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1 Introduction

An uncertainty must always be specified for every measurement result. This is a requirement which is
deduced from the standards [ISO 9000], [ISO 10012], [ISO 14253], [ISO 17025] and [DIN 1319-1]
among others. The application for which the measuring device is being used and with which a
measurement result is determined is irrelevant. In particular, it is essential to have knowledge of and
to state the measurement uncertainty in any qualified decision that is made on the basis of
measurement results.

The term “measurement uncertainty” is defined in the “International Vocabulary of Metrology” as a
“Non-negative parameter characterizing the dispersion of the quantity values being attributed to a
measurand, based on the information used” [VIM, 2.26]. The shorter term “uncertainty” is also used
in place of the term “measurement uncertainty” in the literature.

The terms used in this issue have been taken from [VIM], [ISO 3534-2], [ISO 3534-1], [ISO 9000],
[ISO 14253], [GUM], [DIN 1319-1] and [DIN 1319-4]. The chapter Definition of terms contains a
compilation of the most important standardized definitions.

The possibilities for determining measurement uncertainty are varied and can therefore not be
represented in a generally applicable algorithm. Thus, this booklet is divided into the chapters 1 to 6
with essential minimum information for each user, and the appendix. Some examples for the
calculation of measurement uncertainty are included in the appendix. Relevant literature should be
referenced for many more examples.

This booklet is primarily based on the “Guide to the expression of uncertainty in measurement”
[GUM] L. In contrast to the previous edition of this booklet, conformity to [GUM] is established
consistently and the specification of a model equation is required as a basic principal. Among other
things, this ensures a clear and systematic approach. The approaches denoted as “simplified
procedures” in the previous version are presented in an appropriately adapted way without the
mathematical work having been increased (cf. chapters 4.3.1 and 4.5). In addition, requirements
which are often more stringent, particularly in the fields of development, have been taken into
consideration and also these more complex procedures are presented in greater detail. However, the
explanation of how to determine measurement uncertainty in case of interdependent (correlated)
measurands has largely been disregarded because of the increased mathematical workload involved.
The appendix describes only the basic fundamentals and the calculation algorithm.

The procedures described here do not provide parameters for the distribution of the individual
measured values of a measurand. Instead, they provide an estimate of the range of values within
which the true value of the measurand associated with the individual measured values is expected
with a certain confidence level, however, without knowing this true value exactly. This initially
appears to contain a contradiction of the definition of measurement uncertainty according to [VIM].
So it is most important to distinguish carefully the concept of an “individual measured value” which is
exactly known from the concept of a “quantity value of a measurand” which is not exactly known
(cf. chapter 2.1).

The validity of the calculated values for the measurement uncertainty is quantified by the so-called
“confidence level” (see appendix D). In most cases it is not useful to distinguish between an interval
with a confidence level of 95% and e.g. 94% or 96%. It is particularly difficult to justify intervals with a
confidence level of 99% and above, even if it is assumed that no systematic influences have been
overlooked, since usually only very few information is available about the extreme portions (“tails”)
of the probability distributions of the input quantities.

In the same context, it is pointed out that rounding rules must be applied to the results in order to
avoid the simulation of evaluation results with excessively high accuracy (cf. chapter 4.7.2).

! Also see e.g. [EA-4/16], [EA-4/02], [EUROLAB], [EURACHEM], [VDI 2618], [VDI 2622], [ISO 5168], [VDI 2449]
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2 Scope

2.1 Measurement uncertainty >

The measurement uncertainty can be determined for any measurement result. In the course of a
measurement uncertainty study the limits are estimated between which the true value of a
determined measurement result lies at a specified confidence level (usually 95%).

It is a common misinterpretation to understand measurement uncertainty [VIM, 2.26] in terms of a
measurement error. A measurement error is defined as a “measured quantity value minus a
reference quantity value” [VIM, 2.16]. It relates exclusively to a single measured value. It does not
relate to the possible deviation of the quantity value calculated for a measurand from several
individual measured values from the true value of this measurand.

The dispersion of the individual measured values despite seemingly identical measurement conditions
is the result of numerous influences which are not controllable by the measuring conditions. These
influences can therefore change in an uncontrolled way with each repetition of the measurement.

Deviations of the individual measured values from the median value of their distribution, which are
once positive and once negative during repeated measurements, are referred to as random
measurement errors. If only random measurement errors existed, the median value would be equal
to the true value of the measurand. This median value would be obtained as the mean value of the
individual measured values if it were possible to repeat the measurement an unlimited number of
times, since the standard deviation of the mean value disappears in this limit case.

In practice, only a limited number of repeated measurements is possible. Therefore, a certain
dispersion of the mean value remains, and with it a certain lack of knowledge about the true value of
the measurand. This ignorance is estimated by means of the measurement uncertainty. According to
[DIN 1319-1], it is defined as a “parameter obtained from measurements and which - together with
the result of measurement — characterizes the range of values within which the true value of the
measurand is estimated to lie”. In the present context, this definition appears to be more appropriate
than the definition according to [VIM, 2.26].

2 ‘;’-’ ) | X

< >

Measured Value

Figure 1: Measurement uncertainty U as a value range for the true value of a measurand

NOTE: The value outside the measurement uncertainty range is not in question as a true value.

In addition to these random measurement errors so-called systematic measurement errors occur.
They lead to the median value of the distribution of the individual measured values remaining
displaced compared to the true value of the measurand even if the measurement were repeated
infinitely. As far as possible, identified systematic measurement errors must be minimized, e.g. by
adjusting the measuring device or by calculating appropriate correction values. The uncertainty of
the correction must be taken into account when determining the measurement uncertainty [GUM,
3.2.3, 3.2.4, 6.3.1, F.2.4.5]. This uncertainty is caused by potentially undetermined systematic
measurement errors and any remaining deviations caused by inaccurate correction. These
uncertainties must be estimated in an appropriate manner.

[EUROLAB, appendix A.1] contains possible causes of random and systematic measurement errors.

2 Chapter 2.1 in accordance with [EUROLAB], chap. 2.1, page 10
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Measured Values
("Raw Values")

Measurement

¥ 3

Systematic Random
Measurement Error \‘ Measurement Error

v

Known Unknown

Systematic 1 Systematic
Measurement Error J Measurement Error

Remaining
Correction Measurem ent
Error

A 4 \ 4 A 4

Measurem ent + Measurem ent Uncertainty
Result

= Complete Measurement Result

Figure 2: Components of measurement errors and contributions to measurement uncertainty 3

2.2 Measurement uncertainty and proof of conformity

If the complete measurement result of a characteristic is to be evaluated in terms of specified
tolerances, this must be done according to the decision rules of the standard [ISO 14253].

LSL usL
Non-Conformity Zone Conformity Zone Non-Conformity Zone

Rejection Delivery Rejection

Increasing
Measurement Uncertainty

No Rejection | No Delivery No Delivery | No Rejection

I Uncertainty Range I Uncertainty Range I
Figure 3: Decision rules according to [ISO 14253]

A conformity zone exists only under the condition LL + U < UL — U. This inequality rearranged and
T = UL — LL substituted yields
Q <1.
T
With measuring instruments, this ratio should be significantly smaller than 1.

NOTE 1: The previous edition of [VDA-5] referred to the parameter 2U / T as gpp, Which should not exceed a
maximum value Gpp. To determine Gpp, the range 0.2 < Gp, < 0.4 was suggested. According to this, in a
worst-case scenario, U should amount to no more than 20% of the tolerance T of the characteristic under
test. Otherwise, the measuring instrument should be classified as unsuitable for the measuring task. In the
current edition of [VDA-5], gpp and Gy, are no longer included in this form.

NOTE 2: If a measuring instrument proves to be unsuitable although it represents state-of-the-art,
technology, a case of so-called “small tolerances” exists.

3 Figure 2 in accordance with M. Hernla, QZ 41 (1996), 1156
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2.3 Measurement uncertainty and product development

The clarification of the following questions is a typical application of measurement uncertainty as
part of product development:

e Evaluation of development progress by reviewing measures for optimizing specific product
properties; for this purpose, measurements of characteristics are performed under repeatability
conditions e.g. before and after changes are made; the comparison of the measurement results
enables conclusions regarding the effectiveness of the measures and may enable assertions
regarding adverse effects on the properties of other characteristics.

e Evaluating or determining specifications based on measurement results and their measurement
uncertainties.

e Conformity evaluations (see chapter 2.2) for proving that predetermined development objectives
have been achieved.

NOTE 1: Often full specifications of the characteristics are not yet available, but only limit values with
which compliance must be proved.

e Carrying out measurements on similar measuring objects under intermediate precision
conditions [VIM, 2.22] at different locations (such as at the Bosch and the customer's site) using
similar measuring systems and comparing the measurement results.

NOTE 2: See appendix G regarding the comparability of measuring systems and measurement results.

For comparisons to provide reliable information, the measurement uncertainty must be known in
order to evaluate the metrological compatibility of the measurement results (see chapter Definition
of terms).

In comparisons, two individual measured values y; and y, are usually considered to be different if
they are at an interval of at least two expanded measurement uncertainties U: |y2 —y1| >2-U (Fig. 4a).
NOTE 3: Different criteria can be determined (e.g. in accordance with appendix G); these criteria must be
documented if necessary.
Otherwise the uncertainty ranges of the two values overlap and it is no longer reasonable to exclude
that the two measured values might represent the same true value (fig. 4b). The extent of the
uncertainty ranges is determined, among other things, by the confidence level (typically 95%). If
measurements are exclusively used for the assessment of test results but not for the proof of
compliance with agreed or specified properties, a lower confidence level may be acceptable than for
production (e.g. 68% instead of 95%) which, however, means a higher risk of an inaccurate
evaluation (fig. 4c).

NOTE 4: Because of the increased risk of inaccurate evaluation, specifications and guidelines for testing
cannot be derived from measurement results with a reduced confidence level.

NOTE 5: Statements such as “The measurement results correspond within the limits of measurement
uncertainty” are frequent conclusions from comparisons. Instead of the correct term “measurement
uncertainty”, terms such as “error limits”, “error tolerances”, “error” and “measurement error” are often
incorrectly used as synonyms. These terms should not be used in this context in order to make clear

assertions.
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Figure 4: Evaluation of individual readings based on measurement uncertainty

a) Individual measured values are different at a high level of confidence;

b) Hatched value could be the true value of both measured values, therefore no clear difference;

¢) Individual measured values are different due to lower measurement uncertainty U* < U, but increased
risk of inaccurate evaluation since the confidence level is reduced.

24 Measurement uncertainty and production monitoring

In the case of measurements that are needed for production monitoring, a capability study of the
measurement process according to [Booklet 10] and evaluating its suitability for the intended
measuring task is recommended. This will ensure that the uncertainty of the measurement result is
in a reasonable relation to the characteristic tolerance (cf. chapter 2.2 and appendix E). The
measured values determined as part of these investigations and any measurement stability
monitoring may be used for the calculation of the measurement uncertainty (see chapter 6).

Particularly for production-related application, it is recommended to use preferably data from
capability studies and measurement stability monitoring according to [Booklet 10] (see chapter 6). If
such data is not available, additive models according to the chapters 4.3.1 and 4.5 can be used which
require a relatively low mathematical effort. The applicability of these models must be carefully
checked, substantiated and accordingly documented. In case of doubt, usually more complex models
have to be used.

Taking account of only those input quantities that are relevant for the case being considered is also
recommended. Quantities with little influence on the magnitude of the measurement uncertainty
marginally change the calculation result and can be disregarded. This must be carefully checked,
substantiated and accordingly documented for every quantity. In case of doubt, the quantity must be
taken into account.
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Booklet 8 — Measurement Uncertainty

2.5 Difference between measurement uncertainty and measuring
process capability

As already stated, measurement uncertainty provides a value range where the true value for a
measurement result can be assumed with a certain level of confidence. However, it does not provide
any information about the point within this value range where the true value is most likely to be
found, i.e. no probability distribution for the location of the true value of the measurand. Also, the
measurement uncertainty is completely independent of any specified tolerances of a characteristic
to be measured, i.e. the tolerance T of the characteristic is not included in the measurement
uncertainty calculation.

In contrast to this, the measurement process capability evaluates the compatibility of the
measurement results for a specific characteristic with the tolerance zone of this characteristic, i.e.
the position and dispersion of the measurement result within the tolerance zone of the
characteristic.

In order to ensure that the measurement results allow for a sufficiently reliable calculation of
the statistics Cg, Cgk and %GRR and a corresponding classification of the measuring process according

to the categories “capable”, “conditionally capable” or “not capable”, a measurement uncertainty is
required that is sufficiently small (see appendix E).

2.6 Range of validity for measurement uncertainty

According to [GUM, 3.1.2] it is mandatory to specify the measurement uncertainty for every
complete measurement result. This can lead to the misinterpretation that, in principle, an individual
measurement uncertainty study must be made for every measurement performed. However, this is
not applicable. Measurement uncertainties are usually determined overall for measurement results
of a measurand which are measured under the same conditions.

Even in cases where the measurement uncertainty depends on the quantity value of the measurand,
it is not usual to specify an individual measurement uncertainty for every possible measured value.
Instead of this, it is possible to divide the relevant measurement range into several ranges. A
constant uncertainty is used within each range which is usually the least favorable measurement
uncertainty within that range.
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0.0015 A

Region | Region Il Region llI

0.001

Measurement Uncertainty U/ m

15 16 17 18 19 20 21 22 23 24 25 26 27
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Figure 5: Example for measurement ranges with generally associated measurement uncertainties
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Figure 6: Process flow of a measurement uncertainty study
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Booklet 8 — Measurement Uncertainty

4

Performing a measurement uncertainty study

This chapter explains the individual process steps that are shown in the flow chart in chapter 3.

4.1 Describing the measurement

[GUM, B.2.5] defines the term “measurement” as a “set of operations having the object of
determining a value of a quantity”. These tasks can be performed either manually or partially or fully
automatically. At first, all activities have to be described in detail. Usually, the following information
is included:

Measuring task (purpose and objective of measurement, such as proof of the conformity
of a product characteristic to the specification requirements based on measurement results)

Measurand (characteristic property to be measured, e.g. length, volume, mass, current,
resistance, force, power, time, frequency, radiation dose, pH value),

Measurement method (procedure used for measuring, e.g. measurement of time differences
using a stopwatch controlled by light barriers at defined measuring positions and triggered by the
measuring object being moved),

Measurement procedure (description of the measuring principle and its implementation,
any explanation of the underlying physical or technical model, e.g. resistance measurement based
on current and voltage measurements, speed measurement based on path and time
measurements),

Measuring system (technical design, any measuring position on the measuring object, additional
illustrations, diagrams, sketches, description by means of a so-called “measuring circle”),

Preparation of the measuring system (such as heating up),

Workflow description (such as manual and automatic steps, clamping and releasing or insertion
of the measuring object into the measuring system),

Measuring objects (such as function, specification, tolerances, specified limit values, stability,
deviations from provided shape),

State of the measuring object before and possibly after the measurement (e.g. in case of
destructive measurements),

In case of measurement standards the unambiguous identification (e.g. the ID number) of the
associated calibration certificate and/or reference value, the uncertainty and date of the last
calibration, the name of the calibration laboratory,

Qualitative description of the environmental conditions and general set-up (e.g. indoor air
conditioning),

If necessary for understanding, cross references to physical laws, expected reactions and/or
interactions between the measuring system and the measuring object, measurand type (such as
non-repeatable measurement, shear forces),

Information from any existing inspection plans (e.g. work instructions for inspection or calibration
of test equipment).
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Booklet 8 — Measurement Uncertainty

4.2 Gathering information about input quantities

Usually a measurand (output quantity, measurement result) is dependent on several input
guantities. Therefore the uncertainty of the measurement result can be determined from the
information about the input quantities.

4.2.1 Identifying input quantities

Input quantities are determined systematically (e.g. by means of a cause-effect diagram) and listed in
tabular form.

Measuring task:

Length measurement
using a yardstick

Resistance measurement
using a multimeter

pH value measurement
using a pH meter

Typical input quantities:

Read length

Reading angle

Quality of the yardstick
Lighting conditions

Application set-up
Temperature

Reference value of the standard
Calibration uncertainty

Current

Voltage

Frequency

Cable length

Contact resistance

Internal resistance

Reference value of the standard
Calibration uncertainty

Difference of potential (ECPD)
Temperature

Probe material

Concentration

Liquid composition

Measuring principle (device type)
Reference value of the standard
Calibration uncertainty

Table 1: Simple examples of measuring tasks with typically associated input quantities

Using the so-called cause-and-effect diagram (see [EQAT], also called an Ishikawa diagram or a
fishbone diagram) input quantities can be ordered systematically and combined in groups. Common
groups are categories based on 5M such as measuring object, measuring system, method, measuring
process, man (operator), milieu (environment) or the categories measurement procedure, measuring
object, standard device / calibration.

Material

Condition

Input

Measuring Measuring Measuring
Object System Process
Measurement

Resolution

Indication,
Display

principle

Number of
measurements

Output

Quantity

Cleanliness

Temperature

State of mind

Qualification

Strategy

Evaluation

Environ-
ment

Man
(Operator)

Method

Figure 7: Example of a cause-effect diagram (Ishikawa diagram)
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Booklet 8 — Measurement Uncertainty

Appendix A contains examples of input quantities of different categories. They can be used as leads
for determining input quantities in a particular case.

NOTE 1: Selection and properties of the measuring objects and the inspection personnel can influence the
measurement result and thereby the measurement uncertainty (see appendix A). Corresponding input
quantities must be taken into account.

NOTE 2: If measurement data from the procedures according to [Booklet 10] is used to determine the
measurement uncertainty (see chapter 6), influences from the measuring objects and the inspection
personnel including possible interactions are already included in the measurement data and need not be
considered separately. Then, however, it is not possible to consider these factors individually and to
optimize them since they are not identified as separate input quantities in the uncertainty budget.

4.2.2 Quantifying based on existing information

The necessary quantitative and qualitative information must be obtained for each input quantity to
be determined. Information about input quantities can originate from a variety of sources. Typical
examples:

e Results of direct measurements,

e Results of previous measurements,

e Experience and subjective evaluations,

e Information from calibration or test certificates,

e Manufacturer's specifications, data sheets
(including indication of constraints to be considered with the measurement such as humidity,
temperature, atmospheric pressure, sensitivity of the measuring instrument, resolution,
measurement error, correction values, etc.),

e Measured value dispersion based on experience or repeated measurements
(e.q. if specifications are unavailable from the manufacturer or other sources),

e Existing measurement uncertainty results that are included in the overall evaluation
(e.g. from individual devices of the measuring chain),

e Data from investigations of the measuring process capability,
e Information from the preceding measuring chain and/or calibration chain,
e Tabular values or literature values (e.g. material constants),

e Expert forums.

The usability of the information available depends on the type of the input quantities and has to be
evaluated under various aspects. Typical examples:

e Temperature, humidity, air pressure,

e The earth's magnetic field, electromagnetic waves (particularly for electrical quantities),

e Stray light (in particular for optical quantities),

e Background radiation (in particular for radioactive quantities).

© Robert Bosch GmbH 2015 | Status 06.2015 16


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

4.3 Compiling the mathematical model

As already mentioned, a measurand is usually dependent on several input quantities. Therefore the
uncertainty of the measurement result can be determined from the input quantities information.
Thus, it is necessary to present the relationship in the form of a mathematical model.

This chapter describes a generally valid approach # and practice-oriented special cases that can be
derived from this approach. To ensure the quickest possible and most direct access to the subject, the
special cases are presented first and the general approach is explained at the end of the chapter °.

The mathematical representation of the model is implemented as a function f depending on the
values x; of the input quantities. This is the so-called model equation from which the value y of the
measurand can be calculated:

y = (X0, X000 X)) (4.1)
with

X1,X5,..., X, Values of the input quantities on which the value y of the measurand depends,

n Number of input quantities.

NOTE 1: In this context, these values are referred to as estimates of the input quantities and measurands.
This is to express the fact that measured values are always affected by uncertainties. In statistics, estimates
are represented by lowercase letters while so-called “conventional values” (see chapter Definition of terms)
are represented by uppercase letters.

NOTE 2: The literature (e.g. [GUM]) often distinguishes between estimates for a quantity (e.g. the
measured values for an input quantity) and the quantity itself, to which a conventional value is assigned as
a quantity value (e.g. the reference value of a standard or the mean value of measured values).
Correspondingly, the estimates of the quantity are denoted with lowercase letters and the quantity itself
with uppercase letters. This formal distinction is of subordinate importance for practical application.
Therefore, this distinction has been dispensed with, i.e. only lowercase letters are used in this booklet. For
example, the designation “input quantity x;” (or simply “input quantity i”) is used even if the conventional
value is meant, i.e. the input quantity itself, so that the formally correct designation were “input quantity
X”. Instead, the terms “conventional value” or “reference value” are explicitly used whenever a distinction
is required.

NOTE 3: In addition to measured values x; of input quantities i which have a direct effect on the measure-
ment result y of the output quantity and which are used to calculate y, other quantities often exist which do
not have a direct effect on the output quantity. These indirectly effective quantities are also refered to as
“influence quantities” [see VIM 2.52]. The distinction is, however, of a more formal nature. Therefore, no
distinction is made in this booklet between input quantities and influence quantities, and the term “input
quantity” is used throughout.

NOTE 4: The values x; of the input quantities can have a positive or a negative sign.

NOTE 5: The use of Sl units (m, s, Q, etc.) without a so-called “prefix” denoting decimal multiples or
portions (kilo, milli, micro, etc.) is recommended for all quantities. In this case the model equation allows
for a simple and efficient dimensional control in order to prevent errors, i.e. the measuring units of the
input quantities substituted in the model equation must provide the measurement unit of the output
quantity (possibly after algebraic transformation).

4 “Generally valid” as far as linear approaches are applicable, i.e. the Gaussian error propagation law
5> In practice, model equations can contain submodels that correspond to one or more of the model
approaches described below (see appendix J.8, for example)
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Booklet 8 — Measurement Uncertainty

4.3.1 Additive model

In many cases the model function consists of the sum of two or more input quantities:

Y =Xy + X+ X, (4.2)
This model approach requires all x; input quantities to be used consistently and uniformly in the
measurement unit of the output quantity y (see quantity dimension [VIM, 1.7]).

EXAMPLE 1: The total resistance R (measurand) of two resistors Ry and R; connected in series (input

quantities) is calculated according to the model equation R = Ry + R.. The working resistance Rx was

measured at 15 kQ, the internal resistance R; of the measuring instrument is specified at 100 mQ. It is

essential to ensure that both values are used in the same unit of measurement in the model equation, e.g.

Ra=15kQ and R; = 0.0001 kQ or Ry = 15,000 Q and R; = 0.1 Q.

EXAMPLE 2: The velocity v (measurand) is made up of the velocity components v; and v, (input quantities),

i.e. the model equation v = v; + v, applies. The values v and v; are in km/h while the value v, is in m/s.

Before application in the model equation, it is therefore necessary to convert either v and v; into m/s

(1 km/h = 1000 m / 3600 s =~ 0.278 m/s) or v, into km/h (1 m/s = 3.6 km/h).

The additive approach also can be used to determine measurement uncertainties in line with [GUM]
in case it is not possible to derive the relation between the input quantities and the measurement
result in the form of an equation from physical models because of its complexity. A prerequisite
is that the deviations from the conventional values of the input quantities are quantifiable (see
chapter 4.2.2) and independent from each other (see chapter 4.4.3). In these cases, a model
equation is formulated in the form

Y =Yg +0Xq + Xy + ...+ X, (4.3)
with

Yo conventional value for the measurement result y (no uncertainty), often estimated by

correcting the indication y* (cf. chapter 4.3.3);

8Xq ... 8X, deviations from the conventional value of the input quantities in the measuring
unit of the measurement result; expected value 0; 1<i<n.

Application examples: see appendix J (except J.7)

4.3.2 Multiplicative model

In some cases, the model function consists of a product and/or quotient of two or more input
quantities:
y= X1 Xg « . (4.4)
e Xpg  Xp
This approach requires all input quantities x; to be used in measurement units whose composition as
a product or quotient according to the model equation gives the measurement unit of the output
quantity y. When using relative units such as %, chap. 4.4 (see note and example) has to be taken
into consideration.

EXAMPLE 1: The resistance R (measurand) is determined by measuring the voltage U and the current |
(input quantities), i.e. the model equation R = U / | applies. The values U =6 V and | = 12 mA are measured.
The resistance R is specified at 500 Q. Because 1 Q = 1 V/A applies, the current | must be converted into A
before the model equation is used, i.e. | = 0.012 A.

EXAMPLE 2: The velocity v (measurand) is determined by measuring the distance travelled s and the time
required t (input quantities), i.e. the model equation v = s / t applies. The measured distance is specified as
s = 100 m, while the measurement result for the time required is t = 14.9 s, so that v = 6.7114 m/s results.
The speedometer is calibrated in mph (miles per hour) and shows the velocity v = 15 mph. Before application
in the model equation, it is therefore necessary to convert v into m/s (1 mph = 0.44704 m/s), i.e. to use
v = 6.7056 m/s (recommended). Alternatively, s could be converted into miles and t into hours (not
recommended, since Sl units are not used consistently).

NOTE: Conversion factors (and natural constants) must be considered to be constants without uncertainty.
However, if these quantities are rounded, this inaccuracy (cf. chapter 4.5) must be taken into account
properly (cf. chapter 4.7.2).

Application examples: see appendix J.1.3 and appendix J.1.4.

© Robert Bosch GmbH 2015 | Status 06.2015 18


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

4.3.3 Linear function

In certain cases, the relation between the output quantity y and one or more input quantities x; can
be described using the following model:

y=(a;+b;-xy)+ (@, +by - X, )+...+(a, +b, - x,) (4.5)
with the constants a; and b;, 1<i<n.
NOTE 1: In the special case n = 1 Eq. (4.5) represents a straight line with intercept a; and slope b.

A common application is the (mathematical) correction of measurement results. The indication of a
measuring instrument provides a measured value y' which is subject to a correction K(y’) due to a
known systematic influence (such as temperature). Then, the corrected measurement result can be
calculated as follows (see appendix F):

y=Y'+ox+BcY (4.6)
| SN —
=K(y)
with
y corrected measurement result (often utilized as conventional value y;),
Ok correction constant (intercept of the correction function),
Bx correction factor (slope of the correction function),
y' uncorrected measurement result (“raw value”).

NOTE 2: Eq. (4.6) is often used as a submodel for the conventional value y, in the overall model (see e.g. the
model equation used in appendix J.3). A use case that is important in practice is using Eq. (4.6) in the form
Yo =y + K with ;=0 and K calculated as the difference of the reference value y, of the standard and of the
uncorrected measurement result y*: K = yo — y*. In case of several results y* with the same standard, the
mean value y'is used.

Application examples regarding correction: see appendix J.2, J.3 and J.8.

4.3.4 General case

A generally applicable approach is inherently incomplete and cannot be described in full. The
approach also places greater demands on the physical and mathematical understanding of the user.
The essential approach is based on physical laws from which the model equation is derived.

This is explained using the very simple example of an electrical power
measurement. The power consumption P of an electrical DC engine

"\
A

must be determined based on the measured current Iy and the internal
resistance R; specified for the engine (e.g. in the manufacturer's data
sheet). This means that the input quantities Iy and R; are used in this R 2 Uo
case to determine the measurand P. Correspondingly, the general model U, | Q
equation y = f(xl, Xoyens xn) is applied in the form

P=f(R;) (4.7)
According to fundamental physics, the following applies to the electrical power consumption of the
engine:

P=U-I (4.8)

U represents the voltage drop across the engine while | represents the current through the engine.
Ohm's law provides the relationship between U and R;:

U=R,I (4.9)
In the circuit shown the following applies to the current | as per Kirchhoff's current law:

=1y (4.10)
U and | substituted yields the model equation:

P=Rily-lu=R; '|M2 (4.112)

Application examples: see appendix J.7 and appendix J.8.
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Booklet 8 — Measurement Uncertainty

4.4 Input quantities:
Determining the quantity values and standard uncertainties

The model equation allows the measurement result y to be calculated from known values x; of the
input quantities (cf. chapter 4.3). The measured value y is always affected by an uncertainty uc(y).
If the uncertainties u(x;) of the input quantities x; are known, the uncertainty uc(y) of the measured
value y also can be determined using the model equation.

[GUM] standardized the determination of measurement uncertainty at international level. The
determination methods have been adopted accordingly in this guide. [GUM] distinguishes between the
two following methods for determining the input quantities x; and their standard uncertainties u(x;):

e Type A evaluation (method A): The values xi and u(x) are determined based on repeated
measurements and the statistical analysis of these measurements.

EXAMPLES: Data measured for the determination of measurement uncertainty; results of stability
monitoring; records of previous investigations.

e Type B evaluation (method B): The values x; and u(x) are determined based on other sources and the
processing of these.

EXAMPLES: Manufacturer's specifications; limit values; parameters known from previous investigations;
values from literature.

The appropriate approach for determining the values x; and the standard uncertainties u(x;) of the
input quantities results from the accuracy requirements, the available measurement equipment and
economic considerations. Either a type A or a type B evaluation must be applied to each input
quantity. Using the same method for all input quantities is not a requirement (see examples in
appendices J.3, J.6, J.7 and J.8). Procedures and calculation steps always have to be documented.

NOTE: In metrology “accuracy specifications” are often given relative to a specific reference value, e.g. as a
percentage of the full scale value of the measuring range. Experience has shown that specifications of this
type are a common source of error since it is not recognized that the absolute value of the uncertainty is
actually given which applies to the entire measuring range. The percentage applies at the reference point
only. It does not apply to any other point of the remaining measuring range.

EXAMPLE: The uncertainty of a pressure cell with a measuring range of 0 to 10 bar is specified as 0.5% of
the full scale value, i.e. 10 bar. This specification is equivalent to the absolute value of 0.05 bar which
applies to the entire measuring range from 0 to 10 bar. For a measured value of e.g. 0.4 bar, a relative
uncertainty of 0.05 bar/0.4 bar = 0.125 results, i.e. 12.5%.

4.4.1 Type A evaluation

4.4.1.1 Determination from latest measurement results

Measurements of the input quantities i are performed under defined measurement conditions which
must be documented. Conditions that are to be expected later during the use of the measuring
system should be realized as far as possible. The value x; is estimated by means of the arithmetic
mean value

_ 1 &
% == 3 X (4.12)

m o
of the m individual measured values xix [GUM, 4.2.1]. It is assumed here that a normal distribution
can be supposed which is usually acceptable. The number m of the individual measured values must

be sufficiently large to ensure a reliable quantity value x;. A quantitative measure for this “reliability” is
the so-called confidence level (see appendix D).
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Booklet 8 — Measurement Uncertainty

NOTE 1: The better the measurement conditions meet the repeatability conditions, the more reliable the
statistical assertions. So, defined measurement conditions have to be seen as measurements which are
preferably performed

e using the same measuring system (measuring instrument),

e the same measuring objects,

e and the same measurement procedure

e under the same, stable conditions

e carried out by the same operator

e gt the same location

e within a short time interval.

If there are doubts as to whether the measurement conditions are appropriate, correlations of the
input quantities have to be investigated by means of parametric studies (see appendix C) and
corrections of the measured values have to be made as appropriate (see appendix F). Alternatively, it
should be checked whether a type B evaluation could lead to more reliable results and therefore
should be used (cf. chapter 4.4.2).

Random influences during measurement of the input quantity i cause a dispersion of the individual
measured values xix which are best described by their empirical standard deviation

S(Xi): \/ﬁ'g(xik _ii)z (4.13)

around their mean value X; [GUM, 4.2.2].

The standard uncertainty of the input quantity i is described by the dispersion of the mean value X;

u(x;) = % (4.14)
[GUM, 4.2.3].

NOTE 2 5: The applicability of Eq. (4.14) with m > 1 assumes mandatorily that the estimate for the
conventional value x; of the input quantity i is determined as a mean value x; from m > 1 measured values
Xi«, Which represent individual observations of the input quantity i that are statistically independent of each
other, i.e. uncorrelated.

e (Correlations between the individual values of a data series exist if e.g. differences between the
individual measured values of the data series do not vary randomly, but are constant or change
systematically (see also chapter 4.4.3). In case of doubt, appropriate data analyses must be performed
(see appendix C). Otherwise m = 1 has to be used, i.e. the standard deviation of the individual
measured values x; is used as the standard uncertainty.

e A measurement uncertainty that is determined based on mean values must only be applied to mean
values obtained from the same number of individual measured values in the subsequent use of
the measuring system. This condition is often disregarded in practice.

EXAMPLE: Instead of individual measured values, a measuring system shows the mean value of a defined
number of individual measured values as the “measured value”. The number of averaged individual
measured values is determined by the setting of the sampling time.

e For the result of the measurement uncertainty study the number of individual measured values
averaged and output as a single “measured value” is not decisive. However, the number of averaged
“measured values” included in the uncertainty evaluation is decisive (m = 1 for one “measured value”,
m > 1 for several “measured values”).

e The result of the measurement uncertainty study is only applicable to subsequent measurement results
on the condition that the measuring system works with the same parameter settings as those used
during the measurement uncertainty study (e.g. integration time, sampling frequency).

Required measuring system settings and the measurement procedure to be used must be precisely
defined and documented (e.g. in a test or work instruction).

® In accordance with [EUROLAB], appendix A.5 (page 44) and appendix A.6 (page 47)
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Booklet 8 — Measurement Uncertainty

4.4.1.2 Determination from former measurement results

The concept of standardized measurement uncertainty allows results of previous measurements to
be used to determine measurement uncertainty ’. This is advantageous in practice if only a few
measurements of a certain input quantity i can be performed for technical or economic reasons, so
that too few individual measured values are available to determine a sufficiently reliable value for
the dispersion from their standard deviation. In this case, results from former measurements can
provide more reliable conclusions which, for example, are available as a “pooled” standard deviation
sp [GUM 4.2.4].

If, instead of sp, the results of several measured data sets are available for an input quantity i, i.e. the
standard deviation sj(x;) and the number m; of the individual measured values x;k are known for each
data set j whereas the values xjx are unknown, the pooled standard deviation s, is determined
according to the following calculation rule [GUM, H.3.6; ISO 5725-2, 7.4.5.1]:

I
> (m;-1)-s7(x)

sp(x)= [ (4.15)
2 (m;-1)
j=1
with
ip number of pooled data sets,
m; number of measured values in data set no. j,
si(xi) standard deviation of data set no. j for input quantity no. i.

It is important to note that previous results for s, are only usable provided that date and time and
parameters of the former measurements have a negligible influence on the input quantities.
In principle, conditions that are similar to those encountered during practical use of the measuring
system must be created when determining the measured values. Usually a qualified evaluation of
this requirement can only be made using the documentation of the earlier measurement uncertainty
study as a basis.

The associated standard uncertainty is calculated according to

u(x;) = ixi) (4.16)

Jm

In this calculation m > 1 represents the number of individual measured values xix which were actually
measured to determine the value x; of the input quantity i in the course of the current measurement
uncertainty study (rather than the number of all previously determined individual measured values
that have contributed to sp) [GUM H.3.6].

NOTE: With regard to the applicability of m > 1, note no. 2 in chap. 4.4.1.1 must be considered.

4.4.2 Type B evaluation

The standard uncertainties of input quantities can be determined even if multiple observation is not
possible so that a type A evalution is not applicable. These include the following cases in particular:

e Itis not possible to perform measurements (e.g. for technical or economic reasons).

e Measurements were performed previously, however, only the evaluation results are available
(e.g. dispersion, distribution, unless used according to chap. 4.4.1.2)".

e Input quantities cannot be determined metrologically (e.g. in case of subjective influences, see
appendix A).

In such cases the results of former investigations or existing experience can be utilized to estimate
the value range to be expected for the input quantities and the distributions they can be assigned to.
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Booklet 8 — Measurement Uncertainty

According to [GUM, 4.3.1] standard uncertainties can be obtained from
e the evaluation results of former measurements’,

e experience or general knowledge about behavior and properties of the relevant materials or
measuring instruments,

e manufacturer’s specification and data sheets,
e data provided in calibration certificates and other certificates,

e uncertainties of reference data taken from handbooks.

The requirements of the model (cf. chapter 4.3) and the practical experiences of the measurement
engineer are decisive factors for selecting the data sources which are reasonably utilized.

Data obtained from interlaboratory tests provide excellent conditions for a type B evaluation. These
data are particularly utilized for measurement procedures where, because of complex interactions,
only the overall procedure can be evaluated rather than the individual contributions of existing
influences (see [ISO 21748] for more information).

4.4.2.1 Determination using available uncertainty data

A distinction should be made between the following cases:

e If the uncertainty data is specified as a multiple of a standard deviation, the standard uncertainty
is calculated by dividing the available value by this multiplier [GUM, 4.3.3].

e If a confidence level is specified for the uncertainty data (e.g. 90%, 95% or 99%), a normal
distribution can be assumed. The standard uncertainty is calculated by dividing the available value
by the corresponding coverage factor k;, (e.g. 1.64, 1.96 or 2.58; see appendix D) [GUM 4.3.4].

NOTE: It is also assumed that sufficient degrees of freedom (v > 20) were available so that the
approximation v — co is sufficiently met (see appendix D).

e If the uncertainty data is shown to be an expanded measurement uncertainty and the confidence
level is not specified, the standard uncertainty is calculated by dividing the available value by
ko = 2 (corresponding to the confidence level of 95.45%, see appendix D).

e Uncertainty data from available sources (such as data sheets and literature) are applied
unchanged as standard uncertainty unless further information about contributions and
components is available and the uncertainty is not explicitly designated as an expanded
measurement uncertainty.

4.4.2.2 Determination using available limit values

It is assumed that the available limit values a_ and a, were determined based on measured values
X; which belong to a statistical distribution and lie with a certain probability within the range
between a_ and a, . The mid-point (a, +a_)/2 of this range is at a distance of a=(a, —a_)/2 from
these limits.

e [f the distribution and the confidence level are known and included in Table 2, the standard
uncertainty u(x;) is determined according to the corresponding calculation rule in Table 2.

e If corresponding data is missing, the information in Table 2 can be used to select an appropriate
distribution.

7 [GUM] does not provide a clear criterion for assigning the utilization of data from previous studies to a type A
or a type B evaluation. The present guideline primarily assigns such data to type A (see [GUM, 4.2.4]). This
does not mean that the assignment to type B cannot be equally reasonable (see [GUM, 4.3.1]). Evaluation
results are not influenced by this assignment.
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Distribution Information Position of Confidence level (probability) | Standard
(density about the the measured | for the position of the uncertainty
function) measured values x; within | measured values x; within the | u(x;)
values x; the limits limits a_and a.
a_and a.:
Normal Assumption of ulx;)=a/3
. . . 0,
distribution Pooled a probability 93.73%
[GUM, G.1.3]
Values are around of less than
random central 100% is
iy u(x;)=a/2
position reasonable 95.45%
. 0
a iy and necessary [GUM, G.1.3]
Triangular
8 distribution Pooled u(x;)=a/v6
(@)
3 Values are around
© random central V6 = 245)
o
< position
g [GUM, 4.3.9]
g a_ a,
o Uniform or All values
rectangular within the u(x;) = aly3
distribution limits a_and a.
- 100%
None Unknown (e.g. for (Va3 ~173)
physical
reasons) [GUM, 4.3.7]
Ta_ a,
U-distribution
Pooled close ux)=arv2
None .
to the limits (\F )
2 =141
_ |
a_ a,

Table 2: Distributions for input quantities with calculation rules for the standard uncertainties

Examples of practical applications:

e Normal distribution: Results of statistical analyses (e.g. measured values determined under
repeatability conditions); calibration certificate data (e.g. reference
value).

e Triangular distribution: Interpolated values of input quantities; special measuring systems

(e.g. Wheatstone bridge circuit with compensation as a zero point
detector); approximation of normal distribution.

e Rectangular distribution 8 Results from which only limit values are known; results arising from
digitization.
e U-distribution: Sine-wave-like oscillations, measurement results with hysteresis.

Depending on the application, other distributions are required (e.g. trapezoidal distribution, modal
distribution). If necessary this must be tested and justified in each case.

Unless it is ensured in case of triangular, rectangular or U-distributions that all measured values lie
within the limits a- and a. (confidence level < 100%), different calculation rules apply to the standard
uncertainties. The technical literature should be referred to for this point.

8 Worst case leading to the maximum possible contribution of this input quantity to the overall uncertainty
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Booklet 8 — Measurement Uncertainty

4.4.3 Correlated input quantities

If a change of the input quantity i also causes a change of the input quantity j and vice versa, these
input quantities are correlated. Correlations are generally expected when two quantities depend on
each other or on a common third (possibly hidden) quantity, or on several such quantities. °

This dependence can relate directly to the physical quantities. This means that e.g. the relative
mass fractions of the constituents of a mixture of substances are dependent on each other, since
their sum is equal to one. This is true regardless of changes of the relative portions which e.g.
result from chemical changes within the mixture.®

Physical quantities are often independent of each other, however, their values are not
determined independently of each other. This is the case if two quantities are determined in the
same experiment — such as intercept and slope of a calibration curve — or if the same standard is
used for different input quantities. Further typical examples are shared influences of measuring
parameters (such as temperature on thermal expansion) and temporal influences on different
input quantities (such as temporally different warming-up of the measuring instruments used).
Then, the determined quantities depend on shared quantities: the calibration data set or the
reference value of the standard.®

Taking into account correlations complicates mathematical work considerably (see appendix C). Thus,
it is avoided as far as possible. Correlations are typically negligible

if the data sets originate from different experiments which are independent of each other and
which were carried out at different times,

if constant input quantities are present (i.e. in case an input quantity does not change, this input
guantity cannot have an effect on another input quantity even if these quantities are correlated),

if the standard uncertainty of one of the two input quantities is negligible (see appendix C.1,
NOTE NOTE 5).

If non-negligible correlations exist, the detailed analysis and more complex mathematical processing
often can be avoided if the model considers parameters affecting several input quantities as
additional and independent input quantities with an independent standard uncertainty (such as
ambient temperature).

° In accordance with [EUROLAB], appendices A.5 and A.6
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Booklet 8 — Measurement Uncertainty

4.5 Calculating the combined standard uncertainty

NOTE 1: The basis of the following calculation rules — including the general case — is the Gaussian error
propagation law, i.e. a linear approximation. This is based on the expansion of the model equation into a
Taylor series which is discontinued after the linear term. In special cases (e.g. in case of high precision
inspections), it may be necessary to take into account the square term or even higher terms of the Taylor
expansion. The appropriate literature should be referred to for this purpose.

NOTE 2: All calculation rules below assume uncorrelated input quantities.

Model Model equation Combined standard uncertainty uc(y)
of the measurement result y

Additive Y =Xq+Xp ...+ X, uc(y)z\/uz(xl)+uz(x2)+...+u2(xn) (4.17)
(chap. 4.3.1)
Y = Yo + Xy 8Ky .. Xy | Ue(y) = YUZ(Xy)+ U2 (5X,)+ ... + U2 (5%, (4.18)
Multiplicative 2 2 2
XqXg oo
(chap.4.3.2) | Y =—-2"" ucly) _ [fuba)) (o), (ulk) (4.19)
e Xpo1 X y Xy X5 Xn
Linear _ 2 2 2 2 2
y=a;+by-x;+... u-lag)+ %, -uclby ) +by” -us(xy)+...
function P lb Uc(y)=\/ ( 1)2 ' (21) ) ' (21) ) (4.20)
(chap. 4.3.3) <ot @n +0p - Xy U (@ )+ Xy - uP (b, )+ by U3 (x,)
General y = (X4, X, -y X)) Uc(y)=/c2 - u2(x))+ 2 - u2(x,)+...+c2 - u2(x,)  (4.21)
(chap. 4.3.4)
with the sensitivity coefficients c; = S—y
i
with
u(xi) standard uncertainty of the values x; of the input quantities i with 1 <i<n,
u(x;) standard uncertainties of the deviations &x; from the expected values x; of the
input quantitiesiwith1<i<n,
uc(y) combined standard uncertainty of the measurement result y,
y measurement result (corrected if necessary).

Details of the derivation of Egs. (4.17) to (4.21) are given in appendix B, application examples are
given in appendix J.

NOTE 3: In case of the multiplicative model the combined relative standard uncertainty uc(y) / y of
the measurement result y can be directly determined as the geometric sum of the given relative standard
uncertainties u(x;) / x; of the input quantities x;.
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Booklet 8 — Measurement Uncertainty

Example

NOTE 4: The general case usually places greater demands on the physical and mathematical understanding

of the user.

General case

Model equation
y = f(Xp, X90 oo Xp)

Sensitivity coefficients

_oy
X,

Ci 1<i<n

Combined standard uncertainty

uc(y)= \/cf U2 (xg)+ €3 - uP(xy )+ ... +c2 - u?(x,)

© Robert Bosch GmbH 2015 | Status 06.2015
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4.6 Expanded measurement uncertainty

The expanded measurement uncertainty U is a parameter which identifies a range around the
measurement result that can be expected to include a large proportion of the distribution of the
values that could reasonably be assigned to the measurand %°. It is calculated as

U=k, -Uc (4.22)
with

Uc combined standard uncertainty (cf. chapter 4.5),

k coverage factor for a specific confidence level.

p

The factor k,, used (or alternatively the confidence level) must be documented.

NOTE 1: In metrology a confidence level of 95.45% is preferably used which corresponds to k, = 2.
This implies m > 20 measured values (see appendix D).
NOTE 2: The value of k, is not only determined by the confidence level but also by the degrees of freedom.
The degrees of freedom are relevant in particular if (considerably) less than 20 measured values are
available, or if an optimal selection of k, is required (e.g. if it is essential to avoid excessive measurement
uncertainty specification). For further details, see appendix D.3.
If type A evaluation is used (exclusively), the degrees of freedom always must be specified
[GUM 4.2.6].

NOTE 3: Alternatively, the number of measured values can be specified instead of the degrees of freedom.
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10" According to [GUM, 2.3.5] and [VIM(2), 3.9]
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Booklet 8 — Measurement Uncertainty

4.7 Complete measurement result

4.7.1 Notation

The complete measurement result of a measurand is made up of the measured value y, corrected as
necessary, and the associated expanded measurement uncertainty U. The following notations can be
used:

e yzxU (recommended for Bosch)
e vy U

L Y, Urel

e y(1xUw)

e y(U) (not recommended)

Here, Uil denotes the expanded measurement uncertainty related to the measured value:
Urel = U/ |y| .
NOTE 1: Notations such as 5 mA + 5% are not permitted.

The range within which the conventional value of the measurement result is expected is given by the
limitsy—Uandy+ U.
NOTE 2: In the case of unilaterally limited characteristics, it is possible for y - U to fall below the value 0. If
this is the case, the range from O to y + U applies to the conventional value.

NOTE 3: If corrections have been calculated and applied when determining the measurement uncertainty, it
is useful in many cases to specify these corrections separately as an additional information (examples:
see appendix J.3, page 80; appendix J.8, page 116).

NOTE 4: If several measurement results are available (no individual value), presenting data in tabular form
is permitted.

4.7.2 Rounding rules

According to [GUM, 7.2.6] the numerical values for the measurement result y and its expanded
measurement uncertainty U may not be specified with an excessive number of digits. A maximum of
two significant decimal places®! is usually sufficient to specify U. In some cases, it may be necessary
to retain additional digits in order to prevent rounding deviations in subsequent calculations.

NOTE 1: Unlike the rounding of the final result, the rounding of intermediate results and the values of input
quantities should be avoided as far as possible.

Correlation coefficients must be specified to three significant decimal places if their absolute values
are close to one.

It makes no sense to specify the values for the measurement result y and its expanded measurement
uncertainty U in the final result with more than one additional decimal place compared to the
resolution of the measuring system. More decimal places cannot be recorded with the measuring
instrument being used, and are therefore worthless.

The final results of uncertainty calculations must be rounded up. Example: U = 0.422 um is rounded
up to U = 0.43 um. Results of degree of freedom calculations (see appendix D.3) must be rounded
down to integers.

NOTE 2: However, common sense should always prevail so that marginal cases such as U = 0.4205 um are
rounded down to U = 0.42 um instead of rounding up to U = 0.43 um.

11 Digits of a number are referred to as “significant digits” if the corresponding number can be considered as lying
within the limits of the deviation of the least-significant digit (see ISO 80000-1:2009 + Cor 1:2011). Example:
The numerical value 4.12 has 3 significant digits if the exact value is within the range 4.115 < x < 4.125, since all
values in this range give the result 4.12 when rounded according to customary rules.
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4.8 Tabular uncertainty budget

The required work steps for determining and specifying the measurement uncertainties are
described in the preceding subchapters of chapter 4. A comprehensible documentation of these
work steps must be compiled for each specific case of application. No binding format is specified for
this documentation. However, creating an uncertainty budget in tabular form is recommended.
Appendix | contains a suggestion for a tabular presentation of this type which is also used for the
examples in appendix J. Supplementary descriptions are required in most cases with texts and
images for the measuring task, the measurement setup and the selection of input quantities and
calculations.

NOTE 1: Unfortunately, the English term “budget” often results in mistakable terms when translated into

other languages. Actually it is mainly a consistent listing of contributions to uncertainty, i.e. a sort of “balance-

sheet”.
For measuring uncertainties of variable quantities (e.g. characteristic curves) that are determined at
several reference points (parameter settings), the tabular presentation becomes more complex as
the number of reference points increases (e.g. if there is one table for each reference point). In this
case, curves or arrays of curves are used in practice in order to provide the measurement uncertainty
in dependence of selected parameters.

4.8.1 Minimum requirements for documentation

A tabular uncertainty budget that complies with the traceability requirements should contain the
following minimum information (along with additional descriptions if necessary):

e the model equation %2,

e all input quantities (in the form of symbols) which were included in the uncertainty study,

e the (estimated) value of each input quantity 2,

e the associated standard uncertainty for each input quantity 2,

e details of correlations 2 and also covariances where applicable,

e the applied probability density function 2 (e.g. normal distribution, rectangular distribution),
e the degrees of freedom 2 (according to [GUM 4.2.6] always required for type A evaluation)
e type of measurement uncertainty determination 2 (type A or type B evaluation),

e the sensitivity coefficients,

e the uncertainty contributions to the output quantity,

e the value of output quantity,

e the combined standard uncertainty of the output quantity,

e the coverage factor!?.

The form sheet shown in appendix | conforms to [VIM] and also contains further information.

4.8.2 Pareto chart and analysis of measurement uncertainty components

The Pareto chart is a graphical illustration of the Pareto principle according to which most
consequences of a problem (typically around 80%) are frequently attributable to only a small number
of causes (typically around 20%) [EQAT]. It is therefore advisable to identify these causes. In the case
of measurement uncertainties, the Pareto chart is used to filter the largest uncertainty contributions
out of the input quantities.

NOTE: The measurement uncertainty of a measuring system often can be significantly reduced by analyzing

the component with the largest contribution according to Pareto and optimizing that component in order
to reduce the uncertainty.

Examples: See appendix J, diagrams on pages 80, 89, 91, 102, 116 and 119.

2 3ccording to [VIM, 2.33, comment]
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Booklet 8 — Measurement Uncertainty

5 Approach according to ISO 22514-7 13

Chapters 1 and 2.5 explain that the measurement uncertainty provides an assertion about the range
where the true value can be expected that is associated with a measured value. However, unlike
measuring process capability, it makes no assertion as to whether measurement errors and
dispersions of measured values are compatible with the tolerance zone of a characteristic (cf.
chapter 2.5).

Whether both or only one of the two parameters (statistics) are required to ensure that defined
requirements are met, usually can be decided based on the following criteria:

o Where measuring tasks change frequently (e.g. in development and testing departments),
it is preferable to determine measurement uncertainties.

¢ Where a sufficiently large number of similar measurements of a specific characteristic are made
repeatedly (e.g. in production), it is preferable to determine measuring process capabilities.

o If conformity statements are required according to [ISO 14253], it is essential to determine
measurement uncertainties instead of or in addition to the proof of capabilities.

Capability and performance evaluations of production processes are based on measurement results.
Substantiated assertions therefore require adequate consideration of the uncertainty to be allocated
to the measuring process '*. The procedures according to [AIAG MSA] and [Booklet 10] globally
include all components of measurement uncertainty that are relevant to the measuring process into
the evaluation results, since these uncertainties are already contained in the measurement results.

In contrast to this, [ISO 22514-7] provides a practice-oriented approach for the determination of
measurement uncertainties based on [GUM] and the evaluation of the capability (suitability *°) of
measuring systems and measurement processes based on the determined individual components of
the measurement uncertainty.

Initially the capability of the measuring system (MS) is determined and evaluated by means of the
parameters Qus and Cus with defined limit values.

Only after meeting these criteria the capability of the measuring process (MP) is determined and
evaluated by means the parameters Qup and Cyp with defined limit values.

13 The approach according to [VDA-5] corresponds to the approach according to [ISO 22514-7]

14 1n accordance with [ISO 22514-7], chap. “Introduction”

15 Unlike the ISO standard, the German version of the VDA volume uses a German term which translates to
English “suitability” or “appropriateness”. To ensure that the different language versions are unambiguous,
the term “capability” is used throughout this guide including in the German version.
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Booklet 8 — Measurement Uncertainty

5.1 Procedure according to ISO 22514-7

Analyze
measuring
system
(MS)

=

v

Define measuring task,
specifiy limit values

Optimize
measuring system /
measuring process

Resolution

sufficient o

(RE < 5% T)?

Maximum
pemissible error (MPE)
known and used?

Determine
standard uncertainty
UvpE

Determine
standard uncertainties
Ucan, Uev, Usi, ULin, UMs-Rest

v

Calculate measuring system parameters:
e Combined standard uncertainty uys

e Expanded measurement uncertainty Uys
e Tolerance related uncertainty Qus

e Capability index Cys

Qus < 15%7? no

Cus> 1.337

Analyze
measuring

Determine
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Calculate measuring process parameters:
e Combined standard uncertainty uyp
e Expanded measurement uncertainty Uye

e Tolerance related uncertainty Qup

e Capability index Cyp

Figure 8: Procedure according to [ISO 22514-7] and limit values as recommended by the standard
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5.2 Model equation

Model equations are not explicitly formulated in [ISO 22514-7]. However, the approach can be
described according to [GUM] by means of the model equations

Yms =Y +0XcaL +Xgyus) T OXp + XN + OXresT(vs) (5.1)
for the measuring system and
Yvp =¥Yms T (SXEV(MP) _SXEV(MS))+ dXay +8Xjp +0Xopy + Xy +0Xgrag * OXg + OXREST(MP) (5.2)

the measuring process. The equations represent a standardized specification based on an additive
model (cf. chapter 4.3.1) with the following components:

y (Uncorrected) indication for the measurement results y,g of the measuring
system or y,,» of the measuring process,
3 XL Deviation due to finite precision of calibration,
§ Xev(ms) Deviation due to finite repeatability of the measuring system,
- OXp; Systematic measurement error,
g XN Linearity error,
S OXgestvs) ~ Deviation due to other influences attributable to the measuring system,
B
Xev(mp) Deviation due to finite repeatability of the measuring process,
X ay Deviation due to operator influence,
X g3 Deviation due to inhomogeneity of the measuring object, e.g. form deviations
(if relevant),
Xa Deviation due to interactions between input quantities,
dXsTAB Deviation due to temporal instability of the measuring process,
X g Deviation due to temperature differences,
MNXgy Deviation between different, technically comparable measuring systems

(if relevant),
OXgestwpy ~ Deviation due to other influences attributable to the measuring process.

NOTE 1: The expected value of the deviation ox; from the conventional value x; of the input quantity i is O.
This applies to all input quantities i.

NOTE 2: The repeatability of the measuring system is one of several components that determines and also
limits the repeatability of the measuring process in case all other components have no significant effect on
the measuring process. Therefore, deviations of the measuring process caused by finite repeatability cannot
be less than the corresponding deviations of the measuring system, so that the term OXevie) — Xevims)
cannot be negative.
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Booklet 8 — Measurement Uncertainty

5.3 Uncertainties of the measurement system

The standard uncertainties u(8x;) = u;

of the input quantities i are determined as follows:

Uncertainty Symbol Source, calculation
component
Calibration U(8Xca ) = Uca, | Calibration certificate of the standards or manufacturer’s data

uncertainty
(Type B evaluation)

sheet:

e If the expanded measurement uncertainty U, is specified
with the confidence level (1- a)-100% it is divided by the
corresponding coverage factor Kk, :

Uea, = UcaL
k

p
e If the confidence level is not specified, kp=2s assumed.

e Data that is not specified in more detail is adopted
unchanged as standard uncertainty ucy (i-e. K =1).

Resolution Ure Resolution RE taken from the manufacturer data sheet or
(Type B evaluation) estimated from readings:

Ugg = 1 RE (Rectangular distribution)

52
Repeatability at Uevr m > 30 repeated measurements, calculation of the standard
the standard deviation s and the standard uncertainty (see [GUM],
(Type A evaluation, chap. 4.2.3; [Booklet 10], type-1 study) °:
MSA study of
type-1or -4) Uevr = Ly (x =X)?
m-1i3

Multiple standards:

A total of m > 30 repeated measurements evenly distributed

over all standards; common alternatives:

e Determination of ug,g for each standard (multiple type-1
study), determination of the maximum value of all ug,y
(see [VDA-5]);

e Linear regression and estimation of ug,k from the residual
dispersion s of the measurement deviation around the
regression line (see [Booklet 10], appendix E.1; [AIAG MSA]);

e Determination of ugyg and uj,y by means of ANOVA Y.

U(SXEV(MS)) Uevs) = MAX(URE’UEVR)
=Ugy(ms)

i u(dxg )=u X —X o
Systematic (51 ) = Uy Ug = m  (Rectangular distribution)
measurement J3
error ' X — Mean value of the measured values
(Type A evaluation, X, — Reference value of the standard
MSA study of .
type-1 or -4) Multiple standards:

Determination of ug, for each standard (multiple type-1 study),
determination of the maximum value of all ug,(see [VDA-5]).

16 11SO 22514-7] provides no consideration of whether the smaller mean value dispersion can be used
17" Analysis of Variances, abbreviated to ANOVA; mathematical method for decomposing variances into individual

components

18 Formula is applicable if systematic and random measurement errors are not distinguishable [ISO 22514-7]
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Uncertainty Symbol Source, calculation
component
Linearity error u(8xL|N): ULIN e Ad-hoc assumption u  =0;

e (Calculation based on available limit values and adoption
of a uniform distribution, e.g. a =(a, —a_)/2 (cf. chap.
4.4.2.2):

Uin = a2
V3
e Experimental determination (see [Booklet 10], type-4
study, appendix E.1; [AIAG MSA], page 96 - 101);
e (Calibration certificate;
e Determination ug,r and ug,y by means of ANOVAY.

(Rectangular distribution)

Residual U(5XREST(MS)) If presumed or available: Determination based on tests
deviations = UpesT(us) (type A evaluation), data sheets, manufacturer's

of the specifications, literature, etc. (type B evaluation)
measuring

system

Table 3: Uncertainty contributions of the measuring system according to [ISO 22514-7]

The combined standard uncertainty of the measuring system is calculated as

2 2 2 2 2
Uys = \/UCAL +Ugyus) T Upg + U N T UResT(MS) (5.3)
(see chapter 4.5) and the expanded measurement uncertainty of the measuring system as
Uns =Kp -Uus (5.4)

(see chapter 4.6 and appendix D). A tabular uncertainty budget is not explicitly required by
[I1SO 22514-7].

5.4 Evaluation of the measuring system

For evaluating the capability of the measuring system the standard recommends the following
parameters and limits:

2-U
Qus = MS

-100% < 15% (5.5)

Cys = 2'3'T >133 (5.6)

“Uvs

NOTE 1: The following relationship exists between these two parameters

10%
Qums = k
Cus P

In the case k, > 2 the criterion Qus < 15% represents the higher requirement for the measuring system, in
case k, < 2 the criterion Cys > 1.33.

NOTE 2: The index Cus must not be confused with the index C,; of a type-1 study [Booklet 10], since
the standard uncertainty uys and the standard deviation s of a type-1 study are not equivalent in general.
Equivalence assumes that the uncertainty contribution ugvr (repeatability at the standard) is the only
significant uncertainty component. This can be verified, for example by means of an uncertainty budget.
However, even in this case the indexes are not comparable, since the use of the factor 0.3 instead of 0.2
means a reduction of the requirements according to [Booklet 10] and [CDQ0402] to 2/3, i.e. from 1.33 to
0.89.

Unless capability is achieved, the measuring system should be optimized before the measuring
process is evaluated.

© Robert Bosch GmbH 2015 | Status 06.2015 35



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

Booklet 8 — Measurement Uncertainty

5.5 Uncertainties of the measuring process
Uncertainty Symbol Source, calculation
component

Repeatability at Uevo Minimum requirements:
the measuring e >30 data (sample size)
object from

e >2repeated measurements,
e >5 measuring objects [ISO 22514-7]
or
> 3 measuring objects [VDA-5],
e > 2 operators (if relevant),
e >2 measuring devices (if relevant);
Determination by means of ANOVA

2 (see [Booklet 10], EV from a type-2 or type-3 study)
O
3 U(SXEV(MP)) Uevvp) = MAX(UREUEVR’UEVO)
8 = Uev(vp)
3
2 Operator U(SXAV)z Uay | Minimum requirements: see Ugyg ;
& comparison Determination by means of ANOVA
(see [Booklet 10], AV from a type-2 study)
Inhomogeneity of U(Bx0g;) = Uoss Uogy = 298 (Rectangular distribution)
the individual J3
measuring object Determination of the maximum deviation agg; (e.g. shape):

e Drawing (maximum permissible deviation)

e Control chart (actual deviation)

e Experiment (actual deviation)

e Data sheet, manufacturer's specifications (estimate)

Interactions U(5X|A)= Ua Tmax

Ua = Z Uaj
=1

2

Determination of individual interactions u,, ; by means of ANOVA
(see [Booklet 10], type-2 study, IA operator - measuring object)

Instability of the | u(8xgrag) Minimum requirements: see Ugyq ;

measuring process =UgtaB Determination by means of ANOVA

over time (see [Booklet 10], type 2 / 3 study)

Temperature u(dxg)=ug Possible determination of uncertainty from temperature

differences in case of mechanical / geometric characteristics:

[ 2 2
Ug =4Urp +Ura

e Temperature difference (according to ISO/TR 14523-2):
AS-a-l

Urp \/5

A8 —Temperature change in K,

o — Coefficient of expansion,

|  —Result of the length measurement.

e Thermal expansion (according to ISO/TR 15530-3):

Ura =[9-20°C]|-u,, |

9 —Mean temperature in °C during the measurement,

u, —Standard uncertainty of the coefficients of expansion
(e.g. from tables, data sheets or technical literature).

(Rectangular distribution)

o
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Booklet 8 — Measurement Uncertainty

Uncertainty Symbol Source, calculation

component

Comparability u(SXGV): Ugy | Relevantin case of more than one measuring system;

of different consideration of the minimum and maximum values of
measurement individual and mean values measured for each reference
systems part on the different measuring systems

Residual U(SXREST(MP)) If presumed or available: Determination based on tests
deviations = UgesToup) (type A evaluation), data sheets, manufacturer's specifications,
of the literature, etc. (type B evaluation)

measuring

process

Table 4: Uncertainty contributions of the measuring process according to [ISO 22514-7]

The combined standard uncertainty uye of the measuring process is calculated as *°

2 2 2 2 2 2 2 2,2 2
Upp = \/UMS + (UEV(MP) - UEV(MS,))Jr Uay +Uppy +Uja +UgTag +Ug +Ugy +UresT(mp) (5.7)
(see chapter 4.5) and the expanded measurement uncertainty of the measuring process as
Uwp =Kp -Unp (5.8)

(see chapter 4.6 and appendix D). A tabular measurement uncertainty analysis is not explicitly
required by [ISO 22514-7].

5.6 Evaluation of the measurement process

For evaluating the capability of the measuring process the standard recommends the following
parameters and limits:

2-U
Quwp = MP

-100% < 30% (5.9)

03-T

“Ump

NOTE 1: The following relationship exists between these two parameters

20%
Qup = -k
Cmp P

In the case k, > 2, the criterion Qus < 30% represents the higher requirement for the measuring process,
in case ky < 2 the criterion Cyp > 1.33.

NOTE 2: The index Cyp must not be confused with the index C, of a type-1 study [Booklet 10], since
the standard uncertainty uye and the standard deviation s of a type-1 study are not equivalent in general.
Equivalence assumes that the uncertainty contribution uew (repeatability at the standard) is the only
significant uncertainty component. This can be verified, e.g. by means of a measurement uncertainty
analysis. However, even in this case the indexes are not comparable, since the use of the factors 0.3 and 3
instead of 0.2 and 6 means a reduction of the requirements according to [Booklet 10] and [CDQ0402] to
1/3, i.e. from 1.33 to 0.44.

NOTE 3: With k, = 3 the defining equation for Qup is formally transferred into the defining equation for
%GRR. However, comparability with %GRR according to a type-2 study [Booklet 10] requires that ugvo
(repeatability at the test object), uay (operator comparison) and uy, (interactions) are the only contributions
to uncertainty which are verified as significant.

Unless capability is achieved, the entire process must be optimized.

19 Only the difference ueymr)®> — Uevius)? Must be considered, since the fraction ugyus)® is already included in
uwvs®. Mathematically, this eliminates the term Ugy(us)? in ums® and replaces it with Ugymp)?.

© Robert Bosch GmbH 2015 | Status 06.2015 37



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

5.7 Maximum permissible error (MPE)

For the evaluation of the measuring system (MS) the concept of “maximum permissible error” (MPE)
can be used as an alternative to the determination of measurement uncertainties according to
[GUM].

The calibration of the measuring system or its components ensures that the equipment meets
the requirements of defined metrological properties. This can be documented by specifying one or
more MPE parameters.

MPE can be particularly useful when several similar, but physically different, measuring systems are
used for a measuring process. If only one measuring system is used, the experimental method
according to [GUM] is usually more advantageous, since it provides lower measurement
uncertainties.

Using MPE to evaluate the measuring system and the measuring process can be described by
following model equation:

Yms =Y+ Xype (5.11)
Ymp = Ywms +0Xay +8Xopg +0Xa +8Xgy +OXgrag + 8Xg + OXResT(MP) (5.12)
with
SXppe deviation less than or at most equal to the maximum permissible error MPE.
Uncertainty Symbol Source, calculation
component
Maxi u(dx =u s
aximurm (Bxupe )= e Uppe _MPE (Rectangular distribution)
permissible J3

error In the case of several MPE values that can affect the
measurement result:

\/MPEf MPE 2 MPE, >
Uypg = + +oF—0
3 3 3
MPE values are taken e.g. from the calibration documents

Table 5: Contribution of the maximum permissible error to uncertainty

The remaining uncertainty components are determined according to Table 4. The combined standard
uncertainty and the expanded measurement uncertainty of the measuring process are calculated as
2 2 2 2 2 2 2 2
Upp = \/UMPE +Uay +Upgy +Uja +UgTag +Ug + UGy +UReST(MP) (5.13)

NOTE: [ISO 22514-7] does not include any information about how these equations take account of the case
“Uevo greater than ugyr and uge”.
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Booklet 8 — Measurement Uncertainty

6 Measurement uncertainty based on the procedures
according to booklet 10 and I1SO 22514-7

Capability studies according to [Booklet 10] require carrying out several specific investigations (studies
of type 1 to 5). These procedures take into account influences on the measuring result such as
the measuring system, operators, measuring objects, measurement strategy, environmental conditions
and stability over time. Thus, most uncertainty components according to [ISO 22514-7] are already
included in the measurement data. This data can be used to determine a value for the measurement
uncertainty U so that the requirements of various standards and guidelines for identifying and taking
account of the uncertainty of measurement results (cf. chap. 1) are met without any additional
investigation effort. If these data are not available or merely partially available, the following
explanations do not apply and the procedures according to chap. 4 or, where appropriate, chap. 5 have
to be used.

The uncertainty components according to [ISO 22514-7] are primarily attributed to the following
data sources:

Symbol Uncertainty component Included in information or data source
according to chap. 5.2 (ISO 22514-7)
UcaL Deviation 8xc,_ due to finite precision of | Calibration certificate of the standard or
calibration reference part used
Ugy(ms) Deviation 8Xgyys) due to finite Type-5 study: Dispersion of the measuring
repeatability of the measuring system system with a standard or a reference part
Ug Systematic measurement error 8xg, Type-5 study: Mean deviation of the
measured values from the reference
value of the standard or series part
U N Linearity error 8x If relevant according to chap. 5.3, Table 3
Urest(vs) | Deviation 8Xgestus) due to other Type-5 study: All other influences not
influences attributable to the measuring mentioned above, that are not caused by
system series parts
Uev(mp) Deviation 8Xgy(yp)due to finite Type-1 and type-2/3 studies (difference):
repeatability of the measuring process Increase in measuring system dispersion
due to series parts
Uay Deviation 8x 4, due to operator influence Type-5 study: Dispersion as a result of
different operators
Uogy Deviation 8xg; due to inhomogeneity of | If relevant according to chap. 5.5, Table 4
the individual measuring object, e.g.
caused by shape variation, surface quality
or material properties
Uiaq) Deviation X)) due to interactions Type-5 study: Interactions that are not
between input quantities caused by series parts
Uia(2) Deviation X5, due to interactions Type-2 study: Interactions between
between input quantities operators and series parts
UstaB Deviation 8xgrag due to instability of the | Type-5 study: Dispersion as a result of
measuring process over time deviations from the long term stability of
“Reproducibility over time” [ISO 22514-7, pp. 21] the measuring process
Ug Deviation 6xg4 due to temperature Type-5 study: Influence of temperature
differences changes and settings that deviate from
the nominal value
Ugy Deviation 8xg, between different, but If relevant according to chap. 5.5, Table 4
technically comparable measuring systems
Urestvp) | Deviation 8Xgestvp) due to other If relevant according to chap. 5.5, Table 4
influences attributable to the measuring
process

© Robert Bosch GmbH 2015 | Status 06.2015 39



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

The individual uncertainty components are defined according to the model equation
Y =Y +8Xca +0Xg| + OXpro + OXpar + OXexT (6.1)

and applied or combined as follows:

e Standard uncertainty of the calibration of the standard or reference part used (calibration):

UcaL (6.2)
e Standard uncertainty due to uncorrected, systematic measurement errors (bias):
Ug, (6.3)

e Standard uncertainty of the measurement procedure (procedure); random and uncorrected
deviations under intermediate precision conditions caused by the measuring system, the
standard, the operator, time and environment:

1 o _

2 2 2 2 2 2 2

Upro = \/UEV(MS) +UgesT(ms) +Uav +Uja@) +Ustag +Ug = \/m 1 Z(Xk -x) (6.4)
-1 3

e Standard uncertainty due to series parts (parts); influence of the measurement strategy and the
measuring object during measurements on series parts:

Upar = \/UEV(MP) _UEV(MS) ~yEVZ -’ (6.5)

e Additional standard uncertainty due to other influences (extra); provided that one or more
individual components are relevant (if applicable see chap. 5.3, Table 3, and chap. 5.5, Table 4):

2 2 2 2 2
Uext = \/ULIN +Upgy +Uja2) +Ugy +UresT(mp) (6.6)

6.1 Determining uncertainty components

6.1.1 Standard uncertainty uca. of the standard calibration

The value of the expanded measurement uncertainty U-, must be taken from the calibration
certificate of the standard or reference part and divided by the coverage factor k, (ko = 2 at
confidence level 95.45%):

U
Ucar = — 25 (6.7)

Kp

6.1.2 Standard uncertainty ug due to a systematic measurement error

The difference between the mean value X of the measured values of the relevant stability charts and
the conventional value x,, of the standard or reference part according to the calibration certificate
must be taken into account as a standard uncertainty according to appendix F:
Ug) = X, — X (6.8)
NOTE 1: In contrast to [ISO 22514-7] and according to [GUM)], this difference is applied unmodified as
standard uncertainty ug. Alternatively, a corresponding correction can be made and the uncertainty
contribution ug can be omitted.

NOTE 2: The uncertainty of this standard uncertainty (or correction) is contained in the dispersion of the
measured values. Thus, it is already included via upgo in the measurement uncertainty of the measuring
process and does not need to be considered separately.
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Booklet 8 — Measurement Uncertainty

6.1.3 Standard uncertainty upro of the measurement procedure

The individual values documented in the stability chart (type-5 study) represent the dispersion of the
measuring process under varying external conditions (e.g. variations of temperature or measuring
force or changes of operators). At least m = 25 measurements should be available.

Upro = \/i 3 (x, —X)? (6.9)

m-1,3

NOTE 1: Since the expanded measurement uncertainty U to be determined here shall refer to individual
measurements, Upg, corresponds to the standard deviation of all individual values.

NOTE 2: A type-5 study is performed using a standard just as used with a type-1 study or a reference part
(stability part). Therefore, uncertainty components resulting from series parts are not included in the
measurement results and must be considered separately.

6.1.4 Standard uncertainty upar of the measuring object

Unlike a type-1 study, an additional uncertainty component up,z is usually effective in case of
measurements on series parts (e.g. caused by shape deviations). That is why EV from a type-2 or a
type-3 study usually is larger than s from a type-1 study. This difference is significant if the condition

EVZ>2s? (6.10)
is fulfilled. Only then, upag must be taken into account:

NOTE: The criterion EV?/s? > 2 is based on an F-test with a confidence level of 95% and approximately
20 — 30 individual values for determining EV or s, respectively; the corresponding quantiles of the
F-distribution are in the 1.85 to 2.15 value range.

6.1.5 Standard uncertainty uexr of other uncertainty components

If the influence of other uncertainty components (such as linearity, homogeneity, interactions or
system differences) is evaluated or assumed to be relevant:

Upxt = \/UEIN +Udg; +U|2A(2) +Ugy +U§EST(MP) (6.12)
6.2 Combined standard uncertainty uc

Uc = \/u%AL +U§| +U|§Ro +U§AR +UEXT (6.13)
6.3 Expanded measurement uncertainty U

U=k, -Uc (6.14)

The calculated measurement uncertainty U applies to an individual measurement and the period
being considered (according to the stability chart). k, = 2 applies to a confidence interval of 95.45%.

NOTE: The uncertainties u- and U can be utilized for a capability evaluation of the measuring process
according to [ISO 22514-7] (cf. chapter 6.5).

6.4 Complete measurement result y
Y=y £U (6.15)

Application examples: See chapter 6.5 and appendix J.6
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6.5 Example from booklet 10: Outer diameter of a shaft

Required data

e Calibration or test certificate providing reference value and calibration uncertainty of the standard;
e Results from type-1 and type-2 (or -3) studies;

e Stability chart with at least 25 sample results (type-5 study);

e Tolerance of the characteristic (in this case T=0.06 mm = 60 um).

NOTE: The data for this example were taken from the forms shown in [Booklet 10], chap. 4.

Standard uncertainty uca, of the calibration of the standard
The calibration certificate of the standard provides the reference value x, =6.002 mm and
Ucal =0.001mm . The standard uncertainty ug,, is calculated by dividing the uncertainty Ug, by

the coverage factor k, (here k, = 2):

UcaL = UEAL = %01 mm = 0,0005 mm = 0,5 ym

p

Standard uncertainty ug due to systematic measurement error
Reference value: x,, =6,002mm = 6002um from the calibration certificate of the standard,

Mean value: X = 6,002mm = 6002um from type-5 study.
Ug| = Xy — X = 6002 pm — 6002 pm = 0 pm

Standard uncertainty upgro of the measurement procedure
Upro is the standard deviation of all individual values in the stability chart:
Upro = 0,0013mm =13pm from type-5 study.

Standard uncertainty upar by measurements on series parts
In addition to s from a type-1 study, EV from both type-2 and type-3 studies is available in this example:

s =0,00100mm =2100um from type-1 study,
EV =0,00153mm =153um from type-2 study,
EV =0,00147mm = 1,47 um from type-3 study.
The larger one of the two standard deviations EV is used (type-2 study):
EV? =234pm? > 2-s2 = 2,00um? i.e. the difference is significant.

Accordingly, Eq. (6.11) must be taken into account:
Upar = VEVZ -s? = \/l53 2-1002 pm ~ 12 um

Standard uncertainty uexr due to other uncertainty components
Interactions operators — parts are insignificant, other components are considered non-relevant.

Combined standard uncertainty uc
_\/ 2 2 2 2 _\/ 2 2 2 2, -
Uc =4/UgaL + UG +Upro +Upar =v0,5°+0,0° +13° +12°pum = /3,4 pm ~ 18 um

Expanded measurement uncertainty U for the considered period
U=k, -Uc=2-18pm=36pum

Classification
The capability requirements recommended by [ISO 22514-7] are met:

2'UMP Z'U 2'3,6um
Qup = T AA

-100% = ?-100% = -100% =12% < 30% (6.16)

Cop = 03-T _03-T _03-60pm :£:3’332133 (6.17)
3-Uuy 33Uz  3:-18um 18
The requirement according to the “golden rule of metrology” is also met:
U _36pm

T 60um

=006<01 (6.18)
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Booklet 8 — Measurement Uncertainty

Appendix

A Examples of input quantities and influences

The following list — which is not exhaustive — contains typical examples from different categories

which can serve as a guide in determining input quantities.

Environmental influences

o Temperature: Absolute temperature,
spatial and temporal gradient

¢ Vibrations

¢ Noise

e Humidity

e Contamination

e Lighting

e Atmospheric pressure

e Air composition

o Air draft

Standards and material measures

o Stability

¢ Quality of the reference

o Physical principle of the reference:
analog, optically digital, magnetically digital,
toothed rack, interferometry

Measuring system

¢ Resolution

e Output system

¢ Mechanical or electrical boost

¢ Wavelength error

o Stability of the zero point

o Stability of the measuring force,
absolute force

e Hysteresis

e Accuracy of mechanical guidance

e Probe system

Measuring the measuring object

e Cosine and sine errors

¢ Violation of the Abbe principle
o Temperature sensitivity

o Stiffness and elasticity

e Probe tip radius

¢ Flattening of the probe tip

© Robert Bosch GmbH 2015 | Status 06.2015

Gravity

Electrical interference fields

Power supply variations

Pressure variations in the compressed
air supply

Heat radiation

Influence of the measuring object
Thermal equilibrium of the measuring
instrument

Uncertainty of calibration
Resolution of the standard instrument
Thermal coefficient of expansion

Stiffness, elasticity

Reading head of the measuring system
Thermal expansion

Parallax

Time since last calibration

Sensitivity characteristics

Interpolation system

Resolution of interpolation

Digitizing

Stiffness of the stylus

Optical aperture

Influence of clamping device on the
measuring object

Thermal compensation
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Booklet 8 — Measurement Uncertainty

Data processing

Rounding rules

Algorithms

Application of algorithms
Number of significant places
used in the calculation

Human influence

Experience

Training

Physical and mental condition
Expertise

Properties of the measuring object

Surface roughness

Form deviation

Elastic modulus (E-modulus)
Stability beyond the elastic modulus
Thermal coefficient of expansion
Electrical conductivity

Weight

Dimensions

Surface

Definition of characteristics

Date

Reference system

Degrees of freedom
Assessment methods

(e.g. surface texture, 1SO 4288)

Measurement methods

Course of action

Number of measurements

Sequence of measurements

Duration of the measurement

Choice of measuring principle
Alignment

Choice of reference, reference object
Alignment of the probe system
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Sample

Filtering

Certification of algorithms
Interpolation and extrapolation
Outlier handling

Honesty
Interest in the task
Diligence

Magnetism

Hygroscopic property

Aging

Cleanliness

Temperature

Internal stress

Creep characteristics

Object deformation during clamping
on the measuring instrument

Distance
Angle
Toleranced characteristics

Choice of equipment

Choice of operators

Number of operators
Strategy

Measuring object fastening
Number of measuring points
Probe head system

Drift behavior
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Booklet 8 — Measurement Uncertainty

B Calculation of sensitivity coefficients

The combined standard uncertainty for any (linear) model
y=f(x1,x2, ...,xn)
for n uncorrelated input quantities x; with 1 <i < n'is calculated as

uc<y>=Ji(§—Xyi-u<xi>f Jz< )

i=1 i=1

with the sensitivity coefficients
Y
0X;

B.1 Additive model
y= ji)g = X14-X2 +...+Xn

i1
The sensitivity coefficient c; is calculated as

n

0 ) X
oy ; '_6(x1+x2+...+xn)_%+8ﬁ+ +5Xn
YUox, oxg 0%, ox, 00X, | 0xy

=1+0+...+40=1

or any sensitivity coefficient ¢, with 1<k <nas
n
0) X;
ay ,; AKXy Xy Xy LX) 0%
OXy OXy OXy OXy
The combined standard uncertainty is then calculated as

=1

Ck:

0= (3 2] = Bt = [Sute) oo o))

i\ OX i1

B.2 Multiplicative model

m
[Tx
y: |:1 — Xl’Xz'...'Xm
n
Xmi1 Xmy2 *-- Xy
[1x
i=m+1

A special case of this model equation is
n
y=]]xi=x1-%3-...-%,
i=1
In this case the sensitivity coefficient c; is calculated as

n

al | x

oy _ g '_a(xl-xz-...-xn)_l_xz. o XaXp Xy Y
= = = Xy =Rz TN

Cl =
0X4q 0X4q 0Xq Xq Xq

or any sensitivity coefficient ¢y with 1<k <nas

n
ol | X
oy _ H '
OXg OXy OXg Xk

O XX X)) Y

Ck:
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(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)
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Booklet 8 — Measurement Uncertainty

Another special case of this model equation is

n
y:Hi:i.i.m.i (B.10)
i=1 Xj Xy Xy Xn

In this case the sensitivity coefficient c; is calculated as

C, = =
! 00Xy O0Xq 00Xy

X, %, X,

n
ol | x;
ﬂ_g'_i(i.i. 1] S S 1(1 1 .1]_ y
or any sensitivity coefficient ¢y with 1<k <nas

n

o[ I

_Y e 01 1 1)y (B.11)
OXg OXg OX \ X1 Xy Xy Xn Xk

The sensitivity coefficients of both special cases differ only in terms of the sign. Because the
sensitivity coefficients are squared for the calculation of the combined standard uncertainty, the sign
is not relevant. Thus, for both special cases and the general case, the combined standard uncertainty
is always calculated according to

or by means of this equation divided by y:

- s (4 (5

B.3 Linear function

(B.12)

n
y=2(ai +b;-x;)=(a; +b; - x;)+(a, +by -x,)+...+(a, +b, - %) (B.14)
i1

The linear function according to Eq. (B.14) mathematically represents a combination of the additive
model and the multiplicative model. The constants a; and b; are also subject to uncertainty since
usually they are not precisely known. If, in the first step, only additive relations are considered, the
following results according to Eq. (B.6):

u(y)= \/guz(ai)Jr i‘uz(bi -X;) (B.15)

Then, in the second step, the multiplicative relations in the second summand is considered according
to Eq. (B.12) so that

uely)= 3 %@+ [[b%}(bﬁj] :Ji(u2<ai>+xf-u2<bi>+bf-u2<xi>)

i=1 i i i i=1

or

uc(y)= \/uz(al)+ x,2U?(b,)+b,2u?(x, )+ ... + u?(a, )+ x,2u?(b,, )+ b, °u?(x,,) (B.16)

In the special case n = 1 (linear equation) the following applies:

y=a+b-x (B.17)
with the standard uncertainty
uc(y):\/uz(a)+ x% -u?(b)+b? -u?(x) (B.18)
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Booklet 8 — Measurement Uncertainty

C Correlated input quantities

NOTE 1: The consideration of correlations make higher demands on the user’s physical and mathematical
understanding.

NOTE 2: The applicability of the following observations presupposes that there is a linear relationship
between the correlated quantities.

C.1 Uncertainties of input quantities

In case of a type A evaluation the correlation of the input quantities i and j can be verified by means of the
covariance of the data sets X, and x;, each consisting of m measured values:

s(xi,xj)zﬁoi(xik —ii)~(x]-k —ij) (C.1)

The covariance related to the product of both standard deviations s(x;) and s(xj) is referred to as
correlation coefficient:

s(Xi, Xj)
rX,X;)=———_~ (C.2)
s(x;)-s(x;)

The value of r(xi,xj) is a measure for the strength of the correlation:

r(xi,xj)z +1 complete positive correlation (e.g. x; =+a-x;+b),

r(xi,xj): 0 no correlation,

r(xi,xj): -1 complete negative correlation (e.g. x; =-a-x;+b).
The covariances of the correlated mean values X; and X;are calculated as

— _\ S(X;,X;
ul®, ;) = (r'n V) (C.3)

NOTE 1: For the applicability of m > 1 the note 2 in chap. 4.4.1.1 must be considered.

In practice, the representation using correlation coefficients and standard uncertainties of the mean
values is mostly preferred:

u(x, %; )= rlx;, x;)- u(x;) - u(x;) (C.4)
NOTE 2: The notation with horizontal bars on the x; and x; means that mean values are concerned. The

relationships nevertheless apply in the same way if the x; and/or x; were not determined as mean values.

Based on these equations, it is easy to verify that the following relationships always apply for the
statistical quantities defined above:

slxix; )= slx;.x)) s(x;,x;) = s%(x;) slx;) = 5%(x;)
rbaix;) = ;i) r(x;x)=1 rxj.x;)=1
i, x; )= ulx; i) u(x; x;) = u?(x;) ;)= v (x;)

According to [GUM] the covariances s(xi,x]-) or u(xi,x]-) or the correlation coefficients r(xi,x]-) have to
be specified in addition to the standard uncertainties u(x;) and u(x]-) in case of correlated input

guantities. They are usually represented as elements of matrices.

The diagonal elements of the covariance matrix are the squares of the standard deviations
(i.e. the variances) of the input quantities; the non-diagonal elements are the covariances.
Example of 3 input quantities x1, X and xs:
s?(x;)  s(xyx,)  s(xq,x3)
s=s(x2x;)  $%(xy)  S(xp%3) (C.5)
S(x3,%1) s(xa. %) s%(x3)
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Booklet 8 — Measurement Uncertainty

The diagonal elements of the correlation coefficient matrix are 1, the non-diagonal elements are the
correlation coefficients. Example of 3 input quantities xi1, x; and xs:
1 r(xyx2) 1(xy%s)
r={r(xsx) 1 r(X2.%3) (C.6)

r(xg, Xl) r(x3, Xz) 1

The uncertainty matrix is analogous to the covariance matrix of the individual values according to
Eg. (C.5). The diagonal elements are the squares of the standard uncertainties of the mean values.
Example of 3 input quantities xi, x; and xs:

u? (Xl) U(Xl: Xz) U(le Xs)
u= u(XZ'Xl) UZ(XZ) U(szxs) (C.7)
u(x, ) u(x3,x2) Uz(xs)

The following approximation can be used as a basis for the empirical determination. If the variation
6x; of an input quantity i with standard uncertainty u(x;) causes a variation 6x; of the correlated input
quantity j with standard uncertainty u(x;), the following relationship applies approximately [GUM,
C.3.6, note 3]:

u(X;) - OX;
r(xi, j) ~r— 1 (C.8)
u(x;) - 8X;
NOTE 3: It is important to note that r(x;, x;) = r(x;, xi;) exactly applies in the special case u(x;) / u(x;) = |6xi/ 6x; |
only. This special case must be met in good approximation, so that calculations of the combined standard
uncertainty according to Eq. (C.9) provide acceptable results.

In case a type B evaluation is required for one or more input quantities, the covariances usually can
be calculated only partially or not at all by means of Eq. (C.1). Instead, estimated values are used for
the elements of the correlation coefficient matrix.

NOTE 4: If there is a positive (negative) correlation with r > 0 (r < 0), the correlation coefficient can be
estimated with r(x;, x;) = 0.5 (-0.5) in case more detailed information is unavailable (see [EUROLAB, A.6.4]).

NOTE 5: If the magnitudes of the standard uncertainties of input quantities are very different, correlations
are negligible under certain circumstances.

Correlation coefficients take values in the range -1 < r(x;, x;) < +1. Thus, the condition [u(x;, x;)| < u(xi) - u(x;)
results from Eq. (C.4). If one of the two uncertainties u(x;) or u(x;) is small in relation to the other, the absolute
value of covariance [u(x;, ;)| is also small. Examples:

e The standard uncertainties u(x;) = 0.80 and u(x;) = 0.02 have been determined. Even in the worst case
of full correlation [r(x1, x2)| = 1, the absolute value of the covariance [u(xi, x2)| cannot not take
values greater than u(x;) - u(xz) = 0.80 - 0.02 = 0.016. Thus, the covariance cannot amount to more
than 2.5% of the total variance u?(x:) + u?(x;) = 0.802 + 0.02 ? = 0.64. This may be neglected.

e In the case u(x,) = 0.90, the covariance can rise to u(x;) - u(x2) = 0.80 - 0.90 = 0.72 in the worst case
and represent approximately 50% of the total variance u?(x;) + u?(x;) = 0.80 2 + 0.90 2 = 1.45. This is
not negligible.

C.2 Calculating the combined standard uncertainty

According to [GUM, 5.2] the following calculation rule applies to the combined standard uncertainty:

u(y)= \/gc? U2 (x; )+ 2'n§ anci 'u(xi)'r(xi’xi)'ci 'U(Xj) (C.9)

i=1 j=it+1

with the sensitivity coefficients

¢, _ 0y _0f(xgyXn) and ¢ _ 0y _af(xg,. %)
O X; O X; OX; OX;

This calculation rule represents a generalization of Eq. (4.21). Unlike Eq. (4.21), it applies to both
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Booklet 8 — Measurement Uncertainty

correlated and uncorrelated input quantities.

NOTE 1: In the case of uncorrelated input quantities i and j, r(x;, x;) = O applies. Therefore, these input
quantities do not make any contribution to the double sum in Eq. (C.9). If all input quantities are
uncorrelated, the double sum disappears and Eq. (C.9) reduces to Eq. (4.21).

NOTE 2: If all input quantities are fully correlated, i.e. r(xi, x;) = +1 or r(xi, x;) = -1 applies to all i and j, the
combined standard uncertainty results from a simple arithmetic addition of the standard uncertainties of
the individual input quantities rather than an addition of the squared quantities [GUM, 5.2.2, NOTE 1]. In
this case the uncertainties can compensate for each other. This effect can be easily verified by means of
Eq. (C.12).

NOTE 3: Appendix B provides sensitivity coefficients for specific model equations.

C.3 Mathematical supplements

C.3.1 Covariances and standard uncertainties of mean values

Covariances of mean values can be described by means of Eq. (C.4) using the correlation coefficients
and standard uncertainties of the mean values. For this purpose Eq. (C.2) is solved for s(x;,x ;) and
substituted in Eq. (C.3). Finally the dispersion terms are replaced according to Eq. (4.14):

%)= s(xrir,]xj _rleix)) rST(]x )-slx;) r(xi,xj).%.% i, )-u®,)-ulk,) (€.10)

C.3.2 Combined standard uncertainty

The combined standard uncertainty is calculated by making up all possible combinations of the two
elements c; -u(xi) and c; u(x ) including combinations with themselves and calculating the product
in each case. Then, these products are totaled whereby the contribution of each product to the

grand total is weighted by the respective correlation r(xl,xj)

If the various elements c;-u(x;) are considered as being components of a vector, the calculation can
be described in a systematic way as a vector equation utilizing the above matrix representations.
Example for n = 3 input quantities:

1 r(X1:X2) r(xliXB) C1‘U(X1)
UC(Y)= Cl'u(xl) Cz'u(xz) CS'U(XS) : r(xzyxl) 1 r(xz’xs) : Cz'u(xz) (C.11)
r(xs-xl) r(x3,x2) 1 C3 ‘U(Xs)

According to the rules of vector algebra the following is true for any n > 0:

ucly)= \/ZC o) 3l ) -ul,) (C.12)

i=1 l:l

Taking account of r(xi,xi)z 1 (diagonal elements of the correlation coefficient matrix), all terms with
indexes that meet the condition i=j can be pooled. Then, Eq. (C.12) can be decomposed into two
summation terms:

uc(y)= %ci-u(xill-ci-u(xi) Y, -ulx )ir( 2x;)-¢;-ulx;) (C.13)

i=1
Taking account of the symmetry r( i X 1)_ r(xl,x ) the summation in the second summation term can
be restricted to the elements above the diagonal of the correlation coefficient matrix (i.e. the terms
with the row index 1<i<n and column index i+1<j<n) if these elements are counted twice.

This results in the representation according to Eq. (C.9).
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D Coverage factors and degrees of freedom

D.1 Table of coverage factors k,

Degrees Confidence level (1 - a)-100%
of
freedom | 68.2700% | 90.0000% | 95.0000% | 95.4500% | 99.0000% | 99.7300% | 99.9937% | 99.9999%
v
1 1.84 6.31 12.71 13.97 63.66 235.78 | 10105.08 | 1097620.30
2 1.32 2.92 4.30 4.53 9.92 19.21 125.98 1313.06
3 1.20 2.35 3.18 3.31 5.84 9.22 32.68 156.07
4 1.14 2.13 2.78 2.87 4.60 6.62 17.47 56.68
5 1.11 2.02 2.57 2.65 4.03 5.51 12.30 31.77
» 6 1.09 1.94 2.45 2.52 3.71 4.90 9.85 21.98
8 7 1.08 1.89 2.36 2.43 3.50 4.53 8.47 17.07
9) 8 1.07 1.86 2.31 2.37 3.36 4.28 7.60 14.23
g 9 1.06 1.83 2.26 2.32 3.25 4.09 7.00 12.41
$ 10 1.05 1.81 2.23 2.28 3.17 3.96 6.57 11.15
g 11 1.05 1.80 2.20 2.25 3.11 3.85 6.25 10.25
o~ 12 1.04 1.78 2.18 2.23 3.05 3.76 5.99 9.56
13 1.04 1.77 2.16 2.21 3.01 3.69 5.79 9.03
14 1.04 1.76 2.14 2.20 2.98 3.64 5.62 8.61
15 1.03 1.75 2.13 2.18 2.95 3.59 5.48 8.26
16 1.03 1.75 2.12 2.17 2.92 3.54 5.37 7.97
17 1.03 1.74 2.11 2.16 2.90 3.51 5.27 7.73
18 1.03 1.73 2.10 2.15 2.88 3.48 5.18 7.52
19 1.03 1.73 2.09 2.14 2.86 3.45 5.10 7.35
20 1.03 1.72 2.09 2.13 2.85 3.42 5.04 7.19
25 1.02 1.71 2.06 2.11 2.79 3.33 4.80 6.65
30 1.02 1.70 2.04 2.09 2.75 3.27 4.65 6.32
35 1.01 1.69 2.03 2.07 2.72 3.23 4.54 6.09
40 1.01 1.68 2.02 2.06 2.70 3.20 4.47 5.94
45 1.01 1.68 2.01 2.06 2.69 3.18 4.41 5.82
50 1.01 1.68 2.01 2.05 2.68 3.16 4.37 5.73
100 1.01 1.66 1.98 2.03 2.63 3.08 4.18 5.34
1,000 1.00 1.65 1.96 2.00 2.58 3.01 4.02 5.03
10,000 1.00 1.65 1.96 2.00 2.58 3.00 4.00 5.00
100,000 1.00 1.64 1.96 2.00 2.58 3.00 4.00 5.00
0 1.00 1.64 1.96 2.00 2.58 3.00 4.00 5.00

Table 6: Coverage factors k; in case of normal distribution

NOTE 1: The k, values for the degrees of freedom v and the confidence level (1 — &) 100% are calculated as
the (two-sided) quantiles of the t-distribution: k, = tv.1-a/> (€.g. using the EXCEL worksheet function TINV(a; v)).

NOTE 2: If normal distribution is not applicable, other k, factors apply (see e.g. Table 2 for triangular,
rectangular and U-distribution at a confidence level of 100%; also see [GUM; G.1.3]).
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Booklet 8 — Measurement Uncertainty

D.2 Meaning of the coverage factor: Example of mean values

If the measured values X3,X5,...,X,...,X,, With 1<k <m were recorded for a measurand and these
values are affected by random measurement errors, a more accurate estimate of the conventional value
of the measurand is obtained according to the theory of errors by calculating the arithmetic mean value

x=—=>x, (D.1)

The associated empirical standard deviation is a measure for the dispersion of the measured values
X1: X250y Xy -y Xy @round the mean value:

s = \/Li(xk R (D.2)

m-15

NOTE 1: The quantities X and s are estimates for the parameters of a normal distribution which is
“implicitly taken for granted” for the distribution of the measured values x;, x5, ..., X, ..., X,, whenever
these formulae are applied.
Without systematic measurement errors, i.e. if only random measurement errors occur, the mean
value approaches the conventional value of the measurand with increasing number m of measured
values and finally reaches it when m increases above all limits, i.e. when m — oo.

Since the number of measured values is always limited in practice, i.e. there is a finite number of values,
the mean value also includes at least random deviations. A measure for the mean value dispersion to be
expected in case of repeated measurements is the so-called standard uncertainty

"= % _ \/m g(xk %P (D.3)

The uncertainty u decreases continuously as m increases and disappears when m — .

The expectation to discover the mean values of repeated measurements within the interval
X —U<X<X+U where the true value of the measurand is assumed, only can be met with a certain
probability. In order to quantify this probability it is necessary to specify a so-called confidence
interval:

Xt g1 672 USXS X+t g1 42U (D.4)

The magnitude of the factor t., 1, ,/, is determined by the number m of measured values and the
confidence level 1-a which has to be specified. t; ;1 ,,, is the (two-sided) quantile of the
t-distribution?’ for v =m—1 degrees of freedom and the confidence level 1- . .

The confidence level 95% and m > 20 measured values are common in metrology. In this case,
tn 11.4/2 =2 applies. This means that 95 mean values of 100 (hypothetical) measurement series
each consisting of 20 measured values are to be expected within the interval X-2-u<x<x+2-u,
whereby X were determined from any randomly selected measurement series out of the total of 100
measurement series.

NOTE 2: The term “hypothetical” means that these measurement series are not actually performed. In fact,

an estimate of the value range is made within which the mean values of these measurement series could be
expected with a certain specified probability in case the measurement series were actually performed.

In the context of measurement uncertainty studies

th11 a2 =Kp (D.5)
is referred to as the coverage factor and
th11 a2 U=k, -u=U (D.6)

as the expanded measurement uncertainty.

20 yalues for t as a function of v and a can be taken from tables or determined using e.g. the MS EXCEL work-
sheet function TINV(a;v); in case of EXCEL it should be noted that TINV(a;v) directly yields the value t,.; /5.
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Booklet 8 — Measurement Uncertainty

D.3 Degrees of freedom

The coverage factor k, is determined by the confidence level and the so-called degrees of freedom.
The number of expressions in a sum minus the number of side conditions which these terms are
subjected to are referred to as degrees of freedom [ISO 3534-1, 2.54].
EXAMPLE: The sum y = x; + X2 + x3 should lead to the same result (side condition) for all value combinations xi.
Apparently arbitrary values can be used for two of the three summands. However, the third summand must
attain a certain value which is determined by the predetermined result and the other two values. Since two
values x; can be varied in any way, two degrees of freedom exist.
The “reliability” of probability data and results of statistical calculations increase with the number m
of the values that contribute to the result, i.e. the better m — « is approximated. A limited number of
values leads to side conditions for these values, i.e. a limited number of degrees of freedom.

D.3.1 Input quantities (Type A evaluation)

When determining the standard uncertainty of the input quantity i according to a type A evaluation
based on m measured values that can be assumed to be normally distributed, the number of degrees
of freedom is calculated as

vi=m-1. (D.7)

D.3.2 Input quantities (Type B evaluation)

When determining the standard uncertainty of the input quantity i according to a type B evaluation,
the following relationship can be used to estimate the number of degrees of freedom [GUM G.4.2]:

v=2._1 _ (D-8)

()

The term Au(x;)/u(x;) represents the relative uncertainty of the standard uncertainty which affects
the determined standard uncertainty u(x;), i.e. a numerical value between 0 and 1. Estimates within
the range Au(x;)/u(x;)< 015 result in v; > 20 degrees of freedom. At a confidence level of 95.45%,
2.00 <k, <2.13 or k, ~2.0 results. At Au(x; )/u(x;)=0.25 only v, =8 degrees of freedom are left
and k, ~ 2.4 results.

In case of input quantities which can be assumed to have values lying between certain limits without
exception (e.g. for physical reasons), there is no uncertainty of the uncertainty data,
i.e. Au(xi) u(xi)zo. Then, v; >« results for the degrees of freedom. This applies e.g. to input
guantities with rectangular, triangular or U-distribution according to chap. 4.4.2.2.

The situation is different for a normal distribution with values which will never lie 100% between two
limits. The same applies to any other distribution if you cannot be sure of 100% of all values to lie
between certain limits. In such cases a finite number of degrees of freedom exists. Unless at least
15 - 20 degrees of freedom can be assumed so that k, ~ 2.0 is applicable at a confidence level of
95.45%, an analysis of the degrees of freedom is essential.

On the other hand, if the values of an input quantity i are expressly declared to be normally
distributed whereas no limits are specified (cf. chapter 4.4.2.1), it can be shown theoretically that
m; — oo individual measured values were needed in order to ensure with a sufficiently high
confidence level (> 95%) that it is not a limited distribution (e.g. a triangular or a rectangular
distribution which fits the data set equally well). In this case v; - o degrees of freedom can be
supposed.
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Booklet 8 — Measurement Uncertainty

D.3.3 Output quantities

For the combined standard uncertainty, the effective number of degrees of freedom can be
approximated using the so-called Welch-Satterthwaite equation [GUM, G.4.1]:

or transformed Zn: (61 -ubx))* = uc* () (D.9)

- Zn: (ci -ulx;))* i=1 Vi Veff

Input quantities i with a sufficiently large number of degrees of freedom v; — « do not contribute
to the sum. This applies e.g. to input quantities with rectangular, triangular or U-distribution according
to chap. 4.4.2.2. If all n input quantities have a sufficiently large number of degrees of freedom, the
effective number of degrees of freedom v — o also results for the output quantity, and
consequently k, ~ 2.0 at a confidence level of 95.45%.

NOTE 1:v; > 15 ... 20 is usually regarded as sufficiently large.

If this requirement is not met for all input quantities i, an analysis of the degrees of freedom is
needed. With

ci -u(x;) o, (D.10)
Uc(y)
Eqg. (D.9) can be rewritten as
Z)L= ! (D.11)
izl Vi Veff

which is suitable for analysis purposes since it is independent of the absolute values of uncertainty
contributions.

NOTE 2: A? represents the relative contribution of the input quantity i to the uncertainty budget (see
appendix I, column “Contribution to MU budget” of the form sheet).

© Robert Bosch GmbH 2015 | Status 06.2015 53


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

E Requirements of the procedures according to booklet 10 on
measurement uncertainty

E.1 Allocation of capability categories

As mentioned in chap. 2.5, a sufficiently small measurement uncertainty is required so that
the measurement results ensure a sufficiently reliable calculation of the parameters Cg, Cg and %GRR

and a corresponding assignment of the measuring process to the categories “capable”, “conditionally
capable” or “not capable”.

In the case of measuring processes, the so-called “golden rule of metrology”
%-100% <10%

represents a recommendation for the empirical upper limit of measurement uncertainty U in relation
to the tolerance T of the characteristic 2%. This results in T>10-U or the minimum required tolerance
Tmin = 10 N U .
The requirement of a type-1 study according to [Booklet 10]
Cy = 027 .133-2
6-s 3
resultsin T >40-s or the minimum required tolerance T,,, =40-s for the characteristic.

The requirement of a type-2 or a type-3 study according to [Booklet 10]
%GRR = @400% <10%

resultsin T >60-GRR or the minimum required tolerance T, = 60-GRR for the characteristic.

NOTE 1: See [Booklet 10], appendix D, for inconsistencies of the minimum requirements of a type-1 study
compared to a type-2 and type-3 study.

The consequence of these three requirements is that the measurement uncertainty U must meet
both conditions

U<4-s (E.1)
and

U<6-GRR (E.2)
independently of the tolerance T of the characteristic so that the measurement results allow for a
reliable assessment of the measuring process.

NOTE 2: The fulfillment or non-fulfillment of these conditions does not imply any statement about
“capability” or “non-capability” of the measuring process.

21 There is no normative specification
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Booklet 8 — Measurement Uncertainty

E.2 Significance of bias according to a type-1 study, VDA volume 5 and
AIAG MSA

This chapter shows (by exclusively using common definitions and limit values) that a meaningful
significance test is linked to certain requirements on measurement uncertainty.

Definitions
Capability index: Cy = 02-T
6-s
. A 0.1-T—[X — Xy
Minimum capability index: Cok = — 3
‘S
Step 1

The definition for Cg utilized in the definition for Cg
01T [K=%Xo| 02.T [K=xq X = Xo|
3-s 3-s 6-s 3-s 3-s
and solved for C, —Cg yields

C

1 X=X

3 s

The systematic measurement error |§—xo| of a sample of size m related to the standard deviation s
is insignificant at a confidence level of 1 - a if

Cy—Cqk =

X —Xo| < Imtiar2
s Jm
(see [Booklet 10], appendix C), i.e. if

1 thria2
Cy-Cp = —————
g g 3 \/E
tn 11 4/2 denotes the quantile of the t-distribution for m — 1 degrees of freedom and a confidence

level 1 — o and a confidence interval limited on both sides.

(E.3)

Step 2
The definition for Cg solved for 3s

01T
Cq
substituted in the definition of Cg
01-T =X~ Xo|
o= 01T
Cq
solved for Cy - Cg and taking account of Eq. (E.3) from step 1 yields

3-s

C,-10-C, .@,

X — X t .
Cy—Cyg =10-C4 | 0| sl. m-L1-a/2

T 3 Jm

The inequality (E.4) solved for [X—X,|/T finally results in

(E.4)

X=X 1 thrien
< . E.
T ~30C, 4m (E5)

Result
In terms of figures, a confidence level of 95%, usual sample size (m = 25 ... 50) and capability in the
range Cg > 1.33 result in the requirement
X=X
———-100% < 1%.
This means that the systematic measurement error of a measuring system must not be greater than
1% of the tolerance of the characteristic in order to be considered insignificant.
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Booklet 8 — Measurement Uncertainty

10.0% -

| \ 0.67, 2.06%
0.67; 1.42% \
1.0% - W 1:33:1.03%

1.33: 0.71% \o 2.00; 0.69%
2.00;0:47%

Maximum Bias

0.1% —
0.1 1.0

Capability Index C,

Figure 9: Limit values for insignificant systematic measurement error with a type-1 study
Maximum values related to the characteristic tolerance at a confidence level of 95% shown for the
sample sizes m = 50 and m = 25 dependent on the capability index C, of the measuring process.

Significance for practical application
In practice, a significance test of this type is only relevant if the measurement uncertainty U meets
the condition

%-100%<1%.

This is often not achieved. Instead, the so-called “golden rule of metrology” is considered to be
the rule of thumb for “suitable” measuring systems,

%-100% <10%,

i.e. a requirement reduced by a factor 10. It should be also noted that the upper limit of 10%
represents a limit which has proven itself empirically, however, which is not clearly defined in
guidelines and standards. Depending on the measuring system, it may happen that limit values up to
approximately 20% are acceptable.

It should be noted as well that the measurement uncertainty U never can be less than the resolution
of the measuring system.

Conclusion
In the case
M<E or simply [X=Xo|<U
T T 0

the evaluation of the systematic measurement error of a measuring system by means of a
significance test is not useful, since it is within the range of measurement uncertainty (value range
for the true value of the measurement result). Then, it is not possible to decide whether the test
result represents a purely computational result or an actual technical deviation.
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Booklet 8 — Measurement Uncertainty

F Consideration of systematic measurement errors (correction)

NOTE: Numerous guidelines provide approaches more or less different from [GUM]. The approach
described below is directly based on [GUM, H.3].

F.1 Uncertainty of the corrected measurement result

Provided that a linear correction of an observed measurement result y’ (indication) is sufficient, the
following model equation is applied to describe the relationship with the corrected measurement
result y, (conventional value, “correct” value):

Yo =Y +K(y') (F.1)
with the correction
K(y')=yo -y =ox +By Y’ (F.2)

NOTE 1: a, and B, are parameters of the correction curve, i.e. they usually represent the intercept and slope
of a regression line. This line is determined e.g. as part of a calibration using several standards with
different reference values (see appendix F.2 and [GUM, H.3]).

NOTE 2: For non-linear corrections, e.g. by means of higher order polynomials, specialist literature should be
referred to.
When determining the uncertainty u(y,) of the corrected measurement result y, = yo(ox.Bk.Y'),
only the uncertainty u(K(y')) of the correction K(y') must be considered but not the correction
itself. With the sensitivity coefficients

oK oK ., K _

=1 d = F.3
do Pk Y o oy’ P (F.3)

the uncertainty of the correction is calculated according to
U(K(Y')): \/UZ(OLK)Jr y'? UZ( K)+ BKZ 'Uz(y')+ 2.y U(“KaBK) . (F.4)

NOTE 3: It is essential to note that the regression coefficients a, and B, normally are determined from the
same measurement data set and therefore they are correlated (see appendix C). Usually, this contribution
is not negligible and must be taken into account in the uncertainty analysis [EUROLAB, A.2.1]. The term
2 -y’ - u(ay, By) represents this correlation.

Accordingly, the following applies to the uncertainty of the corrected measurement result:
u(yo)=yu?(y')+u?(K(y) (F.5)

Practical special cases

e fx =0, i.e. a constant additive correction according to y, =y'+ o0y which is independent of the
measured value:

ulyo) = yu? (o )+u?(y") (F.6)

e oy =0, i.e. a correction by a constant factor relative the measured value according to
Yo = (L+Bk)-y':

Uo) = Y'2 W2 (B )+ [+ B2 ) u2(y) (F.7)

F.2 Correction and correction uncertainty in case of linear regression

The parameters a, and B for the correction K(y') and its standard uncertainty u(K(y’)) are usually
determined by means of several standards with different reference values x,; and the associated
values xj indicated by the measuring system. The evaluation is performed with the aid of Eq. (F.2)
where X, takes the place of y, and x’ takes the place of y":

K(X)=Xg =X = ot +By - X’ (F.8)
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Booklet 8 — Measurement Uncertainty

The following Egs. (F.9) to (F.14) are standard relationships which can be taken e.g. from textbooks
covering linear regression (see also [GUM, H.3] and [EUROLAB, A.2]). The nomenclature has been
adapted to the present case. The applicability assumes insignificant effects of the reading
uncertainty and the calibration uncertainty of the standards on the uncertainty of the calculated
parameters and a sufficiently constant residual dispersion s; around the regression line. Otherwise,
different relationships apply. The technical literature should be referred to for this point.

Observed correction at standard j:

Kj=Xgj—X] (F.9)

Mean values of the observed correction values and the measured values for n, standards:
_ 1 No _ 1 o
K==>K, X =—=>"x| (F.10)

No j=1 Ny 21
Variance of the observed measured values and covariance of the observed measured values and the
correction values, each multiplied by the factor (ny —1):
Ny — Ny — —
Qe = ;- xf Q=X [x; - ) (&, -K) (F.11)
=1 j=1
Slope and intercept of the regression line:
BK:& g =K — Py X' (F.12)
Qx’
Residual dispersion of the observed correction values around the regression line:
No

> 1K) —{o + By %))

2 _ =
sR” = F.13
R - (F.13)
Variance and covariance of intercept and slope of the regression line:
1 X 1 %
2 2 2 2 2
uslog J=Sg~ | —+ u =S - ulo, =—-Sg“ - F.14
( K) R n() Qx’ ( K) R Qx' ( K BK) R Qx’ ( )

In order to determine the correction K(y’) of any measurement result y' observed within the range
MIN(XO’]-)S y’SMAX(XOVJ), the parameter values determined according to the Egs. (F.12) for the
intercept o, and the slope By of the regression line are substituted in Eq. (F.2). To determine
the uncertainty of the correction u(K(y')), the parameter values determined according to the
Egs. (F.14) for the variances u?(ay ) and u?(B,) and the covariance u(ay,By) of the intercept and
slope are substituted in Eq. (F.4).

F.3 Uncertainty of the uncorrected measurement result

NOTE: According to [GUM, 6.3.1, note] measurement results not being corrected although the
required corrections are known have to be avoided in general. Sometimes, however, this case
cannot be avoided (see [GUM, F.2.4.5]). Even so, it must be restricted to special circumstances,
substantially reasoned and documented.

If the measurement result is not corrected y' despite the correction K(y')is known, both
the uncertainty u(K(y')) of the correction as well as the correction K(y') itself must be taken into
account as uncertainty components in the uncertainty u*(y') of the uncorrected measurement result
(see [EUROLAB], chap. 4) % :

U (y") = u2(y') + u2(K(y) + K2(y') = yu(yo) + K2(y') (F.15)

22 See also I.H.Lira, W.Wéger, Meas. Sci. Technol. 9 (1998), 1010-1011 as well as “Erklidrung der PTB zur
Behandlung systematischer Abweichungen bei der Berechnung der Messunsicherheit” (2010-05-12)
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Booklet 8 — Measurement Uncertainty

G Comparability of measurement results

For the purpose of evaluating the comparability of measurement results of different laboratories and
measuring instruments, the European Cooperation for Accreditation (EA) suggested using the
parameter E, [ISO 17043; ISO 13528]:

E, = YiaB ~ YREF (G.1)
\/UEAB +Uer
with
YiAB Measurement result of the laboratory considered,
Uias Associated expanded measurement uncertainty of the laboratory considered,
YReF Reference value of a higher-level laboratory (e.g. PTB, NIST, NPL),
Urer Associated expanded measurement uncertainty of the higher-level laboratory.

The comparability of the measurement results will be classified as acceptable if the criterion E,, <1
is met. In the case E,, >1 corrective and possibly monitoring measures are required.
NOTE: The applicability of this parameter is not restricted to different laboratories. It can be applied equally

to several measuring systems of the same laboratory, for example. Application to several measurement
results of the same measuring system is also possible.

If a reference value yger of a higher-level laboratory with significantly smaller measurement
uncertainty Ugge is unavailable, the mean value of the measurement results of all laboratories
concerned can be used as a reference value yggr:

NLAB
YRer =YiaB :N—. zyLABN (G.2)
LAB N=1
with
YiAB, Measurement result of laboratory no. N,
N_ag Total number of laboratories concerned.

Accordingly, Uggr is calculated from the average of the variances of the standard uncertainties of all
laboratories concerned:

2
Pr— 1 "ep( Uias [
Urer =Uag =Kp - Z ( s =k - Uap (G.3)

Niag a1 kp LABy
with
ULas, Expanded measurement uncertainty for the measurement result of laboratory no. N,
Kp LaB, Coverage factor of the expanded measurement uncertainty of laboratory no. N,
Kp Coverage factor of the expanded reference uncertainty.

Moreover, Eg. (G.1) enables a criterion for the distinctness of measurement results from the same
measuring system to be defined in an alternative way to chap. 2.3. According to Eq. (G.1) the
measurement results y; and y, are different if

i SN (G.4)

(U3 + U2
is fulfilled. Since the measuring results were obtained with the same measuring system, U, =U; =U
can be assumed so that

Y2_y1>\/§'u (G.5)
results as a criterion for distinguishable values y, and vy, .
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Booklet 8 — Measurement Uncertainty

H Monte Carlo simulation

It is not always possible to determine the measurement uncertainty of a measurand with reasonable
effort in an analytical way based on the Gaussian error propagation law, i.e. through the manual
analysis of a mathematical model equation. The effort for calculating partial derivatives or output
quantity values can increase dramatically, in particular in the case of complex (e.g. nonlinear)
mathematical relationships.

In such cases, the Monte Carlo simulation method provides an alternative. Based on stochastics
(probability theory) and by means of random numbers, this method simulates the impact of the
variation of the input quantities (variables) of a mathematical formula (model equation) on the
output quantity (result).

Accordingly, just as with manual analysis, it is a basic prerequisite for the Monte Carlo method that
the functional relationship (model equation) between the input quantities and the output quantity
(cf. chapter 4.3) is available. Furthermore, knowledge about the target value or the expected value
and the distribution model of associated input values around the target value or the expected value
is required for each input quantity. The input values may be estimated or measured values which
represent the practical application as closely to reality as possible.

Unlike manual evaluations, highly complex relationships which cannot be described by means of a
single analytical equation and unusual distributions of input values are possible. Examples are:

e Absolute value,

e Hysteresis,

e limited range (“clipping”, e.g. in the case of limited frequency bands),

e |dletime,

e Backlash (e.g. differences of coordinate measuring machines when approaching a measuring
point from the left or the right)

e Constraint (e.g. overcoming frictional resistance)

e Interpolation using predetermined points.

The simulation is performed with estimated or measured values being used for each input quantity
and each individual value being varied randomly according to the established distribution models.
A sufficiently large number of simulation runs provides assertions about the dispersion range and
distribution of the output values.

Please, refer to [GUM-S1] for details.
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The form contains four groups of columns with the following contents:

¢ Information about input quantities: Systematic documentation of all available information
about the input quantities;

e Standard uncertainties of input quantities: Calculation from the available information;

e Contributions to the measurement uncertainty of the measurand: Calculation from the
standard uncertainties;

e Determining k, for the measurand.
Every row of the table refers to a specific input quantity.

One or more auxiliary lines containing intermediate and auxiliary calculations for this input quantity
can be inserted above each table line. Auxiliary lines do not include a “seq. no.” and only contain
data in the column group “Information about input quantities” . All other columns remain empty 3.

Information about input quantities

2]

o

O

2 Column heading Column content

©

o

3 Seq. no. Integer

S

o

N Description Unique identifier (name) of the input quantity, e.g. “bracket length”

(i.e. not merely unspecific “length”)

Variable (symbol) Symbol for the input quantity, e.g. Ls
(i.e. L for “length” and “B” for bracket )
Measuring unit Measuring unit of the numeric value of the input quantity and the

associated uncertainty data (e.g. m for meters)

Value of the variable Numerical value of the input quantity (e.g. 7.5)

Value of the uncertainty data | Numerical value of the uncertainty data (e.g. 0.02)

Comments (e.g. ...) Free text, e.g. sources, notes, calculation formulas, references, links
to documents

Standard uncertainties of input quantities

Column heading Column content
Evaluation type A or B in accordance with the evaluation type used for the standard
uncertainty of the corresponding input quantity
Type A: e TypeA: Unspecified or integer > 1
Number of measured values | e Type B: Value > 1
or confidence level
Type B: (Percentage between 0% and 100%)
ko (> 1), confidence level (%), or designation of the distribution model
distribution (e.g. triangular distribution)
Numerical factor for Numerical value by which the uncertainty data associated with the
calculating the standard input quantity are divided to determine the standard uncertainty:
uncertainty e TypeA: 1or \/E

e TypeB: ko

Standard uncertainty Determined standard uncertainty of the input quantity

23 For exceptions, see tables in examples J.5.1 and J.5.2
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Booklet 8 — Measurement Uncertainty

Contributions to the measurement uncertainty of the output quantity

Column heading

Column content

Sensitivity coefficient

Numerical value of the sensitivity coefficient of the corresponding
input quantity

Contribution to uncertainty

Standard uncertainty multiplied by the sensitivity coefficients

Contribution to uncertainty
(squared)

Numerical value of the column “contribution to uncertainty”
multiplied by itself

Percentage contribution to
MU budget

Numerical value of the column “contribution to uncertainty
(squared)” as a percentage of the grand total of this column

Rank
(according to Pareto)

Numerical values sorted by decreasing quantity, i.e. rank 1 has the
highest significance, rank 2 has the second highest, etc.

Determining k; for the output

quantity (optional)

Column heading

Column content

Estimated uncertainty of
the uncertainty data

Numerical value as a percentage (see appendix D.3.2)

Degrees of freedom

Integer (see appendix D.3 for details)

Contribution to the
denominator of the
Welch-Satterthwaite formula

Numerical value (for further details, see appendix D.3.3)
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J  Examples

With the exception of the “folding ruler” example, examples from real life are used in all cases.
Simplifications are only made in some cases where not all possible input quantities are considered (e.g.
uncertainties of material parameters such as the thermal coefficient of expansion).

e J.1 Marking using a folding ruler (coll. yardstick)
Simple illustration of the basic procedure of a measurement uncertainty study using the example
of length and surface markings; application of the additive and multiplicative model, normal and
triangular distribution and consideration of correlations.

e J.2 Evaluating the suitability of a dial gauge
Determining the uncertainty of the measurement results of a dial gauge that is calibrated for the
special application of testing a specific product characteristic for compliance with a (fixed)
specification; application of the additive model, avoidance of corrections.

e J.3 Measuring a bolt diameter
Determining the uncertainty of measurement results for bolt diameters; application of corrections
and degrees of freedom (input quantities of type A and B, Welch-Satterthwaite formula).
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e J.4 Torque measurement using an engine test
Determining the uncertainty of torque measurement results based exclusively on the manufacturer's
specifications, calibration certificates and experience (type B evaluation, no measurements).

e J.5 Optical measurement using a measuring microscope
Determining and assessing the uncertainty of visually determined measurement results in
accordance with ISO 22514-7.

e J.6 In-process tactile diameter measurement
Determining the uncertainty of the measurement results of a measuring process based on
stability charts.

e J.7 Injection quantity indicator (EMI)
More sophisticated practical example: Uncertainty of the calibration of a measuring system
based on a closed-form mathematical model; establishing the model equation, non-linear
correction, uncertainty of the correction, using sensitivity coefficients.

e J.8 Pressure sensor
More sophisticated practical example: Determining correction and measurement uncertainty
using a “mixed” model (additive overall model with closed-form mathematical submodel) for
direct use in practical applications; impact of corrections that are not made; impact of use
outside the calibrated temperature range.

The aim is to illustrate the determination (calculation) of measurement uncertainties by means of
real-life data (numerical values) in a clear, comprehensible and reproducible way. Therefore, all
information is waived that is not essential for determining the measurement uncertainty. However, it
is expressly pointed out that the full documentation of a measurement uncertainty study must
include at least the following information:

e unique identification of the measuring system (e.g. location, department, measuring system
designation, inventory number, serial number);

e date and time of the beginning and end of each measurement with indication of relevant
environmental conditions (such as ambient temperature, humidity, air pressure and light intensity);

e unique identification of the operators (operating, checking and analyzing) and the persons in
charge by means of ID codes or names (note that uncoded names are not allowed in all countries);

e any particular incidents during the measurement where applicable;

e clear references to related documents (e.g. ID number, designation, version, date).
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J.1 Marking using a folding ruler (coll. yardstick)
Lengths and area sections should be marked. Commercially available folding rulers (coll. “yardstick”,
see Figure 10) with the following characteristics are used for this purpose:

e Total length of the ruler Lt =2 m =2000 mm,
e Length of a ruler element Le=20cm =200 mm,
e Scale spacing Ls=1mm.

2 13 14 15 1B 17 18 j

LTI
Judul !

Figure 10: Commercially available folding ruler (accuracy class lll, total length 2 m)

According to its labeling the ruler is of accuracy class Ill. Thus, the maximum permissible
measurement error (“error limit”) in mm is calculated according to the formula 2*:

5L, <8Lyax =0.6+0.4-L".
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For L* the numerical value has to be substituted which results from rounding up the length Lo to be
measured to the next full meter (e.g. L* = 1 for the length L, = 0.30 m to be measured, L* = 2 for the
length Lo = 1.75 m to be measured).
NOTE: In order to present the basic procedure as simple as possible, only those uncertainties are considered
that are caused by the folding ruler itself. Other uncertainties such as arising from placing the ruler in
position against certain datum points, marking of the desired position, squareness and position of the 4th
corner point when marking surfaces are not considered in this example. In order to take account of these
additional uncertainties, appropriate input quantities need to be identified and included.

J.1.1 Marking two points at a distance up to the length of one ruler element

Description of the measurement

A second point should be marked at a distance of Lo = 15 cm from a predetermined point. The
marking is done by simply applying and measuring using one ruler element.

Input quantities

¢ Nominal value of the length to be measured Lo =150 mm
Model
with

L Actual value of the measured length,

Lo Nominal value of the measured length (no uncertainty),

SL, Deviation due to the limited accuracy of the total ruler length.

24 According to “Directive 2004/22/EC of the European Parliament and Council of March 31, 2004, on measuring
instruments”, “Appendix MI-008 Material Measures”, table 1

© Robert Bosch GmbH 2015 | Status 06.2015 65



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

Standard uncertainties of the input quantities

e The maximum permissible measurement deviation may lead to variations within the limits

i.e. cause the maximum deviation

a:m;a-=&“M‘§6”M0=26?MX:&WW=®ﬁ+a41ﬂmm=mﬁ+a¢ﬂmm:10mm

As explained above, L* = 1 is used since the length to be measured is Lo = 0.15 m. Assuming a
normal distribution the standard uncertainty is

L :Ezgmm:O.Smm
2 2

e Further input quantities are considered to be insignificant (see introduction, chap. J.1, note).

Standard uncertainty of the output quantity

Since only one input quantity is taken into account, it is likewise the output quantity :

Uc =u. =0.5mm

Expanded measurement uncertainty

The expanded measurement uncertainty is calculated using k, = 2:

U=k, -Uuc=2-05mm=1.0mm=0.1cm

Complete measurement result

L+U=(15.0+0.1)cm.

Accordingly, a marking at a nominal distance Lo, = 15 cm from a specified point is actually located in
the range between L =14.9 cm and L = 15.1 cm with a confidence level of 95.45% (corresponding to
kp = 2)-

J.1.2 Marking two points at a distance of several lengths of a ruler element

Description of the measurement

A second point should be marked at a distance of Lo = 150 cm from a predetermined point. The
marking is done by simply applying and measuring using several ruler elements.

Input quantities

e Nominal value of the length to be measured Lo, =1500 mm

e Locking mechanism between the ruler elements
(see Figure 12):

o Distance between link axis and center of the bevelled edge area s=12mm
o Width of the bevelled edge area As=1mm
e Length of a single ruler element Le =200 mm
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Model
with
L Actual value of the measured length,
L, Nominal value of the measured length (no uncertainty),
SL, Deviation due to the limited accuracy of the total ruler length,
Ng Required number of ruler elements (decimal digit),
oL, Deviation due to limited accuracy of the alignment of two ruler elements in

an exactly straight line.

Standard uncertainties of the input quantities

e The maximum permissible measurement deviation may lead to variations within the limits

i.e. cause the maximum deviation

a, —a_ _ Sluax — (= 8L yax) _ 2-3Lyax
2 2 2
As explained above, L* = 2 is used since the length to be measured is Lp = 1.5 m. Assuming a

normal distribution the standard uncertainty is

u, =3=£mm=0.7mm
2 2
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a= =0Lyax = (0.6+0.4~L*) mm = (0.6+0.4-2)mm =1.4mm

e The measurement requires the application of several ruler elements. Therefore, an angle ¢
between the individual elements of the ruler must be considered which leads to a deviation from
the exact straightness of the ruler and thereby to a shortening of the actually measured length L
compared to its nominal value Lo (see Figure 11):

Figure 11: Deviations of the applied folding ruler from precise straightness

The angle between two elements is caused by the backlash of the locking which is mainly due to
the bevelled step at the edge of the locking mechanism (see Figure 12).

Figure 12: Folding ruler, link and locking mechnism between ruler elements

© Robert Bosch GmbH 2015 | Status 06.2015 67



http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

Booklet 8 — Measurement Uncertainty

The bevel width is As =1 mm. As related to the distance s = 12 mm between the link axis and the
center of the beveled edge area yields the following relationship for the maximum angle o:

tano = As = _Lmm_ ~ 0.083333 or ¢ = arctan as ~ arctan 1mm
s 12mm S 12mm

j ~ 0.083141

or ¢ =~ 4,764° when converted from radian measure into angular measure.
NOTE: Conversion by multiplying by 360°/ (27) ~57.296°.

In relation to the ideally straight line between the start and end point of the length to be
measured, the deviations 8¢ vary in the range

(p<8 <+2
2 ¢

2
(see Figure 11). These deviations can cause a shortening of the actually gauged length up to
oL, =Lg —Lg- cosE:(l coszj Le

for each ruler element which, however, actually contributes its nominal value Lg to the
measurement result (see Figure 13).
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e

Le -cosz —Lg- cos—

Figure 13: Deviation of the length measurement due to angle deviation

2
The approximation cosg ~ 1—%(%) applies to small angles, so that
2
L9
oL, ~?-LE .

Per ruler element, this uncertainty of the alignment can lead to a deviation of the actually marked
length within the limits

a,=+5L, and a_=-dL,
i.e. the maximum deviation is
— oL, —|-0oL 2-0L 2 2
a=t 8T g o) Sl LE_% 200 mm ~0.173 mm .

The total length L, =150 cm to be measured requires
Ng =Ly /Lg =150cm/20cm=7.5

ruler elements, i.e. 7 complete elements and half of the 8" element. So, assuming a triangular
distribution as an approximation for a limited, i.e. truncated normal distribution (exceeding the
limit value is impossible for mechanical reasons), the following standard uncertainty caused by
angular deviations results for the total length to be gauged:

0.173mm

a
Uy =Ng ——==75——"—"
*E e 2.449

e Further input quantities are considered to be insignificant (see introduction, chap. J.1, note).

~0.529 mm.
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Standard uncertainty of the output quantity

Uc = \/uf +U2 ~4/0.72 mm? +0.529> mm? = 0.49 +0.279973 mm = /0.769973 mm ~ 0.877 mm

Expanded measurement uncertainty

The expanded measurement uncertainty is calculated using k, = 2:

U=k, -Uc=2-0.877mm =1.754 mm ~ 0.18 cm

Complete measurement result

L+U=(150.00 +0.18)cm

Accordingly, a marking at a nominal distance Lo = 150 cm from a specified point is actually located in
the range between L = 149.82 cm and L = 150.18 cm with a confidence level of 95.45%
(corresponding to kp = 2).

J.1.3 Marking an area using two folding rulers

Description of the measurement

A rectangular area with the edge lengths Lox = 15 cm and Loy, = 150 cm shall be marked. Marking is
done by applying and measuring using two different rulers. One ruler is used for the x-direction, the
other one is used for the y-direction.

Input quantities

e Shortside (edge length Ly, =15 cm): cf. chapter J.1.1

* Longside (edge length Ly, =150 cm): cf. chapter J.1.2

Model
A=L, L, =(Loy +5L,)- Loy +3L, +ng -3L,) (J.1)
with

A Actual value of the marked area,

Ly, Ly Actual values of the measured lengths in the x-direction or the y-direction,

Lox,Loy ~ Nominal values of the measured lengths in the x-direction or the y-direction
(conventional values, no uncertainty),

dLy,8L, Deviations in the x-direction or the y-direction due to the limited accuracy of
the total ruler length,

Ng Required number of ruler elements (decimal number),

oL Deviation due to the limited accuracy of alignment of two ruler elements in
an exactly straight line.
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Standard uncertainties of the input quantities

e The edge length to be measured in the x-direction is Lox = 0.15 m. Therefore, the standard
uncertainty determined in chap. J.1.1 applies to the x-direction:

U, =Uc =0.5mm

e The edge length to be measured in the y direction is Loy = 1.50 m. Therefore, the standard
uncertainty determined in chap. J.1.2 applies to the y-direction:

Uy =uc =0.877 mm
e Further input quantities are considered to be insignificant (see introduction chap. J.1, note).

Standard uncertainty of the output quantity

In case of multiplicative models such as Eqg. (J.1) the combined standard uncertainty of the output
guantity can be determined from the following relationship (cf. chapter 4.5):

2 2 2 2
u
] +[L—y] z\/(OB mmj +(0'877 mm] ~0.003384
y

150 mm 1500 mm
Thus, the standard uncertainty uc of the area
A =L, -L, =150 mm-1500 mm = 225000 mm? = 2250 cm?
is
uc = 0.003384 - 225000 mm? = 761.4 mm? ~ 7.6 cm?

Expanded measurement uncertainty

The expanded measurement uncertainty is calculated using k, = 2:

U=k, Uc =2-761.4mm? =1522.8 mm* ~ 15.2 cm’

Complete measurement result

A+U=(2250.0+15.2)cm?

Accordingly, in case of marking a rectangular area of nominal size A = 2250 cm?, the actual size of the
marked area ranges between A = 2234.8 cm? and A = 2265.2 cm? with a confidence interval of
95.45% (according to k, = 2). These are approximately 0.68% uncertainty in relation to the nominal
size.

J.1.4 Marking an area using a single folding ruler

Description of the measurement

The task is exactly the same as in chap. J.1.3: A rectangular area section with the edge lengths Ly = 15
c¢cm and L, = 150 cm is to be marked. However, in contrast to chap. J.1.3, the same ruler is used for
the x-direction and the y-direction.

Input quantities

See chapter J.1.3

Model
See chapterJ.1.3
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Standard uncertainties of the input quantities

See chapter J.1.3
In addition, the angle-independent uncertainty contribution as determined in chap. J.1.2 is needed:

Standard uncertainty of the output quantity

Since the measurements in the x-direction and the y-direction are performed using the same ruler,
so that both measurement results can be influenced by the ruler in the same way, a correlation term
has to be considered. It should be noted that only the length uncertainties in the x-direction the and
y-direction have to be included in the correlation. The angle uncertainty, however, must not be
included since uncertainties due to angular deviations between ruler elements cannot occur in the
x-direction (short side). Accordingly, the basic equation of chap. J.1.3 expanded by a correlation term
(3 summand under the root symbol) applies:

2 2
u_C = u_X + U_y +2. U_X . uﬂ
A Ly Ly Ly Ly
2 2
- 0.5mm N 0.877 mm Lo, 0.5mm . 0.7 mm ~0.003816
150 mm 1500 mm 150 mm 1500 mm

Thus the standard uncertainty u; of the area
A =L, -L, =150 mm-1500 mm = 225000 mm? = 2250 cm?

is
uc = 0.003816 - 225000 mm? = 858.6 mm? ~ 8.6 cm?

Expanded measurement uncertainty

The expanded measurement uncertainty is calculated using k, = 2:

U=k, -uc =2-858.6 mm* =1717.2mm?* ~ 17.2 cm?

Complete measurement result

A+U=(2250.0+17.2)cm?

Accordingly, in case of marking a rectangular area of nominal size A = 2250 cm?, the actual size of the
marked area ranges between A = 2232.8 cm? and A = 2267.2 cm? with a confidence interval of
95.45% (according to k, = 2). These are approximately 0.76% uncertainty in relation to the nominal
size.
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J.2 Evaluating the suitability of a dial gauge

Description of the measurement

A dial gauge is to be calibrated for the special use case of testing a product characteristic on
compliance with the specification (8.0 + 0.1) mm (T = 200 um).

Glass Scale .
(material measure)

Standard Device..."

Bracket
(_/') ...................
o}
o
o
s
© Dial Gauge .-
s DalGauge,
<
o
OI A J
o~
o
N

Figure 14: Calibrating a dial gauge

NOTE: With the aid of the bracket the dial gauge is “adapted” to the standard device and thus the
calibration is enabled.

Input quantities

e Information about the standard device

Manufacturer's specification of the measurement uncertainty: Uca, =0.4um +0.6-107° -L,
L, —indicated length in pm, k, = 2, temperature range (20 £ 0.5) °C
Digit increment of the indication AL, =0.1pm
¢ Information about the object to be measured Dial gauge as per I1SO 463
Scale interval SI=0.01mm
Uncertainty of the estimate of the pointer position on the scale ASI=0.1-SI
Length of the measuring bolt Ly =100 mm
Linear thermal coefficient of expansion of the measuring bolt oy =(8.5+1.5)-10° K™

e Information about the procedure

Temperature deviation from 3, = 20 °C during measurement A8 =1K

Length of the bracket Lg =200 mm

Linear thermal expansion coefficient of the bracket og =(10.5+1.5)-10° K*
Effective length of the glass scale of the standard device Ly =70mm

Linear thermal expansion coefficient of the glass scale oy =(11.5+1.5)-10° K

NOTE: It is assumed that the solid parts of the standard device do not change during the short period of
measurement time as a result of temperature fluctuations in the + A9 range.
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Model

—

=Yo

with
y Indication of the dial gauge,
y' Uncorrected indication of the dial gauge,
K Correction,
Yo Indication of the standard device (conventional value, no uncertainty),
SXealL Deviation due to the limited precision of standard device calibration,
3Xo Deviation due to the limited accuracy of the scale readability,
Xy Deviation due to the temperature influence on the standard device,
Xy Deviation due to the temperature influence on the measuring object,
Xg Deviation due to the temperature influence on the bracket.

—AX < OX < AX applies to all above-mentioned deviations. Here, dx describes the instantaneous
value of the fluctuating deviation (expected value 8x =0), Ax the associated maximum deviation.

Measurement results

Measured displacement between the pointer positions 0 mm (initial position) and 8 mm (end position):
When the pointer position is y’'=8.00 mm, the standard device indicates the measured displacement
Yo =8.022 mm.

Correction

The deviation of the dial gauge indication y’ from the conventional value y, of the standard device
is =22 um, i.e.
K=y,-Yy =8022 mm-8,00mm=0,022 mm =22 pym
NOTE: This correction applies exclusively to the dial gauge indication y* = 8 mm. In order to calibrate
the entire measuring range of the dial gauge, measurements at various indications (calibration points)

distributed throughout the measuring range and evaluation according to appendix F are required. This
often leads to corrections that are dependent on the respective displacement and additional uncertainties.

In practice, corrections are not common for this type of dial gauge so that the systematic error must be
considered as an uncertainty contribution in the uncertainty budget (see appendix F.3).

Standard uncertainties of the input quantities

e Standard device: Standard uncertainty in case of the measured displacement
L, =Yy =8,022 mm and assuming a normal distribution

_Uca _ 0.4um+0.6-10" 8022 um _ 0.4 um +0.0048 pm

u = =
CAL kp 2 2

The standard uncertainty of the digit increment is included in this uncertainty.

=0.2024 um ~ 0.203 um

e Measuring object: Standard uncertainty due to the uncertainty of the scale reading
Upper and lower limit values for the deviation of the reading value from the pointer position:
a, =+ASI=+0.1-SI=+0.1.0,01mm = +1.0 pm
a =—-ASI=-0.1-SI=-0.1-0.01mm =-1.0 um
Standard uncertainty assuming rectangular distribution:
~a a,-a_ 1 1.0um

CTBETT 2 B

~0.5774 pm ~ 0.578 ym
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e Procedure: Standard uncertainty of the (effective) glass scale length Ly of the standard device
due to deviations of the ambient temperature from the reference temperature 3, =20 °C

Upper and lower limit values of the deviations from L :

a, =ay-Ly-(+A9)=11.5-10° K™ .70 mm - (+ 1K) = 0.000805 mm = 0.805 pm
a_=ay-Ly-(-A8)=11.5-10°K™.70 mm - (- 1K) = -0.000805 mm = ~0.805 pm
Standard uncertainty assuming rectangular distribution:

a a,—-a_ 1 0.805um

B2 3B

Uy = ~ 0.465 pm

e Procedure: Standard uncertainty of the measuring bolt length L, of the measuring instrument
due to deviations of the ambient temperature from the reference temperature 9, =20 °C

Upper and lower limit values of the deviations from Ly:

a, =ay -Ly-(+A9)=8.5-10"°K™.100 mm - (+ 1K) = 0.00085 mm = 0.85 pym
a =ay-Ly-(-A9)=85-10"°K*.100 mm - (- 1K) = —0.00085 mm = —0.85 um
Standard uncertainty assuming rectangular distribution:

a a,-a 1 0.85um

TR 2 BB

~0.491pum
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e Procedure: Standard uncertainty of the bracket length L; due to deviations of the ambient
temperature from the reference temperature 3, = 20 °C

Upper and lower limit values of the deviations from Lg:
a, =og-Lg-(+A9)=10.5-10"° K™.200 mm - (+ 1K) = 0.00210 mm = 2.10 ym
a_=ag-Lg-(-A9)=10.5-10"° K*.200 mm - (- 1K)= -0.00210 mm = -2.10 ym

Standard uncertainty assuming rectangular distribution:
a a,—a 1 210um

B2 BB

Standard uncertainty of the output quantity

~1.2124 ym ~1.213 pym

2 2 2 2 2
UC=\/UCAL +UO +UN +UX +UB +K2

~ 0.208% + 0.5782 + 0.4652 + 0.491 +1.2132 + 22°)Jum’ ~/486.304 pm ~ 22.053 pm

Expanded measurement uncertainty

With the coverage factor k, = 2 the expanded measurement uncertainty of the calibration results in
U=k, Uc ~2-22.053 pm = 44.106 um ~ 44.2 pm

Complete measurement result

y =y'+U=(8000 +44.2) um = 8.0 mm + 44.2 um

Accordingly, the conventional value of the measurement result can be expected in the range
between 7.955 mm and 8.045 mm with a confidence level of 95.45%. This applies to the 8 mm
measuring point only.

Conclusion: U/T = 44,2 um/200 um > 0,22 (22%) violates the “golden rule of metrology” according to

which U/T preferably should be less than 10%, but not at all greater than 20%. Therefore, it does not
make sense to use the dial gauge for the intended task (see chapter 2.2, note 1).

NOTE: Correcting the indications could reduce the uncertainty to U < 3.1 um so that U/T < 0.02 (2%).
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J.3 Measuring a bolt diameter

The example shows the basic procedure for determining the uncertainty of a measurement result
according to [GUM]. This includes determining the correction, the correction uncertainty and the
coverage factor k, for the expanded measurement uncertainty of the output quantity using the
degrees of freedom. Only a few less significant uncertainties are disregarded right from the
beginning (e.g. uncertainties of the thermal coefficient of expansion). By means of the evaluation,
the input quantities with major and minor impact on the measurement uncertainty can be
distinguished.

NOTE 1: In operational practice, it is customary to neglect input quantities that are classified (after

thorough examination) as being less significant or not at all significant.

NOTE 2: Roundings must be performed in line with the rules according to chap. 4.7.2. If the evaluation is

largely done without roundings of intermediate results, smaller values for the measurement uncertainty of

the output quantity (diameter) may result.

Description of the measurement

The diameter of a bolt is measured using a comparator with the measuring object being inserted
between two plane-parallel measuring surfaces (probing planes):

e Two-point measurement between plane surfaces, fully float-mounted,
e Measurements at m = 8 different points of the bolt circumference,
e Temperatures of the measuring object and the glass scale are measured.
Zero compensation is performed prior to measuring.
Measuring Glass Scale Standard Displa

Object (material Device Device
(bolt)

\
+020.0051
00 °

Figure 15: Measuring setup for the measurement of a diameter

Input quantities

e Standard device:

Manufacturer's specification of the measurement uncertainty: Uy =0.3um+1-107° L,
L, —indicated length in um, k, = 2, temperature range (20 £ 0.5) °C

Thermal coefficient of expansion (glass scale): oy =8 107%.K™?

Digit increment of the indication: AL, =01um

e Measuring object:
Nominal diameter of the bolt (at 3, =20 °C): Lo =20 mm =20000 pm

Thermal coefficient of expansion (aluminum): og =24 100K
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Booklet 8 — Measurement Uncertainty

e Measurement procedure:
Number of different measuring points: m=8

Uncertainty of the alignment of the measuring object: U, =0.15um
ko =2; U, known from m = 25 previous measurements
under the same conditions

Uncertainty of the probing operation due to deviations

of the probing planes from plane parallelism: Up =0.15um
ke = 2; Up known from previous measurements under

the same conditions with a standard

Temperature of the glass scale during the measurement: 9y =23.5°C
Temperature of the measuring object during the measurement: 9 =25.0°C
Uncertainty of the thermometer: Uy =0.5K

Thermometer with resolution of 0.1 K

Model

y =Y +K+ 08Xy + 0Xg + 06X + 0Xp + 0K
—

=Yo
with
y Indication for the diameter,
y' Uncorrected indication,
K Correction,
Yo Corrected indication (conventional value, no uncertainty),
Xy Deviation due to the limited precision of standard device calibration,
OXg Deviation due to the dispersion during repeated measurements,
X p Deviation due to the inaccurate alignment of the measuring object,
3Xp Deviation due to inexact plane-parallel probing planes,
oK Deviation due to inaccurate correction of the systematic measurement error

resulting from limited temperature measurement accuracy.

—AX < 0X < AX applies to all above-mentioned deviations. Here, dx describes the instantaneous
value of the fluctuating deviation (expected value 8x =0), Ax the associated maximum deviation.

Measurement results

Measurement 1 2 3 4 5 6 7 8
no.
in mm 20.0052 |20.0045 |20.0055 |20.0047 | 20.0051 | 20.0046 |20.0053 |20.0051

Mean value: X =20.0050 mm

Standard deviation: s =0.00036 mm =0.36 um
The mean value is considered to be an uncorrected measurement

result: y' =X
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Booklet 8 — Measurement Uncertainty

Correction

At operating temperatures that deviate from the reference temperature of 20 °C, systematic errors
may occur due to different changes in the lengths of the measuring system components and of the
measuring object. In the present case, it is assumed that the relevant changes in length of the glass
scale and the solid parts of the standard device neutralize each other except for insignificant
proportions so that only the measuring object must be considered.

NOTE: This assumption is possibly no longer justified for operating temperatures that deviate significantly

from the reference temperature. In this case, temperature influences on the standard device must be taken
into account as well. Accordingly, the determination of the correction will be more complex.

Thermal expansion of the measuring object:
Al =ag (899 —20°C)-Lg =24-10° K™ (25 - 20)K - 20000 um = 2.4 ym

Correction of the bold diameter:
K=-ALy =-2.4 pm =-0.0024 mm

Corrected measurement result according to appendix F:
Yo = Y +K =20.0050 mm + (- 0.0024 mm)=20.0026 mm

Standard uncertainties of the input quantities

e Standard device: The standard uncertainty for a measured displacement of Ly =20 mm is
determined using the calculation rule for the measurement uncertainty specified by the
manufacturer:

Uy =03um+1-10"° L =0.3um+1-10"°- 20000 um = (0.3 + 0.02) um = 0.32 um
For this expanded measurement uncertainty, a normal distribution with a confidence interval of
95.45% is assumed, i.e. kp, = 2. Standard uncertainty resulting from k, = 2:

_ Uy _0.32pm

u = =0.16 um

NTS 5 K
Degrees of freedom according to chap. 4.4.2.1:
VN —> 0

e Standard device: The standard uncertainty due to the digit increment of the indication is
included in the measurement uncertainty specified by the manufacturer and in the measurement
series dispersion.

e Measuring object: The measuring object does not contribute to the uncertainty budget, since
the measurements are performed at eight different points on the measuring object so that the
effect of shape deviations is included in great part in the measured values of repeated
measurements.

e Procedure: Standard uncertainty due to repeated measurements on the measuring object

The measurement results of repeated measurements are considered to be normally distributed.
Standard uncertainty according to chap. 4.4.1.1:

u __S _ 0.36 um
"dm 8
Degrees of freedom according to appendix D.3.1:

VR=m-1=8-1=7

~0.13 um

e Procedure: Standard uncertainty due to inexact alignment of the measuring object

The empirical value U, =015 pm with a confidence interval of 95.45% is available from previous
measurements for the alignment uncertainty. This uncertainty was determined based on m = 25
repeated measurements.

© Robert Bosch GmbH 2015 | Status 06.2015 78


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

Degrees of freedom according to appendix D.3.1:
va=m-1=25-1=24

According to appendix D.1 the coverage factor k, ~ 2 results in case of v = 24 degrees of
freedom and a confidence interval of 95.45%. Standard uncertainty according to chap. 4.4.2.1:
Up 0.15pm

k, 2

Up = ~0.08 pm

e Procedure: Standard uncertainty due to inexactly plane-parallel probing planes
For the probing uncertainty due to probing planes that are not plane-parallel, the empirical value
Up =015 pm with a confidence level of 95.45% is available. Standard uncertainty according to
chap. 4.4.2.1:
U 0.15pm
UP e . —
Kp 2

Degrees of freedom according to chap. 4.4.2.1:

~0.08 um

Vp = ®©

e Procedure: Standard uncertainty of the correction due to temperature measurement uncertainty
The uncertainty Uy = 05K of the thermometer results in the following limit values 2°:
Lo = Lo + 06 (8 +Ug —20°C) Lo = 2410 K- (25 + 0.5 — 20)K - 20000 pm ~ 2.64 pm
Lo = Lo + 06 - (8¢ —Ug —20°C)-Lg = 24-10° K2+ (25 — 0.5 — 20)K - 20000 pm ~ 2.16 pm
Standard uncertainty according to chap. 4.4.2.2 assuming rectangular distribution:

) _; 6 _
uKzi:Lo Lo .iz2.64um 216pm 1 ~0.14 um
J3 2 J3 2 1.732
The uncertainty Ug =0.5K of the temperature recording is estimated to be uncertain at 50%.
Then, an uncertainty of 50% also results for uy . Corresponding degrees of freedom according to

appendix D.3.2:

-2
VKzl Aug 21(0_5)*2:;2:2
2| uy 2 2.05

Standard uncertainty of the output quantity

Combined standard uncertainty according to chap. 4.5:

2 2 2 2 2
uC:\/uN +UR™ + U, +Up~ + Uy

= J(0.16um) + (0.13pmY + (0.08pm + (0.08pmY + (0.14um) = 0.2737 pm ~ 0.28pm

Degrees of freedom according to appendix D.3.3 (Welch-Satterthwaite equation):
4

\% = Ue
=
Toud ' ut wt ud
YN VR VA VP W
_ (O.28pm)4
i (0.16pum)* . (0.13um)* .\ (0.08um)* lim (0.08um)* . (0.14um)*
VN VN 7 24 Vp Vp 2
0.006147 ~ 0.006147

— = ~ 26.1574 = 26
0+ 0.000041+ 0.000002 +0 +0.000192 0.000235

%5 See note 5 on page 111 on the subject of using the expanded measurement uncertainty Ug as a deviation AS
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Booklet 8 — Measurement Uncertainty
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Figure 16: Bolt diameter; Pareto chart of the uncertainty contributions u;?

On the basis of the chart, a reduction of the measurement uncertainty up to approximately 25% can be
expected if, for example, the uncertainty of the correction could be reduced. If applicable, it should be
checked whether a reduction can be achieved by means of an improved adjustment of the operating
temperature to the reference temperature 20°C and the associated smaller correction.

Expanded measurement uncertainty

According to appendix D.1, v =26 degrees of freedom together with a confidence level of 95.45%
result in the coverage factor kp = 2.10.

Expanded measurement uncertainty according to chap. 4.6:

U=k, Uc =2.10-0.28 yum=0.59 pm ~ 0.6 um
NOTE: Without an analysis of the degrees of freedom, typically the coverage factor k, = 2.00 is used. In
doing so, it is (often tacitly and in a manner that is not always justified) assumed that v > 20 degrees of

freedom are present. This leads to the slightly lower measurement uncertainty of U = 0.56 um. Rounded up
to the nearest decimal place (see chap. 4.7.2), however, the result is also U = 0.6 um.

This expanded measurement uncertainty — which is calculated taking account of the boundary conditions
described above — is only valid for the period of time when the measurement is carried out. If the
uncertainty shall be also valid for later measurements, influencing quantities which might additionally
take effect during this period of time must be considered as well.

Complete measurement result

Complete measurement result according to chap. 4.7:
y=Yyo+U=y +K+U=(20005.0 - 2.4 +0.6)um = 20.0026 mm + 0.6 ym

The conventional value of the measurement result can be expected in the range between
20.0020 mm and 20.0032 mm with a confidence level of 95.45%.
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Booklet 8 — Measurement Uncertainty

J.4 Torque measurement using an engine test station

Description of the measurement

Engine test stations include torque measuring equipment. Figure 17 presents the measurement chain
schematically. The measurement tasks vary greatly across different test stations and instants of time.
Thus, it is impossible to determine the uncertainty of the measurement results for each individual case.
Instead, it is determined once for certain reference values and then applied to all structurally identical
systems and measurements that are performed under the same conditions. The approach is explained
by means of the reference point Mo = 100 Nm as an example. The same procedure is used for other
reference points.

Mechanical
Flange force CAN Display of the
transmission -10V ... +10V Message automated
at the A/D ;
load Load cell > t > measuring
05;11_ converter system /
machine data file

Figure 17: Measuring chain of an engine test station, typical measuring range: =50 Nm to +500 Nm

Using the engine test station, the torque is determined that acts on the flange between the engine
and the load machine. The load machine is simultaneously used as a measuring instrument and
provides a load cell for this purpose. The torque is calculated from the measured force and the
known length of the lever arm of the mechanical system.

Combustion
engine

Lever arm

Load machine

Self-aligning

Load cell
oadce ball bearing

Figure 18: Schematic structure of an engine test station

Recurrent calibration of the entire measuring chain is essential for the practical use of the measuring
process (Figure 17). For this purpose, the engine is replaced with a torque measurement standard at
the connection flange which is traced back to national and international primary standards
(calibration certificate). The standard essentially consists of a mechanical lever arm and calibrated
reference masses 2° exerting defined reference forces on the load cell. Depending on the calibration
result, the system is adjusted and re-calibrated as required.

Input quantities

e Torque (reference value) My =100 Nm

e Resolution of indication (digit increment) AMg =0.05 Nm
e Lever arm length, nominal value (manufacturer's specification) L, =1000 mm
¢ Maximum deviation of the lever arm length from the nominal value AL =0.32 mm

(based on manufacturer's specifications)

% Also imprecisely described as “weight piece” (see DIN 8127:2007-11) or coll. “weight”
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Booklet 8 — Measurement Uncertainty

e Maximum deviation of the reference masses from the nominal value %A, = 0.005%
(manufacturer's specifications)

¢ Ambient temperature during calibration 99 =20.0°C
e Maximum deviation of the ambient temperature during calibration A9y =3.0K
e Maximum deviation of the ambient temperature during measurement A8=6.0K

e Maximum deviation of the torque indication due to deviation %Ay =0.05%/K
of the load cell resulting from temperature deviation (related to My)
(manufacturer's specifications)

e Full scale value of the measuring range Myax =500 Nm
e Maximum permissible deviation between reference value and %A = 0,4%
indication within which the measuring system is classified as (based on Mpyax)

OK when calibrated

This “acceptance range” %A is used to consider the effect of the following effects:

o The torque which is actually effective at the flange is only indirectly recorded via the load cell
and the lever arm length.

o Friction in the bearings of the lever arm leads to measurement errors and hysteresis of the
calibration curve.

o The zero point and sensitivity of the entire system have a long-term drift.

These effects are not compensated by recurring adjustment and calibration. Instead, the control
of inspection, measuring and test equipment is utilized to ensure that the overall impact of these
effects remains within specified limits (+ 0.4% of the full scale value of the measuring range).

Model equation
M =M, + Mg + M, +M,,, + 6Mg + oM,

with

M Indication for the torque,

M, Conventional value (no uncertainty),

SMg Deviation due to the limited resolution of the measuring system,

M, Deviation due to the uncertainty of the lever arm length,

M, Deviation due to the uncertainty of the reference masses,

SMgy Deviation due to the uncertainty of the force measurement resulting from
temperature fluctuation,

M, Deviation due to the uncertainty of the difference between the reference value and

the indication.

—AM < 8M < AM applies to all above-mentioned deviations. Here, 8M describes instantaneous value
of the fluctuating deviation (expected value SM=0), AM the associated maximum deviation.

Measurement results

No measurements are carried out, all details are taken from the manufacturer's data sheets or they
are based on experience.

Correction

No corrections are performed.
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Standard uncertainties of the input quantities

e The limited resolution AMg = 0.05 Nm (digit increment) of the torque indication can lead to
deviations within the limits

a+:+% and a_:—a+:—%
2 2
i.e. cause the maximum deviation
a=2:"% _a, _ MR _ 5,025 Nm
2 2
Assuming a rectangular distribution results in the standard uncertainty
g = -2 = 2925 i < 0,025 Nm

NERINE]

e The lever arm length is uncertain during calibration with respect to the manufacturing tolerance of
the lever arm and its mechanical mounting. Moreover, temperature fluctuations up to
89y =AYy =+3K are assumed which may occur during the calibration process without
corrections being made. These effects all in all can cause deviations of the lever arm length up to
8L = AL = +0,32 mm (which is determined based on manufacturer's specifications). Further-
more it is assumed that torque and lever arm length change with the same ratio, i.e.
proportionally:

M _ sl
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o
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Mo Lo
This may lead to deviations of the measured torque within the limits

AL AL

a, =+AM, =— M, and a_=-a, =—-AM =——M,
Lo Lo

i.e. cause the maximum deviation

a=d:—2 :A_L.MO _0.32mm . 55 Nm = 0.032Nm
2 Lo 1000 mm
Assuming a rectangular distribution results in the standard uncertainty

a 0.032

BT

Nm =~ 0.019 Nm

e For the reference masses the tolerances %An = 0.005% apply which are specified by the
manufacturer and related to the nominal value mg of the corresponding reference mass. It is
assumed that the torque and the reference mass change with the same ratio, i.e. proportionally:
oM, _om _ %A,

M, m, 100%
This may lead to deviations of the measured torque within the limits
0, 0
_ Hohn -M, and a_=-a, =—AM,, =— Yol ‘Mg
100% 100%
i.e. cause the maximum deviation
a,-a_ %A, 0.005%
= m = . MO =

100% 100%

Assuming a rectangular distribution results in the standard uncertainty

a _0.005 < 0.003Nm

"B

NOTE: The corresponding reference forces g- mg are calculated using the gravitational acceleration g which is
applicable at the operating site of the standard device according to data provided by “Physikalisch-Technische
Bundesanstalt” (PTB, Federal Physical-Technical Institute, Germany). Here, however, the uncertainty of g
(0.0002%) is evaluated as negligible, so that regardless of whether forces or masses are considered, the same
standard uncertainty up, results.

a, =+AM

a= -100Nm =0.005Nm
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e The ambient temperature during the measurement influences the zero point and the sensitivity
of the load cell. In contrast to the calibration procedure (no engine is coupled, so there is no
waste heat) temperature fluctuations up to 83=+A3=16K can occur during measuring
operation (engine is coupled, i.e. waste heat is present). Per Kelvin temperature deviation of the
load cell from the calibration temperature 8, =20 °C, a measurement error of %A = 0,05%/K
from the conventional value Mg has to be expected (manufacturer's specifications). This may lead
to deviations of the measured torque within the limits

a, =+AMy = A9- LEY ‘M, and a_ =-a, =-AMy =-A9- YAy ‘M,
100% 100%
i.e. cause the maximum deviation
%
4 _a %A 0.05 ?"
a=— — =AMy = AS- 9 My =6.0K- -100 Nm =0.300 Nm
100% 100%
Assuming a rectangular distribution results in the standard uncertainty
g 8 _ 0300\~ 0.174 Nm
S B
w
©
3 e The “acceptance range” for deviations between the reference value and the indication of the
g test stations during calibration is %A = 0.4% of the full scale value Muax = 500 Nm of the
o~
S measuring range. Therefore deviations within the limits
%A %A
a, =+AM, -M and a=-a,=-AM,=——-M
1000/ MAX - + A 100% MAX
must be taken into account, i.e. a maximum of
— 0,
a=2:72 _am, =P8 My = 2% 500 Nm = 2.0Nm
2 100% 1000/

The values within the limits of £2.0 Nm are assumed to be distributed according to a triangular
distribution which, unlike the normal distribution, has fixed limits. This assumption is based on
the graphical analysis of the measurement errors occurring in practice which were observed
during various calibrations of different test stations of identical construction. The corresponding
standard uncertainty is calculated according to

2 _20 \m~0.817Nm

T

Standard uncertainty of the output quantity

2 2 2 2 2

~1/0.0152 +0.0192 + 0.0032 + 0.1742 + 0.8172 Nm
~+/0.000225 + 0.000361 + 0.000009 + 0.030276 + 0.667489 Nm ~ 4/0.698360 Nm ~ 0.836Nm

Expanded measurement uncertainty

The expanded measurement uncertainty is calculated using k, = 2:

U=k, Uc=2-0.836 Nm=1.672Nm~1.7Nm

Complete measurement result

M+tU=M=1.7Nm

U applies to measurements close to the reference point Mg = 100 Nm. M denotes the torque value
actually indicated by the measuring system.
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Booklet 8 — Measurement Uncertainty

J.5 Optical measurement using a measuring microscope

Description of the measurement

The width of a weld seam is measured manually using microsections and a measuring microscope
(10x lens) with an image processing system. Before the measurement, the weld seam of the steel
part is severed in its center and a microsection is made. The width of the weld seam is specified as
(1.6 £0.5) mm, T=1.0 mm.

Camera Microsection PC

Microscope

Figure 19: Measurement setup for the optical measurement of microsections

Weld seam 4
Schweinaht 4

Schweilinahl 3

- e
i Width of weld seam

Anbindebreite I

Liepth of weld seam
Weld seam 1 4
Scrmenﬁ;!aht 1 Einschweilltiefe
Schweinaht 2

Figure 20: Product part and measuring task (measuring the seam width using a microsection)

The task is to determine the measurement uncertainty according to [ISO 22514-7] and to evaluate
the suitability of the measuring system and the measuring process accordingly (cf. chapter 5).

NOTE: Input quantities and model equations are implicitely standardized in case of the approach according
to [ISO 22514-7]. The standard does not require any separate specification. Instead, it is sufficient to specify
the standard uncertainties of the input quantities according to chapter 5, Table 3 und Table 4, and to
calculate the combined output quantities according to the equations (5.1) and (5.2) which correspond to an
additive model. Thus, the following sections “input quantities”, “model”, “measurement results” and
“correction” are not mandatory and often omitted in practice. This applies as well to tabular uncertainty
budgets.

© Robert Bosch GmbH 2015 | Status 06.2015 87


http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf

1)
(@]
O
(@]
[%2]
©
<
<
<
S
N
o
(9]

Booklet 8 — Measurement Uncertainty

Input quantities

e Calibration uncertainty of the calibration plate (measurement standard) Uc, =0.15um
Data source: DAKKS calibration certificate kp =2

¢ Resolution of the measuring system RE =1.382 um
Data source: Output of the image processing system (software)

e Repeatability at the standard s=0.919 um
Data source: Standard deviation according to booklet 10, type-1 study

e Systematic measurement error of the measuring system BI=0.0176 um
Data source: Measurement error according to booklet 10, type-1 study

¢ Repeatability of measurement results of the measuring object EV =6.529 um
Data source: EV according to booklet 10, type-2 study

e Operator impact on measurement results of the measuring object AV =7.298 pm
Data source: AV according to booklet 10, type-2 study

¢ Interaction between operator and measuring object IA =8.604 um
Data source: |A according to booklet 10, type-2 study

Model (according to chap. 5.2)

Measuring system:

Yms =Y+ 8XcaL + 0Xey(us) + 0Xg (J.2)
Measuring process:

Ymp = Yms + (SXEV(MP) - 8XEV(MS))+ OX ay + OX|p (J.3)
with

y' Indication for the measurement results y,,s of the measuring system

or yyp of the measuring process,

SXcaL Deviation due to the limited precision of calibration,

SXev(ms) Deviation due to the limited repeatability of the measuring system,

OXpg Systematic measurement error,

SXgv(MP) Deviation due to the limited repeatability of the measuring process,

X ay Deviation due to operator influence,

OXa Deviation due to interactions between input quantities.

Deviations caused by inhomogeneities of the measuring object (8xgg;) during the measurement
(due to setting the positions of measuring points in the measuring microscope based on the
operator's visual assessment) are included in the operator influence (8x,,) and the interaction
(8x,5 ) between the operator and the measuring object. Further potential deviations according to
[ISO 22514-7] and chap. 5.2, i.e. deviations from linearity (8x ), deviations due to instability over
time (8Xgrag ) @and temperature influences (8xg ), deviations between different measuring systems
(8xgy ) and deviations due to any other influences (8Xrest(us), SXrest(vp)) are evaluated as being
insignificant or irrelevant. Thus they are not taken into account.

Measurement results

Use of measurement data and evaluation results from type-1 and type-2 studies according to
[Booklet 10].

Correction

None
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J.5.1 Uncertainties of the measurement system

Standard uncertainties of the measuring system input quantities

e Calibration uncertainty uca. of the calibration plate from the DAkKkKS calibration certificate:
Ucar 0.15pm

u = = =0.075um
CAL kp > H

e Resolution of the measuring system (set by the selected lens, the basic magnification of the camera
adapter and the camera, determined and output by the image processing software):
1 RE _i' 1.382 pm

u ==
RE \/E 2 \/g 2

e Repeatability when using a standard (standard deviation s from type-1 study):

=0.399 um

Ugyr =S=0.919 um

e Determining the measuring system dispersion uey(us) from uge and ugvs:
Uev(ms) = MAX(uge, Ugyg ) = 0.919 pm
e Systematic measurement error (bias from type-1 study):
| X=Xp| 0.0176 pm

Ug = NG N

Other uncertainties are evaluated as insignificant.
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=0.0102 pm

Combined standard uncertainty of the measuring system

Uyis = U2a + Udyqus) +UB) =(0.075um)? +(0.919um)? + (0.0102pum)? = 0.922ym

Expanded measurement uncertainty of the measuring system

Uus =Kp "Uus =2-0.922pm =1.844pm

Evaluation of the measuring system

1000pm

Qus = -100% = -100% =0.37% < 15%

Result: The measuring system is suitable (Qus < 15%).

100%

99.33%

80% -

60%

40%

20% -

0.66% 0.01%
0% )

EV(MS) CAL Bias

Figure 21: Pareto chart of uncertainty contributions u;2 to the uncertainty of the measuring system
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J.5.2 Uncertainties of the measuring process

Standard uncertainties of the measuring process input quantities

e Standard uncertainty of the measuring system (ums from chap. J.5.1):

e Repeatability on the measuring object (EV from type-2 study):
Ugyo = EV =6,529 pm

e Determining Ugymp) from uge, Uevg and Ugvo:

Uevvp) = MAX(Ugg, Ugyr, Ugvo) = 6.529 pm

e Reproducibility, operator influence (AV from type-2 study):
Upy = AV =7.298 pm

e Interaction (IA from type-2 study):
U, =1A=8.604 pm

Other uncertainties are evaluated as insignificant.
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Combined standard uncertainty of the measuring process

2 2 2 2 2
Uvp = \/UMS + (UEV(MP) - uEV(MS))+ Uay + Uia

=4/(0.922 uym)~ +{(6.529 um ) —(0.919 pm )" |+ (7.298 um )~ + (8.604 um )~ =13.035 um
2 2

Expanded measurement uncertainty of the measuring process

Uup =Kp - Uyp =2-13.035pum =26.070pm

Evaluation of the measuring process

2-Uyp 2.26.070um

1000pm

-100% =

Qup = -100% =5.21% < 30%

Result: The measuring process is suitable (Qup < 30%).

50%

43.6%
40%

31.3%
30% +

24.6%
20%
10% -+

0.5%
1A AV EV(MP) MS

0%

Figure 22: Pareto chart of uncertainty contributions u;? to the uncertainty of the measuring process

NOTE: uevmp) cleaned up, i.e. without u?eyms) which is already included in u?ys.
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Booklet 8 — Measurement Uncertainty

J.6 In-process tactile diameter measurement

Description of the measurement

During shaft production the process step “grinding” is monitored by tactile sampling inspections of
the shaft diameter. The operator places the shaft to be tested in a horizontal position between tip-
shaped brackets (briefly “tips”). After that, the shaft surface is scanned fully automatically by the
measuring system and the shaft diameter is determined from the measured data.

The capability of the measuring process is proven by means of type-1 and type-3 studies [Booklet 10].
For continuous monitoring of the measuring process stability, a calibrated series part (a so-called
“stability part”) is measured in exactly the same way as series parts and a measurement stability
chart is maintained according to a type-5 study [Booklet 10]. The calibration certificate of the
“stability part” provides the uncertainty of the calibration of this standard.

The data from the calibration certificates and the procedures according to [Booklet 10] are used to
determine the uncertainty of the results of the measuring process which is updated ongoing during
production.

Prober (stylus)

/

Tip (bracket)  Rotational axis N

Shaft
\ ¥ - . Tip (bracket)

AT =)

Figure 23: Principle of tactile measurement of a shaft diameter

Input quantities

e Reference value of the standard (calibration certificate) XcaL = 36457.1um
e Calibration uncertainty of the standard (calibration certificate) UcaL =1.7pum; k, =2
¢ Resolution of indication (digit increment) dXge < 0.5 Digit

NOTE 1: The uncertainty of a measurement result basically cannot be less than
the resolution of the measuring system. In the present case the resolution is
determined by the indication of the measuring system. Therefore, it is already
included in the deviations of the measured values from the respective
conventional value and must not be considered separately once again.

e Mean value of the (uncorrected) measured values X =36457.476 um
Data source: Stability chart according to booklet 10, type-5 study

e Standard deviation of the measured values s, =10.125 pm
Data source: Stability chart according to booklet 10, type-5 study

NOTE 2: Dispersion is caused by all influences affecting in total the measuring
process including their interactions, finite repeatability of the measuring system
and measuring process, operator influence, finite long-term stability, tempera-
ture fluctuations, as well as other factors that are not caused by the measured
parts such as vibrations in the manufacturing environment. These effects are
taken into account to the extent they are contained in the last 25 values of the
stability charts.
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Booklet 8 — Measurement Uncertainty

e Deviation due to impact of parts
Data source: Results of type-1 and type-3 studies according to booklet 10;
Determination from:

o Standard deviation from type-1 study: s=0.139 um
o Measuring system dispersion from type-3 study: EV =0.131pm

NOTE 3: Deviations are caused by the different nature of the standard (“stability
part”) and the serial parts.

Model

Yy =Y'+8XcaL +0Xg +Xpro *+ OXpar

with
y (Current) indication for the diameter,
y' Uncorrected average indication (mean value of the stability chart),
SXcaL Deviation due to the limited precision of the calibration of the standard,
dXpg, Deviation due to the uncorrected systematic measurement error,
Xpro Deviation due to the measurement procedure,
SXpar Deviation due to the difference between the standard and series parts.

—AX <X < AX applies to all above-mentioned deviations. Here, &x describes the instantaneous
value of the fluctuating deviation (expected value 6x =0), Ax the associated maximum deviation.

Measurement results

Use of measured data and evaluation results of type-1, type-3 and type-5 studies according to
[Booklet 10].

Correction
None.

NOTE 4: Systematic measurement errors are considered to be a standard uncertainty ug in the uncertainty
budget (cf. chapter 6.1.2 and appendix F.3).

Standard uncertainties of the input quantities

e Uncertainty uca. of the calibration of the standard used
The calibration certificate of the standard provides the expanded measurement uncertainty
Ucat= 1.70 um and the coverage factor k, = 2. The corresponding standard uncertainty is
calculated as

o _You _170
CAL — k - 2

pm =0.85um
p

e Uncertainty uge due to the limited resolution of the indication
As already explained, the corresponding deviations are included in the measured values and
thereby taken into account via the uncertainty upro of the measurement procedure. So, there is
no need to consider a separate standard uncertainty Uge.
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Booklet 8 — Measurement Uncertainty

e Uncertainty ug due to uncorrected systematic errors (“bias”)
The systematic error is calculated as the difference of the mean value X calculated from 25
measured values recorded in the stability charts of the recent weeks and the reference value
XcaL Of the standard:
AXg) =|X = Xca | = 36457.476 pm — 36457.100 um = 0.376 um

Systematic errors that are not compensated by correction must be included in the measurement
uncertainty as a standard uncertainty (see appendix F.3):

e Uncertainty upgro due to the measurement procedure
The standard uncertainty of the measurement procedure is calculated as standard deviation sy of
the last 25 values x documented in the stability charts:
Upro = Sy =10.125 pm
NOTE 5: The measurement uncertainty U to be determined is intended to allow a statement about the
respective individual measured value. Accordingly, for Upgrp, the standard deviation s of the individual

measured values from their mean value x must be used (rather than the standard deviation of the mean
value that is smaller by the factor 1 / 25 ).

e Uncertainty upar due to measured parts
Deviations caused by the different nature of the standard (i.e. the “stability part”) and the series
parts must be considered to be significant and included in the measurement uncertainty only if
the following condition is fulfilled (cf. chapter 6.1.4):
EV?>2.s?
With EV =0.131 um from a type-3 study and s = 0.139 um from a type-1 study:
EV? =(0.131um) = 0.017161pm? < 2.5 = 2-(0.139 um )’ = 2-0.019321 um? = 0.038642 um?
Therefore, the significance condition is not met so that the uncertainty upar is negligible:
Upar =0 pm
NOTE 6: Reports of measuring process analyses often specify %EV instead of EV. Then, %EV must be

multiplied by the reference value in order to calculate EV. The reference value is often the tolerance of the
characteristic, but may be also another quantity. This must be clarified if necessary.

Standard uncertainty of the output quantity

Uc = \/u%AL + uél + UI%RO + uI%AR
~0.8502 +0.3762 +10.1252 + 02 um
~ 4/0.722500 + 0.141376 + 102.515625 + 0 um ~ 4/103.379471 um ~ 10.168 um

Expanded measurement uncertainty

The expanded measurement uncertainty is calculated using k, = 2:

U=k, -Uc =2-10.168 pm = 20.336 um

Complete measurement result

y=y' +U=y" +20.336 um
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Booklet 8 — Measurement Uncertainty

J.7 Injection quantity indicator (EMI)

The injection quantity indicator (or briefly EMI according to German Einspritzmengenindikator)
measures injected masses (coll. also called injection quantities). The calibration uncertainty is to be
determined.

Description of the measurement

The mass of test oil injected into the EMI working chamber (e.g. diesel fuel) displaces a piston.
An inductive measuring system records the path x traveled by the piston. The injected mass m
(output quantity) is calculated from the measured path x, the cross-sectional area A of the piston and
the density p of the test oil (input quantities). The pressure p and the temperature 3 inside the EMI
chamber must be considered as well. The calculated injection mass m is adjusted by means of a
correction value k¢ to the indication mg of the standard device (scale) which directly measures the
actually injected mass. In fact, the measured path x is rescaled into the injected mass m.

Injection system

Drain to scale

Figure 24: Measuring principle for adjustment and calibration of an injection quantity indicator (EMI)

Because of the limited sensitivity and resolution of the standard device (scale), a sufficiently large mass
of the test medium is required for each weighing process. Therefore, the total mass m of n = 1000
injection processes is weighed. The balancing between the EMI and the scale is based on the
measurement results of the total mass m, rather than the (calculated) mean values for a single injection
process.

Basic equation for determining the injection mass m from the injection volume V:

m=p-V ().4)
with

p(S,p) Volume density of the injected medium at temperature 3 and pressure p,

V=x-A Chamber volume which is displaced by the injected mass,

X Piston travel,

2
A:n(dzkf] Piston area,

d Piston diameter (data sheet),
K; Correction value (result of the adjustment),
so that
2
m:p(S,p)-X-n-(%j . (J.5)
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Booklet 8 — Measurement Uncertainty

The correction value ks is determined by comparison with a standard device (scale). The indication m
of the EMI is adjusted to the indication mq of the scale, i.e.
m=m,, (J.6)
or equation (J.5) substituted for m
2

p(s,p)~x~n~(d+2"f] - m, 0.7)

and solved for ks yields

—o. | Mo _
ki =2 /p(g,p)-x-n d (1.8)

This additive correction value k¢ for the piston diameter is the result of the adjustment. In relation to
the EMI indication, k¢ effectively provides a (non-linear) correction of the deviation of the EMI
indication from the scale indication, of the test medium density, of the piston travel and of the piston
diameter at the time of adjustment. The value determined is added to the EMI configuration data
(flash EEPROM). Therefore, ks represents a parameter which is invariant until the next adjustment
and equally impressed to all EMI measurement results for the “injection mass”. The uncertainty of
this correction must be considered in the uncertainty analysis.

Subsequently, the determined correction value ks is used to perform another comparison of the EMI
measuring instrument with the scale at the calibration point (200 g), i.e. a calibration is carried out.

Input quantities

e Temperature 3 in the EMI measurement chamber:
The temperature 3 is measured using a calibrated thermocouple. The
measurement result is adversely affected by a measurement deviation

09 of the thermocouple in the installed state which results from its
calibration. |39/<0.5K

e Pressure p in the EMI measurement chamber:
Pressure differences within the EMI are disregarded. |3p |~ 0 bar

e Volume density p(3,p) of the test medium:
The density at the measured EMI chamber temperature 3 and the
atmospheric pressure p is determined by linear interpolation from the
densities measured at the reference temperatures 9; and 3.

o Reference temperature #1: $,=20°C
o Measured density at reference temperature #1: p; =0.820 is
cm
o Reference temperature #2: 9, =80°C
o Measured density at reference temperature #2: p, =0.778 %
cm
o Uncertainties 63 and dp of the reference points (31; p1) and (32; p2)
as well as deviations of the function p(3) from a straight line are
evaluated as negligible.
o Density variations 6p due to pressure fluctuations dp are considered
yvart P P P |5p(5,8p) | ~0 7
to be negligible cm
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Booklet 8 — Measurement Uncertainty

(Uncorrected) volume V‘ of the EMI measurement chamber:

The piston travel is measured using an LVDT (Linear Variable Differential
Transformer). Plotting the determined values versus the reference values of
the travel measuring system results in an S-shaped curve. The S-shape is
corrected using a correction table provided by the EMI manufacturer so
that a linearized characteristic curve of the LVDT is obtained. The deviation
resulting from this linearization for each injection process is specified in the
data sheet of the EMI manufacturer as a deviation oV’ from the
(uncorrected) nominal volume V' of the EMI chamber.

(Uncorrected) indication m‘ of the EMI:

It is assumed that the measurand is adversely affected by a measure-
ment error which is caused particularly by the dispersion of the injected
mass rather than the linearization of the LVDT characteristic curve. This
deviation is estimated based on the standard deviation of ny repeated
measurements (measured values x; see Table 14).

Diameter d of the EMI piston:

The diameter is assumed to be constant at d = 16.97 mm (mean value
known from production). Deviations 8d due to individual dispersion are
contained in the correction value k.

o Piston diameter

o Individual dispersion

Measurement uncertainty of the scale:

The measurement uncertainty of the standard device (scale) is specified
by the calibration laboratory.

o Reference value

o Expanded measurement uncertainty (k, =2)

Number of injections n per measurement result:

It is always the total mass of n injection processes which is weighed. It
must be ensured for this purpose that always exactly n injections are
evaluated.

o Number of injections per weighing operation

o Deviations from the nominal number of injections
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J.7.1 Adjustment and uncertainty of the EMI measuring instrument

Model equation

The model equation is given by Eq. (J.5). In this form the equation includes the piston travel x and the
correction factor ks as input quantities. However, information about uncertainties is not immediately
available for these quantities. This fact usually complicates the calculations significantly. Therefore,
it is advantageous to transform the model equation algebraically and to represent it as far as possible
using quantities with directly available uncertainty data.

First, Eq. (J.8) for k¢ is transformed. Expanding the term under the root operator with (d/2)2and
defining the uncorrected EMI indication m‘ and the EMI chamber volume V* according to

2
' , d
m’=p(T,p)-V =p(9,p)~X~n-(§j (1.9)
results in
m m
k=2 |—~2>—-d=|,[—2-1|d J.10
f p(Q,p)-X-n [ m'’ j 010
Solving Eq. (J.10) for (d+ kf)/2 and substituting it in the model equation Eq. (J.5) yields
2 2 2
m=p-X-7- d+kf =p-X-T- ﬁg =p-X-T- 9 .ﬁ:p.v'.% (_]11)
2 m 2 2 m’ m’

This equation represents the corrected EMI indication m exclusively dependent on input quantities
providing uncorrected measured values which are directly readable as well as uncertainty data which
are independent of each other.

Measurement results

Measurement no. 1 2 3 4 5 Mean Sta?d?rd

value deviation

Scale indication mo/ g | 200.35| 200.40 | 200.42 | 200.44 | 200.45|  200.412| 0.039623
o —

indication m‘/g| 200.24 | 200.24 | 200.28 | 200.32| 200.31|  200.278| 0.037683
(uncorrected)

EMI chamber 9/°c| 67.30| 67.45| 67.40| 67.33| 67.40 67.376| 0.060249
temperature

Table 14: Scale and EMI indications for injected masses and measured EMI chamber temperature
(Mass of 1000 individual injection operations added up in each case)

Correction (of the adjustment)

With the above input quantities, the linearly interpolated volume density at the mean EMI chamber
temperature 3 =67,376 °C

p(32,0)— p(91,p)

9, = * 8_8 8 il
P( p) T,-T, ( 1)+ P( 1 p)
112
0.778 2. —0.820 9 -
_ cm CM” (67.376°C — 20°C) +0.820 —% = 0.786837 —-
80°C — 20°C cm cm

and the mean values m, and m’ of the measurement data, the correctionk; is calculated according
to Eq. (J.10):

m,
= o _q].q-| [2004129 4|4 697 cm=0.000568 cm (1.13)
m" 200.278 g
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Booklet 8 — Measurement Uncertainty

Standard uncertainties of the input quantities

Uncertainty due to the temperature 9 in the measurement chamber
Because of a lack of more precise knowledge, the standard uncertainty is determined from
the calibration uncertainty of the thermocouple assuming a rectangular distribution:

39|
o = 122103 288676 K

NERNG

The temperature affects the volume density of the test medium. The associated sensitivity
coefficient is calculated according to

mop _ o ( 'V"&] P\ Mo S0 _ Mo p(SpP)-p(%1p)
p 89  0p a9 m 5% p(9.p) 9, -9,

8= m'

0.778-9.—0.820- 9.

_ 2004129 cm® cm® _ _ g 178294 9
0.786837 9 80°C - 20%C “
cm

Here, the relationship m'=p-V' is used. For p(S,p) the interpolated value is used which is
calculated according to Eq. (J.12) for 9 =67,376 °C. For m, the mean value m, of the scale
indications is used. The term 0p/d9 is approximated by the slope of the straight line used for the
linear interpolation of the volume density.

Uncertainty due to the pressure in the measurement chamber
Because of |6p| ~0bar, u, =0 bar is assumed. Thus, there is no need to calculate the sensitivity
coefficient.

Uncertainty due to the (uncorrected) volume V‘ of the measurment chamber
The standard uncertainty is calculated based on the manufacturer's specifications assuming a
normal distribution:

[3v]_o1

Uy = m® =0.05 cm?®
2
The associated sensitivity coefficient is calculated according to
ey =M _ 0 [y Mol g, p) ~0.786837 9. 2004120 _ 7573653 9
EVA-YE m’ cm® 200.278¢ cm®

For p(S,p) the interpolated value is used which is calculated according to Eq. (J.12) for
9=67.376 °C. For m, the mean value m, of the scale indications is used, for m’ the mean
value m’ of the uncorrected EMI indications.

Uncertainty due to limited repeatability of the (uncorrected) EMI indications m‘
The uncertainty is determined using the standard deviation of the EMI indications:

e

nv—1ia

The measured values given in Table 14 and n,, =5 result in
S,y =0.037683 g.

The corresponding standard deviation of the mean value is used as standard uncertainty:
S, _ 0.037683 g

B
The following applies to the associated sensitivity coefficient:

Cm,:a_m:i p-v. Do) oy [ 2 Mo )y [ Z Mo __Mo _ 2004129 _ ;1 550669
om' om’ m’ m'? 2 m’ 200.278¢

m
Here, the relationship m'=p-V'is used. For m, the mean value m, of the scale indications is

Uy = =0.016853 g

used, for m’ the mean value m’ of the uncorrected EMI indications.
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e Uncertainty due to deviations from the nominal diameter d of the piston
Because of |8d| ~0mm, uy =0mm is assumed. Thus, there is no need to calculate the sensitivity
coefficient.

e Uncertainty owing to deviations from the nominal number n of injections
Because of |6n|z0, u, =0 is assumed. Thus, there is no need to calculate the sensitivity
coefficient.

e Uncertainty of the indications m, of the standard device (scale)

o Measurement uncertainty of the weighing process
The standard uncertainty is calculated from the data available for the expanded measure-
ment uncertainty U and for the coverage factor k, of the scale:
U, 0.184g
Kp

The following applies to the sensitivity coefficient:

CO :a_m:i(p.vrm :p.V,(i,J:m,.[i’jzl
omg  omg m'’ m m

o Uncertainty due to limited repeatability of the measurement results (dispersion)
It is assumed that the dispersion fraction which has to be considered as a property of the
scale (inherent dispersion) is taken into account in the calibration uncertainty Uo. It is further
assumed that dispersion fractions going beyond this can be attributed to the dispersion of
the injection masses in the EMI chamber, so that they are already taken into account in the
dispersion of the EMI indications.

Ug =0.092 g
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Standard uncertainty of the output quantity: Corrected EMI indication for the injection mass m

Up = \/(Cs 'U9)2 + (Cv' 'Uv')2 + (Cm’ 'Um')2 + (Co 'uo)2

2 2
[— 0.178294 % .0.288676 Ocj + (0.787363 —9_.0.050000 cm3j
cm

~
~

+(-1.000669 - 0.016853 g)* + (1.000000 - 0.092000 g)’

~ \/(— 0.051470¥ +0.0393692 + 0.0168652 + 0.092000° g

~/0.002649160900 + 0.001549918161+ 0.000284428225 + 0.008464000000 g

~+/0.012948 g ~0.113789 g

70% +——65%
60%
50% +
40%
30%

21%
0,
20% 12%

10% 2%
0%

m, ) A m'

Figure 25: Pareto chart of the uncertainty contributions (ci-u;)? to the standard uncertainty of m
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Booklet 8 — Measurement Uncertainty

Expanded measurement uncertainty

The expanded measurement uncertainty Un is calculated with k, =2:
Up =Kp -Up =2-0.113789 g =0.227578 g ~ 0.228 ¢

NOTE: The expanded measurement uncertainty of the output quantity is based, among others, on an input
quantity which is determined from ny = 5 measurement results only (v = 4 degrees of freedom). According
to appendix D.3, it should be checked in such cases whether the effective number of degrees of freedom Vg
of the output quantity still reaches an order of magnitude of at least 15 ... 20. Otherwise a higher coverage
factor k, should be used which is properly adjusted to v.g. Assuming that the uncertainty data for the EMI
chamber volume and the scale indication can be considered to be secured at a maximum of 80%, 27
effective degrees of freedom result, i.e. k, = 2.097 at a confidence level of 95.45%. k, = 2 instead of 2.097 is
usually considered to be acceptable. At a maximum of 75%, still 18 degrees of freedom result (k, = 2.149).

Complete measurement result

For the adjusted EMI measuring instrument, the measurement data of the present case result in the
following complete measurement result (applicable for each 1000 individual injection operations):

m+U, =200.412g+0.228 g

This means that the conventional value of the measurement result can be expected in the range
(200.412 £ 0.228) g with a confidence level of 95.45%, i.e. between 200.184 g and 200.640 g.

J.7.2 Calibration of the EMI measuring instrument

Measurement results

Measurement 1 ’ 3 a 5 Mean Sta|.1da.|rd
no. value deviation
;'\;'ls'med'on m/g| 200.47| 200.47| 200.46| 200.51| 200.53| 200.488| 0.030332
rsn‘:::;’ Injection mo/g| 200.47| 200.49| 200.48| 200.49| 20051| 200.488| 0.014832
Difference Am/g 0.00f -0.02| -0.02 0.02 0.02 0.0 0.02

Table 15: Calibration of EMI, injection mass indicated by EMI and scale
(Mass of 1000 individual injection operations added up in each case)

Uncertainty of the deviation | m — mg| between the indications of EMI and scale

The measuring process in the calibration laboratory does not reveal any deviation of the adjusted
EMI from the standard device (scale) for a mean injection mass of 200.488 g, i.e. the mean deviation
of 5 measurement series is zero (see Table 15).

Measurement results are considered to be different at a specific confidence level (e.g. 95.45% in case
of ky = 2) if their uncertainty ranges do not overlap (cf. chapter 2.2), i.e. if the condition
m+ U, <mg—Ug, is met in the case m<mg, or mg +Uy <m-U,, in the case my <m, or generally if
the absolute value of the difference of the measurement results is greater than the sum of their
uncertainties:

|m—md
Un +UYg

>1

Because of |ﬁ—ﬁo| =0, this condition generally cannot be fulfilled in this case, i.e. the results for m
and mo must be considered to be identical (in terms of the above criterion).
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The same applies to the individual measurement series. The maximum difference of the results in

Table 15 is

m-m MAX{|m: —m,;

| ol _ (| i o.|)z 0.029 L 002 ooy
Un +Up Un +Up 0.2289+0.184g 0.412

NOTE: The same applies to the application of the (more critical) criterion according to appendix G:

m-mo| MAX(‘mi _moi‘) 0.02g 002

- ~ ~0.068<1
JUZ U2 JUu.2+Uy? (022877 +0.1847g7  0-293

J.7.3 Transferability of the results

The determined measurement uncertainty applies to the measuring process in the calibration
laboratory. It can be transferred directly to measuring processes in other measuring laboratories only
if these processes are performed under identical conditions. This always involves the sum of
n=1000 injection operations to be determined and evaluated.

NOTE: In case of regarding a single injection operation, instead of the mean value dispersion of ny = 5,

measurement series each with 1000 injections, the individual value dispersion has to be used for the
calculations which is larger by a factor of V1000.
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In case the EMI measuring device is utilized as part of a complex measuring process which differs
significantly from the EMI usage in the calibration laboratory, the results for the measurement
uncertainty cannot be transferred directly. In this case, the uncertainty data given in the EMI
calibration certificate has to be seen as a contribution to the measurement uncertainty of the
complex overall process which has to be determined by means of an uncertainty study specially
tailored to this process.
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Uncertainty budget for the “EMI” example

Table 16
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Booklet 8 — Measurement Uncertainty

J.8 Pressure sensor

A commercially available pressure sensor is calibrated by means of a pressure balance for immediate
practical use. The corresponding measurement uncertainty is determined. In contrast to the
so-called “calibration uncertainty” which is usually specified on calibration certificates and which only
takes account of the uncertainties of the calibration in the calibration laboratory, the additional
uncertainties during subsequent practical use of the sensor are also taken into account in this
example. So, no additional measurement uncertainty study is required. Furthermore, the effects on
the measurement uncertainty are quantified if the sensor is used outside the calibrated temperature
range and if corrections are waived.

J.8.1 Calibration uncertainty of the pressure sensor

Description of the measurement

A Hottinger P3M pressure sensor is calibrated for the pressure range 0 bar < py < 100 bar?’. The
cleaned pressure sensor (object of calibration, measuring object) is screwed onto the pressure
balance (standard device). The nominal pressure py is produced via the piston surface by placing a
combination of reference masses (see page 82, footnote 26) on the pressure balance .

Pressure sensor
(Object of calibration)

[——
——Reference masses

Piston

1»_)/

Pump

Figure 26: Measuring principle of a pressure balance with medium oil

Input quantities

e Information about the standard device 2 Haenni ZP 36 pressure balance (JMM9QQ003)
Uncertainty of the reference masses Up =0.0001kg; k, =2
Piston area at reference temperature 9, Ay =(0.040329 £0.000018) cm?; kp =2
Reference temperature 99 =20°C

Influence of temperature on the piston area:
Volumetric thermal coefficient of expansion (a+B)=2.3-10°K™?

Influence of deformation on the piston area:
Deformation factor A =(6.05+2.02)-10" bar™; k, =2

Local gravitational acceleration at the place of use %:
(place where the pressure sensor is calibrated) g=9.80852 ms™

27 All pressures given are positive pressures with reference to atmospheric pressure
2 See DAKKS calibration certificate for Haenni ZP 36
2% According to data provided by Physikalisch-Technische Bundesanstalt (PTB)
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Booklet 8 — Measurement Uncertainty

The following reference masses are used for the calibration of the pressure sensor using the
pressure balance:

Mass Nominal pressure Mass
no. p, / bar m / kg

7 40 1.6448

8 40 1.6449

9 20 0.8222
Piston (K) 20 0.8224

Table 17: Pressure sensor calibration, reference masses used
NOTE 1: The reference masses are marked with the nominal pressure p, which is created when placed

on the pressure balance. The corresponding effective masses m, which already take account of
influences resulting from buoyancy and oil surface tension, are taken from the calibration certificate.

e Information about the calibration object (measuring object) °
The deviation of the pressure p’ indicated by the sensor due to temperature influence amounts
to a maximum of 0.1% per 10 K within the range —10°C to +80°C. The digit increment is 0.01 bar.

e Information about the procedure
At different pressure settings, n = 3 repeated measurements are carried out in each case at
ambient temperature 9 = (23 £ 0.1) °C. The pressures required in each case are obtained by
placing appropriate combinations of reference masses on the pressure balance.
EXAMPLE: The piston with applied mass no. 8 creates the nominal pressure p,, = (20 + 40) bar = 60 bar.

Model
p= &J/F_KJ +08Pcal +0Pm + 8P + 0Py +0P;, + 8K +8P5 + 8P Ay + OPRes + OPpys + OPrpt
=pg =8p, (Standard) =3ps (Sensor)
with
p corrected indication of the pressure sensor (calibration object, measuring object),
p’ uncorrected indication of the pressure sensor,
K correction of the indication of the pressure sensor,
Po pressure (conventional value) created by the pressure balance (standard device),
3pg deviations of the pressure created by the pressure balance due to ...
SPcal ... the limited accuracy of the calibration of the pressure balance,
3Pm ... the limited accuracy of the calibration of the reference masses,
dpa ... the limited accuracy of the piston area,
dpg ... temperature fluctuations during sensor calibration,
ap;, ... the limited accuracy of the piston deformation,
dpg deviations of the pressure indicated by the pressure sensor due to ...
8K ... the limited accuracy of the correction of the indication,
dPss ... temperature fluctuations during sensor calibration,
P rg ... deviating ambient temperature during sensor use,
OPRes ... limited resolution,
SPhys ... hysteresis,
SPRrpt ... the limited repeatability of a measurement result.

—Ap £ 6p £ Ap applies to all above-mentioned deviations 8p. Here, 8p describes the instantaneous
value of the fluctuating deviation (expected value 8p=0), Ap the associated maximum deviation.

30 See Hottinger P3M data sheet
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Booklet 8 — Measurement Uncertainty

Submodel for the pressure p, actually produced by the pressure balance at nominal pressure p,

When the pressure balance is used as the standard device, the environmental conditions at the place
of use must be taken into account, i.e. the effect of local gravitational acceleration g and ambient
temperature 3 as well as the effect of the reference mass m on the surface area and deformation of
the piston and thereby on the generated pressure.

Pressure is defined as a force F per area A. The force F is defined as a mass m times acceleration. In

case of weight forces the acceleration is given by the local gravitational acceleration g. Thus, the

pressure generated by the pressure balance is calculated as
F_m-.g

Po=a="A

According to the calibration certificate, the area A is calculated using the following formula (see

[EURAMET]):

(J.14)

A=Ay-A+x-py)- L+ (0 +B)-(9-9)} (J.15)
=f, =fy
with
Ag piston area at reference temperature 3, = 20 °C and reference pressure p =0 bar,
f, correction factor: consideration of area changes due to piston deformation caused by
applied reference masses,
A deformation factor,
Py generated pressure p, or approximated value [EURAMET],
fgy correction factor: consideration of deviations of the ambient temperature $ from the
reference temperature 9,
o+ thermal coefficient of expansion,
9 ambient temperature at the place of use of the pressure balance,
99 reference temperature: ambient temperature at the place of calibration of the

pressure balance.

Instead of p, the nominal value py is used as an approximated value for the pressure p,":
Po =~ Pn (J.16)

The Egs. (J.16) and (J.15) substituted in Eq. (J.14) yields
Po = 9
° AolLtn-py)- Lt (atB)-(9-8)

NOTE 2: A prerequisite for meaningful results is that all parameters are included in the calculations with
measurement units which are “compatible with each other”. If, for example, pressures given once in bar and
once in N/m? are used in the same formula, the result may deviate from the correct result by several orders of
magnitude. Therefore all input parameters should be converted into SI units (e.g. mbar or bar into N/m?). In
this example, areas are converted according to 1 cm? = 10 m? and pressure is converted according to
1bar=10°N/m?at1N=1kg-m/s°.

NOTE 3: If, instead of Eq. ().16), the model is derived based on po* = po with po according to Eq. (J.14),
Eq. (J.15) changes into a quadratic equation for the area A. Corresponding to the more complex solution for A,
the model equation for po becomes more complicated. The comparison of the calculated numerical values
shows, however, that both variants of the model equation lead to the same results for all other calculations.

(J.17)

NOTE 4: For all calculations and particularly for those performed for comparison purposes, the present example
turns out that rounding of intermediate results must be avoided as far as possible, since the numerical values of
intermediate results can have very different orders of magnitude. If intermediate results cannot be avoided (e.g.
in case of manual calculations), it is essential to avoid falling below a specific minimum number of significant
digits in order to ensure a final result with reproducible numerical values. Particularly in the present example,
intermediate results must not be rounded to less than 7 significant digits, i.e. in case of a decimal power
representation with a so-called normalized mantissa, 1 pre-decimal position and 6 decimal places are required
(such as 1.234567-10%).
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Measurement results

Repeated measurements at different nominal pressures p, of the standard device result in the
following indications pg of pressure sensor:

. . Sensor indications
Applied Nominal Mean Standard
masses A Measu.rement Measu.rement Measu.rement value deviation
series 1 series 2 series 3
No. py / bar ps/ bar ps / bar ps / bar ps / bar ss/ bar

— 0 0.00 0.00 -0.02 -0.007 0.012

Piston (K) 20 20.02 20.02 20.01 20.017 0.006

K+9 40 40.03 40.03 40.01 40.023 0.012

K+8 60 60.09 60.09 60.09 60.090 0.000

K+8+9 80 80.03 80.03 80.03 80.030 0.000

3 K+7+8 100 99.95 99.95 99.94 99.947 0.006
IS K+7+8 100 99.95 99.95 99.94 99.947 0.006
2 K+8+9 80 80.09 80.08 80.07 80.080 0.012
3 K+8 60 60.15 60.16 60.16 60.157 0.006
g K+9 40 40.08 40.07 40.08 40.077 0.006
S Piston (K) 20 20.05 20.06 20.05 20.053 0.006
— 0 0.00 -0.02 0.00 -0.007 0.012

Table 18: Pressure sensor calibration, values indicated by the sensor

The mean values pg are considered to be the uncorrected measurement results p': p’'=ps.

Correction

e Pressure p, of the pressure balance actually generated at nominal pressure p,

According to Eq. (J.17) the following pressure is actually generated for a nominal pressure of e.g.

pn =100 bar :
4.1121kg-9.80852
Po = 2
004032910 m2-11+6.05-107 —* .100-10° ﬁz .{1+ 2.3-107° l~(23—20) K}
10° —- m K
m2

=99.9985-10° iz =99.9985 bar
m

NOTE 5: The applied mass m = mg + m; + mg is calculated using the values according to Table 17.

The same calculation carried out for all relevant mass combinations yields:

Applied masses Nominal pressure | Generated pressure
No. py / bar p, / bar
— 0 0.0000
Piston (K) 20 20.0002
K+9 40 39.9950
K+8 60 60.0015
K+8+9 80 79.9954
K+7+8 100 99.9985

Table 19: Pressure sensor calibration, pressure effective at the place of sensor calibration
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Booklet 8 — Measurement Uncertainty

Determination of the corrections required for the indications of the pressure sensor

During calibration, the difference Ap = pg —p, exists between the actually effective pressure of
the pressure balance and the indication of the pressure sensor to be calibrated.

Applied Nominal | Generated | Indicated Deviation Mean Mean
masses pressure pressure pressure indication | deviation
No. py / bar po/ bar |p =pg /bar| ap /bar ps / bar Ap / bar
— 0 0.0000 -0.007 -0.007 -0.007 -0.007
Piston (K) 20 20.0002 20.017 0.017 20.035 0.035
K+9 40 39.9950 40.023 0.028 40.050 0.055
K+8 60 60.0015 60.090 0.089 60.124 0.122
K+8+9 80 79.9954 80.030 0.035 80.055 0.060
K+7+8 100 99.9985 99.947 -0.052 99.947 -0.052
K+7+8 100 99.9985 99.947 -0.052 99.947 -0.052
K+8+9 80 79.9954 80.080 0.085 80.055 0.060
K+8 60 60.0015 60.157 0.155 60.124 0.122
K+9 40 39.9950 40.077 0.082 40.050 0.055
Piston (K) 20 20.0002 20.053 0.053 20.035 0.035
— 0 0.0000 -0.007 -0.007 -0.007 -0.007

Table 20: Pressure sensor calibration, generated and indicated pressure

The determined deviations Ap = pg —p, plotted versus the pressure values pg indicated by the
pressure sensor yields a so-called deviation chart (Figure 27).

In order to estimate the correction K, the mean values Ap of the deviations Ap which
correspond to each other at increasing and decreasing pressure are calculated for each nominal
pressure p,. The same approach is used for the mean values 35 of the indications pg (see
Figure 27, dashed line).

Then, the correction chart is represented by a graphically approximated curve or a
mathematically determined regression curve which is fitted to the mean values A_p with
opposite sign (Figure 28). In the present example, the correction curve is approximated by a
regression using a third-order polynomial:

K(ﬁs)=a0+al'ﬁs+a2~352+a3~ﬁs3 (J.18)

with a, =5.3973-103bar, a, = -5.3202-10*, a, = -6.7279-10° bar™, a, =7.7499-10 " bar™.
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Figure 27: Deviation chart Figure 28: Correction chart
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Booklet 8 — Measurement Uncertainty

e Correction of the pressure sensor indications

A pressure p' indicated by the pressure sensor is corrected by the associated correction value
K(p’) which is read from the correction chart or appropriately calculated and added to p':
po =p'+K(p)

EXAMPLE: The pressure read on the pressure sensor is p‘= 72 bar. The correction chart Figure 28 provides

the correction K =—-0.09 bar. So the correct pressure value is:
po=p‘+K=72bar +(-0.09) bar = 71.91 bar.

NOTE: The correction K includes an uncertainty 6K which is exclusively caused by the regression.
This uncertainty must be taken into account as an input quantity of the measurement uncertainty model,
i.e. in addition to the uncertainties resulting from hysteresis, repeatability, etc.

Standard uncertainties of the input quantities

The majority of the determined standard uncertainties depends on the current pressure,
i.e. the applied reference masses. Therefore the contribution of a certain input quantity to the
overall uncertainty is estimated by means of the maximum standard uncertainty resulting from
various mass combinations.

e Standard device: Standard uncertainty u., of the pressure balance resulting from the
traceability to higher-level standards

Using the formula specified on the calibration certificate, the expanded measurement
uncertainty U, of the pressure balance is calculated for a certain pressure p, and converted to
a standard uncertainty assuming a normal distribution according to

Ugg = Ukca' = %\/4,9 .10™% bar? +16-1077 -p,? +4,1-107** bar~2 . p,*

P
The first summand of the radicand takes account of the uncertainty of the DAkkS reference
standard 3. The second summand takes account of the measurement uncertainty of the DAkkS
working standard compared to the DAKKS reference standard. The third summand takes account
of the deformation of the piston of the DAKKS standard 32. The coverage factor is specified in the
DAKKS calibration certificate as k, =2.

The pressure p, =99,9985 bar, for example, results in the standard uncertainty

Uca = %\/4,9 1075 bar? +16-1077 - (99,9985 bar |’ +4,1-107** bar~2 (99,9985 bar)* ~ 0,0203 bar

This calculation is repeated for each pressure p, shown in Table 19. Finally the maximum
uncertainty resulting from these calculations is used: uc, =0,0203 bar .

In addition to uncertainties of higher-level standards that are “inherited” as a result of traceability,
uncertainties of the calibration of the reference masses, the piston area and the piston deformation
must be taken into account as well as differences in the in environmental conditions between the
place of use and the place of calibration of the standard device. These include e.g. different
gravitational acceleration, different temperature and temperature fluctuations at the place of use.

The pressure p, which is actually effective at the place of use is described by Eq. (J.17). This equation
represents a submodel which describes the pressure p, generated by the standard device at the
place of use as a function of the applied mass m, the piston area A, in the calibration laboratory, the
temperature 3 at the place of use and the deformation coefficient A. The uncertainties of these
parameters are documented on the calibration certificate (except for 9).

31 The DAKKS reference standard is the PTB national standard
32 See also DAKKS calibration certificate
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The uncertainty contributions to p, are determined by converting the maximum deviation of an
input quantity (m, Ay, 9, A) by means of the model equation into the corresponding deviation of the
output quantity (pg). If the deviation of the input quantity is not immediately known, the expanded
uncertainty U is used instead.

NOTE 5: If it is assumed that the uncertainty U, specified on the calibration certificate at k, = 2, was determined
from the limit values a. and a- assuming a normal distribution and a confidence level of 95% (cf. chapter 4.4.2.2),
U corresponds to the maximum deviation Aa from the mean value a of the two limit values:

(a+—a,):(a+Aa)—(a—Aa):Aa u=22 U=2.u=2.23_Aa
2 2 2 2

NOTE 6: For models which are described by means of a single analytical equation such as Eq. (J.17), the
uncertainties preferably should be calculated using sensitivity coefficients (see [GUM] or chap. 4.3.4).
However, in order to avoid the required differentiations, the above briefly outlined calculation method is
often applied. This method leads to identical results if the model behaves sufficiently linearly within the
range of the associated uncertainties (i.e. approximation by a straight line whereby the proof of which is
mathematically more challenging and outside the scope of booklet 8). This requirement is met for all model
variants which could be used in the present example.

e Standard device: Standard uncertainty u,, due to the uncertainty U, of the reference masses m,

The uncertainty of each individual mass m, is specified on the calibration certificate
(independently of the value m, ) with U, =0,0001kg and coverage factor ko, =2. Thus, in case
of n,, applied masses m, the following applies to the uncertainty:

JUnZ +Up? +UL 2+ 4Up? =0y -Up? =i -Up,

Ny, terms
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The limit values of p, in terms of the total mass m of the applied reference masses are determined
by using the extreme values m+/n,, -U,, and m—,/n, -U,, instead of m in Eq. (J.17):

() _ (m+ i -Un)-@ O _ (m - -Un) g

 Ao(L+-py)- 1+ (a4 B)-(9- 8o ) PO T A py) fLr @ B)- (99, )

Po

The limit values po(+) and po(_) are used to determine the standard uncertainty of the output
quantity p, caused by the uncertainty of the reference masses m according to chap. 4.4.2.2
assuming a normal distribution:

-

Apg = 2

1
Un =5Ap0 =
Example: The nominal pressure py =100 bar, i.e. n,, =3 applied masses with the total mass
m=m, +m; + mg =4,1121kg (see Table 17), results in the limit values

" (4.1121+ 43 -0.0001)kg-9.80852 ™
+ S

Po " =
0.040329.10"*m? {1+ 6.05.107 —* -100.1o5l2 .{1+ 2.3O~1051-(23—20)K}
10° —- m K
2
m
~100.002705 -10° ﬁz =100.002705 bar
m
and
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0 (4.1121kg - ¥3 -0.0001kg)-9.80852 ™
- S
Po "=

0.040329-10*m?.|1+6.05-1077

1 N -100-10° ﬂz -{1+ 2.30-107° %-(23 —20)K}
2
m

~99.994281-10° lz =99.994281bar
m

and the standard uncertainty

o 100.002705 bar4— 99.994281bar _ 0.002106 bar
This calculation is performed for all mass combinations used.

Resulting maximum uncertainty: |u,,| = 0,002106 bar .

[%2)

o]

S

@ e Standard: Standard uncertainty u, due to the uncertainty U, of the piston area A,

©

o

3 U, =0,000018 cm? =0,000018 -10~* m?

o

15 The extreme values Ay +U, and Ay +U, are used instead of Ay in Eq. (J.17):

m- - m-

po(+) - 9 po( ) g

(Ro + U B -py) (o ) (650 (Ro —UnJ B i-py) (o - (00

Resulting maximum uncertainty: |u, | =0,022316 bar .

e Standard device: Standard uncertainty uy due to temperature fluctuations within the +A3
range during the measurement

A3 =0]1°C
The extreme values 3+ A9 and 9 - A9 are used instead of 9 in Eq. (J.17):

(+) _ m-g D - _ m-g
Ao+ -py) -1+ (a+B) (9 +A9-9,) O T Ay-[M+r-py)- L+ (0+pB)-(9-A9-9,)

Resulting maximum uncertainty: |ugy|=0,000115 bar .
e Standard: Standard uncertainty u, due to the uncertainty U, of the deformation factor

U, =202-107' L 02107 1
bar 105 N

m2

The extreme values A +U, and A —U, are used instead of A in Eq. (J.17):

() _ m-g p(—): m-g
Ao '{1+ (}"+Uk)'pN}'{1+ (a+B)-(8—80)} ° Ao '{1+(7‘_Uk)'pN}'{1+ ((x+B)-(S—SO)}

Po

Resulting maximum uncertainty: |u, | =0,001010 bar .
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Booklet 8 — Measurement Uncertainty

Object to be calibrated (measuring object): Standard uncertainty u, of the correction

The uncertainty is estimated using the difference —Ap—K between the deviations —Ap of
the mean values of the pressure sensor indications for each pressure 33 and the corresponding
values K(ﬁs) of the regression curve:

Nominal pressure Deviation Regression Difference
pn / bar —Ap / bar K / bar —Ap-K /bar

0 0.007 0.0054 0.0016

20 -0.035 -0.0260 -0.0090

40 -0.055 -0.0744 0.0194

60 -0.122 -0.1020 -0.0210

80 -0.060 -0.0713 0.0113

100 0.052 0.0544 -0.0024

Table 21: Difference between the established deviation and the calculated correction

The causes of the differences are not analyzed and the differences are therefore directly
regarded as uncertainties (i.e. used without change): u, =-Ap-K.

Largest occurring uncertainty: |uy|=0.0210 bar .

NOTE 6: A more accurate estimate, which could lead to an even lower uncertainty contribution,
requires to consider the residual dispersion sg in relation to the regression curve, the uncertainties of
the regression coefficients and their correlations. This corresponds to a generalization of the approach
according to appendix F.2 which is mathematically very challenging and outside the scope of booklet 8.
In the present case, the greater value of ux <0.0223 bar results for the maximum uncertainty of the
correction. This value particularly applies at the limits py = 0 bar and py = 100 bar whereas a minimum
value of ux >0.0143 bar is reached in the intermediate range.

Object to be calibrated (measuring object): Standard uncertainty us;, due to temperature
fluctuations

According to the manufacturer's data sheet of the pressure sensor, a temperature-induced
deviation 3pgg has to expected in the —10°C < § < +80°C temperature range. 3psq can amount
up to 0.1% of the indicated pressure p’ for every 10K deviation of the ambient temperature 8
from the reference temperature g :

9-9
8psq = ——ReL .0.001-p’ J.19
Pss =0k p (J.19)

During calibration, temperature fluctuations occur up to a maximum of
A8 =0.1K

The reference temperature 9y is the nominal temperature 9 during calibration of the
pressure sensor ( 9ges = 9 ). The instantaneous ambient temperature can deviate by a maximum
of +A3 (3 + A8). Therefore, the following applies to the maximum deviations of the pressure
sensor indication p":

©_ A% 5001p and Apse) = =2% 6,001 p
0K p Pss 10K p

Apsgy
The standard uncertainty is calculated from these limit values assuming a normal distribution and
a confidence level of 95% (cf. chapter 4.4.2.2):

1 Apg™ —aps T 1 a8

Usq = = d .0.001-p’' 1.20
879 2 2 10K P (.20)

A9 =0.1K and p’' =100 bar result in the maximum uncertainty contribution:

use == 21K 9 001.100bar = 0.0005 bar
2 10K
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e Object to be calibrated (measuring object): Standard uncertainty u,, due to temperature
deviation

The pressure sensor is intended to be calibrated for practical us within the (20 J_rlo) °C temperature
range. At ambient temperatures of 3, which deviate from the reference temperature Sg¢:,
deviations of the pressure sensor indications p’ have be expected according to Eq. (J.19).

If, during practical use, the actual ambient temperature 3 is not taken into account during the
measurement (i.e. there is no temperature correction), the maximum deviation from the
reference temperature 3ge =23 °C (i.e. the temperature during sensor calibration) must be
applied which is possible within the (20110) °C temperature range:

AS =[10°C-23°C

The calculation is performed according to Eq. (J.20). p’ =100 bar results in the maximum
uncertainty contribution:
1 [10°C-23°C|

Upyg =— -0.001-100bar = 0.065 bar
2 10K

NOTE 7: The uncertainty of the reference temperature 9zef Was considered in the previous section.
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¢ Object to be calibrated (measuring object): Standard uncertainty ug.. due to limited resolution
The influence of the resolution is contained in the standard deviation sg of the pressure sensor
indications p’ (see Table 18). So it must not be considered separately:

Ures = O bar

e Object to be calibrated (measuring object): Standard uncertainty Uyys due to pressure sensor
hysteresis

Usually no special procedure is prescribed when using the pressure sensor, so that the hysteresis
is not balanced and must be taken into account as an uncertainty. The values according to
Table 18 result in the following differences of indications (hysteresis):

Nominal py rising: py falling: Difference of
pressure indications indications indications

py / bar Ps (T) / bar Ps (J,) / bar Ps (‘L)_ES(T) / bar

0 -0.007 -0.007 0

20 20.017 20.053 0.036

40 40.023 40.077 0.054

60 60.090 60.157 0.067

80 80.030 80.080 0.050

100 99.947 99.947 0

Table 22: Pressure sensor calibration, hysteresis

Table 22 shows a maximum hysteresis of 0.067 bar. The assumption of a U-shaped distribution
with a span pg (i)—ES(T) =0.067 bar results in the maximum standard uncertainty:

1 ps(V)-pst) _0.067 bar
2 2 14142

=0.024 bar
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Booklet 8 — Measurement Uncertainty

e Procedure: Standard uncertainty ug,, of the repeatability of the measurement result

The maximum standard deviation sg of the pressure sensor indications pg is sg =0,012 bar (see
Table 18). With n=3 measured values and assuming a normal distribution the standard
uncertainty is

Ss _ 0.012bar

u = =
"o B

~ 0.007 bar

Combined standard uncertainty of the output quantity

The standard uncertainty u¢ is calculated as

2 2 2 2 2 2 2 2 2 2 2
UC \/Ucm +Um +UA +US +U}L +UK +USS+UA9 +URes +tus+uRpt

(0.0203 bar)* +(0.002106 bar )* +(0.022316 bar f’ +(0.000115 bar)* +(0.001010 bar )?
+(0.0210 bar * +(0.0005 bar f* +(0.065 bar }* +(0.000 bar * +(0.024 bar * +(0.007 bar }’

~+/0.006207 bar ~ 0.079 bar

The Pareto chart (Figure 29) of the individual uncertainty contributions ui2 shows that deviations of
the ambient temperature during sensor use from the temperature during sensor calibration provide
the main contribution to overall uncertainty. This contribution could be reduced significantly by
temperature correction.
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Figure 29: Pressure sensor; Pareto chart of the uncertainty contributions u;?

Expanded measurement uncertainty

The coverage factor k, =2 gives the expanded measurement uncertainty

U=k, -Uc ~2-0.079 bar = 0.158 bar

Complete measurement result

The following complete measurement result applies for the pressure sensor in the pressure range
0 bar <p, <100 bar when used in the temperature range 10°C<3<30°C:

p =po +0.158 bar = p’ +K(p')+0.158 bar
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Booklet 8 — Measurement Uncertainty

The correction K(p’) is taken from the chart in Figure 28 or calculated according to Eq. (J.18).

This result means that during practical use of the pressure sensor and an indication of e.g.
p'=72bar the conventional value of the measurement result can be expected between
72 bar -0,09 bar -0,158 bar ~ 71,75 bar and 72bar -0,09 bar + 0,158 bar ~ 72,07 bar with a confi-
dence level of 95%.

J.8.2 Potential further uncertainties when working with the pressure sensor

In practical use of the pressure sensor,
e the pressure-dependent correction of the indication is often skipped and

e the sensor is used within the temperature range specified by the manufacturer, but outside the
calibrated temperature range.

The corresponding impact on the uncertainty of the measuring results of the pressure sensor has to

be taken into account in addition.

NOTE: It is assumed that a negligible time drift of the sensor occurs (e.g. as a result of environmental
impact or aging). Otherwise, either a corresponding consideration in the uncertainty budget or another
appropriate measure is required (e.g. adjustment, replacement by a new sensor).

Temperature range (20 £+ 10) °C without correction of the pressure sensor indication p*

If the pressure sensor is used in the (20110) °C temperature range but no pressure-dependent
correction K(p’) is performed, the maximum possible correction K within the pressure range
0 bar <py <100 bar has to be added as an additional uncertainty component to the uncertainty
budget (see appendix F.3):

U=k, -yuc’ +K2(p')

The maximum required correction Kyax within the pressure range 0 bar <py <100 bar is provided
as the extreme value of the correction curve K(p') which is either read from the chart in Figure 28 in
or calculated using Eq. (J.18) (zero point of the 1 derivative):

Kwax = K(p' ~ 61.632 bar) = -0.1022 bar

Expanded measurement uncertainty:

U=2./0.006207 + (~0.1022)? bar = 2-/0.016655 bar ~ 2-0.129 bar = 0.258 bar

Complete measurement result:

p=p’'+0.258 bar

Accordingly, a measurement uncertainty applies to the sensor that is enlarged by the factor 1.7
unless the correction is performed. For an indication of e.g. p’ = 72bar the conventional value of
measurement result is now expected with a confidence interval of 95% between
72 bar-0.258 bar ~ 71.74 bar and 72bar +0.258 bar ~ 72.26 bar , i.e. in case of this particular
indication the skipped correction primarily affects the upper limit of uncertainty.

Temperature range —10°C < 3 < +80°C without correction of the pressure sensor indication p‘

If the pressure sensor is used over the entire temperature range that is permitted according to
manufacturer’s specification and no corrections are performed (deviation of the sensor indication
from the standard, deviation of the ambient temperature from the reference temperature in the
calibration laboratory), the maximum values that are possible within the provided pressure range
and temperature range must be used for the uncertainty contributions K(p') and u,(p’).
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Booklet 8 — Measurement Uncertainty

Within the —10°C<3<80°C range, 3 =80°C is the temperature with the maximum possible

deviation A3 from the ambient temperature 3g, =23°C during sensor calibration:

A9 =[80°C - 23°C|

The calculation is performed according to Eq. (J.20). p’ =100 bar results in the maximum uncertainty

contribution

Uy, = . 80°C=23°C 4 401100 bar = 0.285 bar
2 10K

This value replaces the uncertainty contribution u,q included in u- which previously was taken into
account for the temperature range 10°C < 3<30°C.

The expanded measurement uncertainty is calculated accordingly:

U=k, - uc? — Uy 2(10°C < §<30°C)+ U 2(-10°C < §<80°C)+ K2(ps)

U=2./0.006207 - (0.065) + (0.285) + (- 0.1022) bar = 2-/0.093655 bar ~ 2-0.306 bar = 0.612 bar

Complete measurement result:

p=p'+£0.612 bar

According to this, a measurement uncertainty must be applied to the sensor that is enlarged by the
factor 4 if there is no correction and if it is not ensured that the sensor will be used only within the
calibrated temperature range (20+10)°C. For an indication of e.g. p'=72bar the conventional
value of the measurement result is now expected between 72bar-0.612bar ~71.39 bar and
72 bar +0.612 bar =~ 72.61bar with a confidence level of 95%.

Conclusion

The results show that missing correction and using the sensor outside of the calibrated temperature
range causes additional uncertainties which account for almost 98% of all uncertainty contributions
ui2 to the overall uncertainty (Figure 30). Therefore, in the practical application of the pressure
sensor, it must be decided depending on the measuring task and the specific requirements for the
measurement results, whether additional effort for the correction is justifiable and the usage of the
sensor can be confined to the calibrated temperature range, or whether another correction with
regard to the temperature should be considered.
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Figure 30: Pressure sensor; Pareto chart of the uncertainty contributions ui? (no correction, 9 < 80°C)
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Booklet 8 — Measurement Uncertainty

Table of Symbols

Half width of the interval between the limit values a, and a_

Upper limit value (of a value distribution)

lower limit value (of a value distribution)

Intercept (correction) of the correction curve (calibration curve)

Slope (correction factor) of the correction curve (calibration curve)
Sensitivity coefficient assigned to the standard uncertainty of input quantity no. i
Deviation of the value x; from the conventional value of input quantity no. i
Equipment Variation, Repeatability

Model function

Index of (different) input quantities; 1 <i<n

Index of data sets allocated to a (specific) input quantity; 1 <j<je

Number of pooled data sets

Index of the values of a (specific) input quantity; 1 <k<m

Correction (correction curve, calibration curve)

Coverage factor for the calculation of the expanded measurement uncertainty
Number of values assigned to a (specific) input quantity

Number of (different) input quantities

Number of values in data set no. j of a (specific) input quantitity

Correlation coefficient of two data sets of the input quantities no. i and no. j
Resistance

Standard deviation of the values x;, of input quantity no. i

Covariance of two data sets of the input quantities no. i and no. j

Standard deviation of data set no. j of input quantity no. i

Pooled standard deviation

Temperature in °C (temperature differences in K)

Tolerance of a measured characteristic

Standard uncertainty of the deviation of value x; from the conventional value of input
quantity no. i

Standard uncertainty of input quantity no. i

Covariance of the standard uncertainties of two data sets of the input quatities no. i
and no. j

Standard uncertainty of the mean value of the values x;, of the input quantity no. i

Covariance of the standard uncertainties of the mean values of two data sets of the
input quatities no. i and no. j

Combined standard uncertainty of measurand y
Expanded measurement uncertainty
Expanded uncertainty of calibration

Expanded measurement uncertainty related to a reference value
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X Value of input quantity no. i

X Mean value of the values x;, of the input quantity no. i

Xik Value no. k of the input quantity no. i

Xijk Value no. k in the data set no. j (e.g. measurement series) of input quantity no. i
Xm Reference value of a reference / master (e.g. measuring standard, stability part)
y Value of a measurand (output quantity, result)

y' Uncorrected value of a measurand y (“raw value®)

Yo Conventional value of a measurand y (no uncertainty)

Further symbols which are used in individual chapters only are defined in the respective context..
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Booklet 8 — Measurement Uncertainty

Definition of terms

NOTE 1: The following definitions of terms were taken from the standards referenced in this document.
Corresponding notes were only adopted in single cases if they were considered directly relevant and/or
essential for understanding a standardized term. Otherwise, the respective standard should be referenced for
notes and examples.

NOTE 2: “Editorial notes” are not part of the respective standard.

NOTE 3: The definitions of terms according to [VIM] were used preferably. If terms are not contained in [VIM],
the most current definitions from [GUM] or the standards [ISO 3534-2], [ISO 3534-1], [ISO 9000], [ISO 14253],
[DIN 1319-4] and [DIN 1319-1] were adopted (or listed additionally in some cases). Non-standardized defini-
tions are only used if the listed standards do not provide a definition.

NOTE 4: Terms whose definitions are contained in the following summary are in bold if they are used in defini-
tions of other terms.

calibration curve (Ger. Kalibrierkurve)
expression of the relation between indication and corresponding measured quantity value

NOTE: A calibration curve expresses a one-to-one relation that does not supply a measurement result as it
bears no information about the measurement uncertainty.

[VIM, 4.31]

characteristic (Ger. Merkmal)

distinguishing feature
NOTE 1: A characteristic can be inherent or assigned.
NOTE 2: A characteristic can be qualitative or quantitative.

NOTE 3: There are various classes of characteristics such as the following:
physical (e.g. mechanical, electrical, chemical, biological);

sensory (e.g. relating to smell, touch, taste, sight, hearing);

behavioral (e.g. courtesy, honesty, veracity)

temporal (e.g. punctuality, reliability, availability);

ergonomic (e.g. physiological characteristic or related to human safety);
functional (e.g. maximum speed of an aircraft).

[1ISO 3534-2, 1.1.1]

combined standard uncertainty (Ger. Kombinierte Standardunsicherheit)
standard measurement uncertainty that is obtained using the individual standard measurement
uncertainties associated with the input quantities in a measurement model [VIM, 2.31]

confidence interval (Ger. Vertrauensbereich)
interval estimator (T,,T,) for the parameter 6 with the statistics T, and T, as interval limits and
for which it holds that P[T, <0 <T,|>1-a
NOTE 2: Associated with this confidence interval is the attendant performance characteristic 100(1-a) %,
where « is generally a small number. The performance characteristic, which is called the confidence

coefficient or confidence level, is often 95 % or 99 %. The inequality P [TO < < T1] >1 — « holds for any
specific but unknown population value of 6.

[1ISO 3534-1, 1.28]
EDITORIAL NOTE: P denotes a probability.

confidence level (Ger. Vertrauensniveau)
see confidence interval, note 2

conformity (Ger. Konformitdit)
Fulfilment of a requirement [ISO 9000, 3.6.11]
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Booklet 8 — Measurement Uncertainty

conformity evaluation (Ger. Konformitdtsbewertung)
systematic examination of the extent to which an item/entity fulfils specified requirements
[1SO 3534-2, 4.1.1]

conformity zone (Ger. Konformitdtsbereich)
specification zone reduced by the expanded measurement uncertainty [ISO 14253-1, 3.20]

conventional (quantity) value (Ger.vereinbarter Wert)
quantity value attributed by agreement to a quantity for a given purpose

NOTE 1: The term “conventional true quantity value” is sometimes used for this concept, but its use is
discouraged.

NOTE 2: Sometimes a conventional quantity value is an estimate of a true quantity value.

NOTE 3: A conventional quantity value is generally accepted as being associated with a suitably small
measurement uncertainty, which might be zero.

[VIM, 2.12]

EDITORIAL NOTE: The term “conventional value” obviously replaces the normative term “conventional true
value” according to [ISO 3534-2] which is no longer contained in the current release of [VIM].

conventional true value (Ger. richtiger Wert)
value of a quantity or quantitative characteristic which, for a given purpose, may be substituted for
a true value

NOTE 1: A conventional true value is, in general, regarded as sufficiently close to the true value for the
difference to be insignificant for the given purpose.

[ISO 3534-2, 3.2.6]

correction (Ger. Korrektion)

compensation for an estimated systematic effect
NOTE 1: See ISO/IEC Guide 98-3:2008, 3.2.3, for an explanation of ‘systematic effect’.
NOTE 2: The compensation can take different forms, such as an addend or a factor, or can be deduced from
a table.

[VIM, 2.53]

coverage factor (Ger. Erweiterungsfaktor)
number larger than one by which a combined standard measurement uncertainty is multiplied to
obtain an expanded measurement uncertainty [VIM, 2.38]

degrees of freedom (Ger. Freiheitsgrade)
number of terms in a sum minus the number of constraints on the terms of the sum
[ISO 3534-1, 2.54]

entity (Ger. Einheit): see item [ISO 3534-2, 1.2.11]

estimate (Ger. Schdtzwert)
observed value of an estimator [ISO 3534-1, 1.31]

estimation (Ger. Schdétzung)
procedure that obtains a statistical representation of a population from a random sample drawn
from this population

NOTE 1: In particular, the procedure involved in progressing from an estimator to a specific estimate
constitutes estimation.

[1SO 3534-1, 1.36]
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Booklet 8 — Measurement Uncertainty

estimator (Ger. Schdtzer)
statistic used in estimation of the parameter © [ISO 3534-1, 1.12]

expanded measurement uncertainty (Ger. Erweiterte Messunsicherheit)
product of a combined standard measurement uncertainty and a factor larger than the number one

NOTE 2: The term “factor” in this definition refers to a coverage factor.
[VIM, 2.35]

indicating measuring instrument (Ger. anzeigendes Messgerit)
measuring instrument providing an output signal carrying information about the value of the
quantity being measured

NOTE 1: An indicating measuring instrument may provide a record of its indication.

NOTE 2: An output signal may be presented in visual or acoustic form. It may also be transmitted to one or
more other devices.

[VIM, 3.3]

indication (Ger. Anzeige)
quantity value provided by a measuring instrument or a measuring system [VIM, 4.1]

influence quantity (Ger. EinflussgréfSe)
quantity that is not the measurand but that affects the result of the measurement [GUM, B.2.10;
VIM(2), 2.7]

influence quantity (Ger. EinflussgréfSe)
quantity that, in a direct measurement, does not affect the quantity that is actually measured, but
affects the relation between the indication and the measurement result
NOTE 2: In the GUM, the concept ‘influence quantity’ is defined as in the second edition of the VIM,
covering not only the quantities affecting the measuring system, as in the definition above, but also those

quantities that affect the quantities actually measured. Also, in the GUM this concept is not restricted to
direct measurements.

[VIM, 2.52]

input quantity (in a measurement model) (Ger. Eingangsgréfie)
quantity that must be measured, or a quantity, the value of which can be otherwise obtained, in
order to calculate a measured quantity value of a measurand. [VIM, 2.50]

inspection (Ger. Priifung)
conformity evaluation by observation and judgement accompanied as appropriate by measurement,

testing or gauging [I1SO 3534-2, 4.1.2]

intermediate precision condition (of measurement) (Ger. Vergleichbedingung)

condition of measurement, out of a set of conditions that includes the same measurement
procedure, same location, and replicate measurements on the same or similar objects over an
extended period of time, but may include other conditions involving changes

NOTE 1: The changes can include new calibrations, calibrators, operators, and measuring systems.
[VIM, 2.22]

item (Ger. Einheit)
anything that can be described and considered separately [ISO 3534-2,1.2.11]

kind of quantity (Ger. Art einer GréfSe, Gréf3enart)
aspect common to mutually comparable quantities [VIM, 1.2]
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lower specification limit (Ger. Mindestwert)
specification limit that defines the lower limiting value [ISO 3534-2, 3.1.5]

material measure (Ger. Mafverkérperung)
measuring instrument reproducing or supplying, in a permanent manner during its use, quantities of
one or more given kinds, each with an assigned quantity value

NOTE 1: The indication of a material measure is its assigned quantity value.
NOTE 2: A material measure can be a measurement standard.
[VIM, 3.6]

measurand (Ger. Messgréfie)
quantity intended to be measured [VIM, 2.3]

measured (quantity) value (Ger. Messwert)
quantity value representing a measurement result [VIM, 2.10]

measurement (Ger. Messung)
process of experimentally obtaining one or more quantity values that can reasonably be attributed
to a quantity

NOTE 1: Measurement does not apply to nominal properties.

NOTE 2: Measurement implies comparison of quantities and includes counting of entities.

NOTE 3: Measurement presupposes a description of the quantity commensurate with the intended use of a
measurement result, a measurement procedure, and a calibrated measuring system operating according
to the specified measurement procedure, including the measurement conditions.

[VIM, 2.1]

measurement error (Ger. Messabweichung)
measured quantity value minus a reference quantity value [VIM, 2.16]

measurement method (Ger. Messmethode)
generic description of a logical organization of operations used in a measurement [VIM, 2.5]

measurement model (Ger. Modell der Messung)
mathematical relation among all quantities known to be involved in a measurement [VIM, 2.48]

measurement principle (Ger. Messprinzip)
phenomenon serving as a basis of a measurement [VIM, 2.4]

measurement procedure (Ger. Messverfahren)

detailed description of a measurement according to one or more measurement principles and to a
given measurement method based on a measurement model and including any calculation to obtain
a measurement result [VIM, 2.6]

measurement process (Ger. Messprozess)
set of operations to determine the value of a quantity [ISO 9000, 3.11.5]

measurement result (Ger. Messergebnis)
set of quantity values being attributed to a measurand together with any other available relevant
information [VIM, 2.9]
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Booklet 8 — Measurement Uncertainty

measurement standard (Ger. Normal)
realization of the definition of a given quantity, with stated quantity value and associated
measurement uncertainty, used as a reference

NOTE 1: A “realization of the definition of a given quantity” can be provided by a measuring system, a
material measure, or a reference material.

[VIM, 5.1]

measurement uncertainty (Ger. Messunsicherheit)
non-negative parameter characterizing the dispersion of the quantity values being attributed to a
measurand, based on the information used [VIM, 2.26]

measurement uncertainty (Ger. Messunsicherheit)
parameter, associated with the result of a measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the measurand [GUM, 2.2.3; VIM(2), 3.9]

EDITORIAL NOTE: [GUM] still utilizes this definition according to [VIM(2)] which was withdrawn. Here, the

measurement uncertainty is assigned to the measurement result whereas it is assigned to the measurand
according to its revised definition [VIM, 2.26].

measurement uncertainty (Ger. Messunsicherheit)
Parameter obtained from measurements and which — together with the result of measurement —
characterizes the range of values within which the true value of a measurand is estimated to lie
[DIN 1319-1, 3.6]
NOTE 2: The measurement uncertainty has to be distinguished clearly from the measurement error. A
measurement error merely is the difference between a value which is assigned to a measurand, e.g. a
measured value or a measurement result, and the true value of the measurand. The measurement error
may be zero without being known. This lack of knowledge is expressed in a measurement uncertainty which
is greater than zero.

[DIN 1319-4, 3.5]; note 2 loosely translated from German, official English translation unavailable

measurement unit (Ger. MafSeinheit)
real scalar quantity, defined and adopted by convention, with which any other quantity of the same
kind can be compared to express the ratio of the two quantities as a number

NOTE 1: Measurement units are designated by conventionally assigned names and symbols.
[VIM, 1.9]

measuring equipment (Ger. Messmittel)
measuring instrument, software, measurement standard, reference material or auxiliary apparatus
or combination thereof necessary to realize a measurement process [ISO 9000, 3.11.16]

measuring instrument (Ger. Messgerit)
device used for making measurements, alone or in conjunction with one or more supplementary
devices

NOTE 1: A measuring instrument that can be used alone is a measuring system.
NOTE 2: A measuring instrument may be an indicating measuring instrument or a material measure.
[VIM, 3.1]

measuring object (Ger. Messobjekt)
The object being measured in order to determine the value of the measurand [DIN 1319-1, 1.2]
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Booklet 8 — Measurement Uncertainty

measuring system (Ger. Messsystem)

set of one or more measuring instruments and often other devices, including any reagent and
supply, assembled and adapted to give information used to generate measured quantity values
within specified intervals for quantities of specified kinds

NOTE: A measuring system may consist of only one measuring instrument.
[VIM, 3.2]

metrological compatibility (Ger. metrologische Vertréglichkeit)

property of a set of measurement results for a specified measurand, such that the absolute value of
the difference of any pair of measured quantity values from two different measurement results is
smaller than some chosen multiple of the standard measurement uncertainty of that difference
[VIM, 2.47]

nominal property (Ger. Nominalmerkmal)
property of a phenomenon, body, or substance, where the property has no magnitude [VIM, 1.30]

nominal value (Ger. Nominalwert): see target value

observed value (Ger. Beobachteter Wert)
obtained value of a property associated with one member of a sample [ISO 3534-1, 1.4]

population (Ger. Grundgesamtheit)
totality of items under consideration [ISO 3534-2, 1.2.1]

quantity (Ger. Gréfse)
property of a phenomenon, body, or substance, where the property has a magnitude that can be

expressed as a number and a reference [VIM, 1.1]

quantity value (Ger. GréfSenwert)
number and reference together expressing magnitude of a quantity [VIM, 1.19]

random (measurement) error (Ger. zufillige Messabweichung)
component of measurement error that in replicate measurements varies in an unpredictable
manner

NOTE 1: A reference quantity value for a random measurement error is the average that would ensue from
an infinite number of replicate measurements of the same measurand.

NOTE 2: Random measurement errors of a set of replicate measurements form a distribution that can be
summarized by its expectation, which is generally assumed to be zero, and its variance.

NOTE 3: Random measurement error equals measurement error minus systematic measurement error.

[VIM, 2.19]

random sample (Ger. Zufallsstichprobe)
sample which has been selected by a method of random selection [ISO 3534-1, 1.6]
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Booklet 8 — Measurement Uncertainty

reference (quantity) value (Ger. Referenzwert)
quantity value used as a basis for comparison with values of quantities of the same kind

NOTE 1: A reference quantity value can be a true quantity value of a measurand, in which case it is
unknown, or a conventional quantity value, in which case it is known.

NOTE 2: A reference quantity value with associated measurement uncertainty is usually provided with
reference to

a) a material, e.g. a certified reference material,

b) adevice, e.qg. a stabilized laser,

¢) areference measurement procedure,

d) acomparison of measurement standards.

[VIM, 5.18]

relative standard (measurement) uncertainty (Ger. relative Standard(mess)unsicherheit)
standard measurement uncertainty divided by the absolute value of the measured quantity value
[VIM, 2.32]

repeatability condition (of measurement) (Ger. Wiederholbedingung)

condition of measurement, out of a set of conditions that includes the same measurement
procedure, same operators, same measuring system, same operating conditions and same location,
and replicate measurements on the same or similar objects over a short period of time [VIM, 2.20]

reproducibility condition (Ger. Erweiterte Vergleichbedingung)
condition of measurement, out of a set of conditions that includes different locations, operators,
measuring systems, and replicate measurements on the same or similar objects [VIM, 2.24]

requirement (Ger. Anforderung)
need or expectation that is stated, generally implied or obligatory [ISO 9000, 3.6.4]

resolution (Ger. Auflésung)
smallest change in a quantity being measured that causes a perceptible change in the corresponding
indication [VIM, 4.14]

sample (Ger. Stichprobe)
subset of a population made up of one or more sampling units [ISO 3534-2, 1.2.17]

sampling unit (Ger. Auswahleinheit)
one of the individual parts into which a population is divided

NOTE 1: A sampling unit can contain one or more items, for example a box of matches, but one test result
will obtained for it.

[1SO 3534-2, 1.2.14]

specification (Ger. Spezifikation)

document stating requirements
Note 1: A specification can be related to activities (e.g. procedure document, process specification and test
specification), or products (e.g. product specification, performance specification and drawing).

[1ISO 9000, 3.8.7]
EDITORIAL NOTE: In everyday language “to specify” usually means determining (e.g. by measurements),
stating (e.g. based on evluation results) and documenting requirements.

specification interval (Ger. Spezifikationsintervall)

interval between upper and lower specification limits [ISO 22514-1, 3.1.14]

specification limit (Ger. Grenzwert)
limiting value stated for a characteristic [ISO 3534-2, 3.1.3]
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Booklet 8 — Measurement Uncertainty

stability (of a measuring instrument) (Ger. Messbestcndigkeit)
property of a measuring instrument, whereby its metrological properties remain constant in time
[VIM, 4.19]

standard (measurement) uncertainty (Ger. Standard(mess)unsicherheit)
measurement uncertainty expressed as a standard deviation [VIM, 2.30]

statistic (Ger. KenngréfSe)
completely specified function of random variables [ISO 3534-1, 1.8]

systematic (measurement) error (Ger. systematische Messabweichung)
component of measurement error that in replicate measurements remains constant or varies in a
predictable manner

NOTE 1: A reference quantity value for a systematic measurement error is a true quantity value, or a
measured quantity value of a measurement standard of negligible measurement uncertainty, or a
conventional quantity value.

NOTE 3: Systematic measurement error equals measurement error minus random measurement error.
[VIM, 2.17]

target value (Ger. Sollwert)
preferred or reference value of a characteristic stated in a specification [ISO 3534-2, 3.1.2]

(specified) tolerance (Ger. (festgelegte) Toleranz)
difference between the upper specification limits and lower specification limits [ISO 3534-2, 3.1.6]

tolerance interval (Ger. Toleranzintervall)
see specification interval

tolerance zone (Ger. Toleranzzone)
see specification interval

true (quantity) value (Ger. wahrer Wert einer Gréf3e)
quantity value consistent with the definition of a quantity [VIM, 2.11]

true value (Ger. wahrer Wert)
value which characterizes a quantity or quantitative characteristic perfectly defined in the conditions
which exist when that quantity or quantitative characteristic is considered

NOTE 1: The true value of a quantity or a quantitative characteristic is a theoretical concept and, in general,
cannot be known exactly.

[I1SO 3534-2, 3.2.5]

Type A evaluation (Ger. Ermittlungsmethode A)
evaluation of a component of measurement uncertainty by a statistical analysis of measured
quantity values obtained under defined measurement conditions

NOTE 1: For various types of measurement conditions, see repeatability condition of measurement,
intermediate precision condition of measurement, and reproducibility condition of measurement.

[VIM, 2.28]

Type B evaluation (Ger. Ermittlungsmethode B)
evaluation of a component of measurement uncertainty determined by means other than a Type A
evaluation of measurement uncertainty [VIM, 2.29]
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Booklet 8 — Measurement Uncertainty

uncertainty budget (Ger. Messunsicherheitsbilanz)
statement of a measurement uncertainty, of the components of that measurement uncertainty, and
of their calculation and combination

NOTE: An uncertainty budget should include the measurement model, estimates, and measurement
uncertainties associated with the quantities in the measurement model, covariances, type of applied
probability density functions, degrees of freedom, type of evaluation of measurement uncertainty, and any
coverage factor.

[VIM, 2.33]

upper specification limit (Ger. Héchstwert)

specification limit that defines the upper limiting value [ISO 3534-2, 3.1.4]
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