequency of partial collectives
H, = Cumulative relative frequency

Hiower» Hupper = Confidence limits used in the normal probability plot
H, = Null hypothesis

H, = Alternative hypothesis

i, = Count indices

k = Class number or acceptance factor
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ka = Qutlier factor
In = Natural logarithm
m = Alternate sample size
m, = kth moment of a sample
n = Sample size
n, = Absolute frequency (Occupation number)
P = Probability
Pa = Probability (Confidence level)
P(x,) = Probability for characteristic value x;
2]
o
Q R = Range
3
© My = Correlation coefficient (estimated value)
o
<
g S = Standard deviation of a sample
N
o
o Sq = Standard deviation of a difference distribution of individual val-
ues
Sp = Standard deviation of the distribution of differences of averages
Sw = Standard deviation of the measurement error
Sy = Covariance
s? = Variance of a sample
t = Factor for the calculation of the confidence interval for p

with unknown standard deviation of the population

u = Standardized random variable of the normal distribution
N(u=0; c* =1)

v = Coefficient of variation

X = Continuous characteristic values

Xir Y, = Values of a measurement series

X(1)r-+1X(n) = Values of a measurement series arranged in order of magnitude

X, = Geometric mean of a sample

X max = Largest value of a sample

X min = Smallest value of a sample

X = Median of a sample

X = Arithmetic mean of a sample
Xp = Average of the difference distribution from samples
o = Probability for type | error
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B = Probability for type Il error

T = Skewness of a population

A = Difference in the determination of the measurement accuracy
€ = Shape parameter of the lognormal distribution
e = Excess of a population

1l = Average of a population

Ly = Average of the difference distribution

U = Geometric mean of a population

c = Standard deviation of a population

o’ = Variance of a population

i = Number Pi (3.1416)

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

© Robert Bosch GmbH | Edition 01.2016 -108 -



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-003_BBL_N_EN_2016-01-01.pdf

)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Evaluation of Measurement Series

Index

acceptance range 60
alternative hypothesis 58, 61, 71
approximation of curves 26

base-
positions 25
values 25

box-plot 15

central limit theorem 55
characteristics

of location 45, 46

of shape 45, 48

of variability 45, 47
chi-squared distribution 66
coefficient of variation 65
confidence interval 35, 36, 56, 66
correlation 22
covariance 22
cumulative frequency 31, 77
cumulative relative frequency 41

degrees of freedom 63, 66, 69
density function 32, 44
difference test 73

direct inference 53
distribution function 31, 32
dot diagram 13

error
of the first kind 61
of the second kind 61
error probability 58
excess 48, 50

F test 69

frequency
absolute 7
relative 7

grouping 8, 30
histogram 7
indirect inference 53
interpolation

by polynomials 25
linear 19
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kurtosis 48, 50

law of error propagation 82
least-squares method 21, 22, 24
linking of random variables 75
lognormal distribution 38

mean
arithmetic 54
geometric 38
moving 19

median 46

mixed distributions 77

modelling 17, 27

multi-vari-charts 15

null hypothesis 58, 61, 71

original value diagram 6, 11
outlier test 68

percentage point 58, 70, 71
polynomial 25
probability 31

definition 29

density function 32
probability plot 41, 77
process capability index 36
proportion nonconforming 34, 39

qguality control chart 14
guantile 58, 70,71

random variable 28, 29, 38
randomness 67
range 47
rank 41
regression
line 21
linear 21
quadratic 24
rejection range 60
run test 68

sampling scheme for continuous
characteristics 83

shape parameter of the lognormal
distribution 39

significance level 58
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skewness 48, 50

smoothing 18

standard deviation 47

standard normal distribution 33
stochastics 5

stratification 14

t distribution 63
ttest 70,72
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test 58
test for randomness 67
test statistic 58, 69, 74

value ray 13
variance 47

z test 59
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