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1 Introduction 

An uncertainty must always be specified for every measurement result. This is a requirement which is 
deduced from the standards [ISO 9000], [ISO 10012], [ISO 14253], [ISO 17025] and [DIN 1319-1] 
among others. The application for which the measuring device is being used and with which a 
measurement result is determined is irrelevant. In particular, it is essential to have knowledge of and 
to state the measurement uncertainty in any qualified decision that is made on the basis of 
measurement results.  
The term “measurement uncertainty” is defined in the “International Vocabulary of Metrology” as a 
”Non-negative parameter characterizing the dispersion of the quantity values being attributed to a 
measurand, based on the information used” [VIM, 2.26]. The shorter term “uncertainty” is also used 
in place of the term “measurement uncertainty” in the literature. 
The terms used in this issue have been taken from [VIM], [ISO 3534-2], [ISO 3534-1], [ISO 9000],  
[ISO 14253], [GUM], [DIN 1319-1] and [DIN 1319-4]. The chapter Definition of terms contains a 
compilation of the most important standardized definitions. 
The possibilities for determining measurement uncertainty are varied and can therefore not be 
represented in a generally applicable algorithm. Thus, this booklet is divided into the chapters 1 to 6 
with essential minimum information for each user, and the appendix. Some examples for the 
calculation of measurement uncertainty are included in the appendix. Relevant literature should be 
referenced for many more examples. 
This booklet is primarily based on the “Guide to the expression of uncertainty in measurement” 
[GUM] 1. In contrast to the previous edition of this booklet, conformity to [GUM] is established 
consistently and the specification of a model equation is required as a basic principal. Among other 
things, this ensures a clear and systematic approach. The approaches denoted as “simplified 
procedures” in the previous version are presented in an appropriately adapted way without the 
mathematical work having been increased (cf. chapters 4.3.1 and 4.5). In addition, requirements 
which are often more stringent, particularly in the fields of development, have been taken into 
consideration and also these more complex procedures are presented in greater detail. However, the 
explanation of how to determine measurement uncertainty in case of interdependent (correlated) 
measurands has largely been disregarded because of the increased mathematical workload involved. 
The appendix describes only the basic fundamentals and the calculation algorithm. 
The procedures described here do not provide parameters for the distribution of the individual 
measured values of a measurand. Instead, they provide an estimate of the range of values within 
which the true value of the measurand associated with the individual measured values is expected 
with a certain confidence level, however, without knowing this true value exactly. This initially 
appears to contain a contradiction of the definition of measurement uncertainty according to [VIM]. 
So it is most important to distinguish carefully the concept of an “individual measured value” which is 
exactly known from the concept of a “quantity value of a measurand” which is not exactly known 
(cf. chapter 2.1). 

The validity of the calculated values for the measurement uncertainty is quantified by the so-called 
“confidence level” (see appendix D). In most cases it is not useful to distinguish between an interval 
with a confidence level of 95% and e.g. 94% or 96%. It is particularly difficult to justify intervals with a 
confidence level of 99% and above, even if it is assumed that no systematic influences have been 
overlooked, since usually only very few information is available about the extreme portions (“tails”) 
of the probability distributions of the input quantities.  
In the same context, it is pointed out that rounding rules must be applied to the results in order to 
avoid the simulation of evaluation results with excessively high accuracy (cf. chapter 4.7.2).  

                                                 
1 Also see e.g. [EA-4/16], [EA-4/02], [EUROLAB], [EURACHEM], [VDI 2618], [VDI 2622], [ISO 5168], [VDI 2449]  
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2 Scope 

2.1 Measurement uncertainty 2 
The measurement uncertainty can be determined for any measurement result. In the course of a 
measurement uncertainty study the limits are estimated between which the true value of a 
determined measurement result lies at a specified confidence level (usually 95%). 
It is a common misinterpretation to understand measurement uncertainty [VIM, 2.26] in terms of a 
measurement error. A measurement error is defined as a “measured quantity value minus a 
reference quantity value” [VIM, 2.16]. It relates exclusively to a single measured value. It does not 
relate to the possible deviation of the quantity value calculated for a measurand from several 
individual measured values from the true value of this measurand. 
The dispersion of the individual measured values despite seemingly identical measurement conditions 
is the result of numerous influences which are not controllable by the measuring conditions. These 
influences can therefore change in an uncontrolled way with each repetition of the measurement. 
Deviations of the individual measured values from the median value of their distribution, which are 
once positive and once negative during repeated measurements, are referred to as random 
measurement errors. If only random measurement errors existed, the median value would be equal 
to the true value of the measurand. This median value would be obtained as the mean value of the 
individual measured values if it were possible to repeat the measurement an unlimited number of 
times, since the standard deviation of the mean value disappears in this limit case. 
In practice, only a limited number of repeated measurements is possible. Therefore, a certain 
dispersion of the mean value remains, and with it a certain lack of knowledge about the true value of 
the measurand. This ignorance is estimated by means of the measurement uncertainty. According to 
[DIN 1319-1], it is defined as a “parameter obtained from measurements and which − together with 
the result of measurement − characterizes the range of values within which the true value of the 
measurand is estimated to lie”. In the present context, this definition appears to be more appropriate 
than the definition according to [VIM, 2.26]. 

X
-U +U

Measured Value

?

True Value?

?

True Value?

?

True Value?

  
Figure 1: Measurement uncertainty U as a value range for the true value of a measurand 

NOTE: The value outside the measurement uncertainty range is not in question as a true value. 

In addition to these random measurement errors so-called systematic measurement errors occur. 
They lead to the median value of the distribution of the individual measured values remaining 
displaced compared to the true value of the measurand even if the measurement were repeated 
infinitely. As far as possible, identified systematic measurement errors must be minimized, e.g. by 
adjusting the measuring device or by calculating appropriate correction values. The uncertainty of 
the correction must be taken into account when determining the measurement uncertainty [GUM, 
3.2.3, 3.2.4, 6.3.1, F.2.4.5]. This uncertainty is caused by potentially undetermined systematic 
measurement errors and any remaining deviations caused by inaccurate correction. These 
uncertainties must be estimated in an appropriate manner. 

[EUROLAB, appendix A.1] contains possible causes of random and systematic measurement errors. 

                                                 
2  Chapter 2.1 in accordance with [EUROLAB], chap. 2.1, page 10 
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Figure 2: Components of measurement errors and contributions to measurement uncertainty 3 

2.2 Measurement uncertainty and proof of conformity 

If the complete measurement result of a characteristic is to be evaluated in terms of specified 
tolerances, this must be done according to the decision rules of the standard [ISO 14253]. 

Uncertainty RangeUncertainty Range

-U     +U-U     +U

No Rejection No Delivery No Delivery No Rejection

Rejection Rejection

Non-Conformity Zone Conformity Zone Non-Conformity Zone
LSL USL

In
cr
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si

ng
M
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re
m

en
t U

nc
er

ta
in

ty Delivery

  
Figure 3: Decision rules according to [ISO 14253] 

A conformity zone exists only under the condition LL + U < UL – U. This inequality rearranged and 
T = UL – LL substituted yields 

1
T
U2

<
⋅ . 

With measuring instruments, this ratio should be significantly smaller than 1. 
NOTE 1: The previous edition of [VDA-5] referred to the parameter 2U / T as gpp  which should not exceed a 
maximum value Gpp. To determine Gpp , the range 0.2 < Gpp < 0.4 was suggested. According to this, in a 
worst-case scenario, U should amount to no more than 20% of the tolerance T of the characteristic under 
test. Otherwise, the measuring instrument should be classified as unsuitable for the measuring task. In the 
current edition of [VDA-5], gpp and Gpp are no longer included in this form. 

NOTE 2: If a measuring instrument proves to be unsuitable although it represents state-of-the-art, 
technology, a case of so-called “small tolerances” exists. 

                                                 
3  Figure 2 in accordance with M. Hernla, QZ 41 (1996), 1156 
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2.3 Measurement uncertainty and product development  

The clarification of the following questions is a typical application of measurement uncertainty as 
part of product development: 
• Evaluation of development progress by reviewing measures for optimizing specific product 

properties; for this purpose, measurements of characteristics are performed under repeatability 
conditions e.g. before and after changes are made; the comparison of the measurement results 
enables conclusions regarding the effectiveness of the measures and may enable assertions 
regarding adverse effects on the properties of other characteristics.  

• Evaluating or determining specifications based on measurement results and their measurement 
uncertainties.  

• Conformity evaluations (see chapter 2.2) for proving that predetermined development objectives 
have been achieved.  

NOTE 1: Often full specifications of the characteristics are not yet available, but only limit values with 
which compliance must be proved. 

• Carrying out measurements on similar measuring objects under intermediate precision 
conditions [VIM, 2.22] at different locations (such as at the Bosch and the customer's site) using 
similar measuring systems and comparing the measurement results. 

NOTE 2: See appendix G regarding the comparability of measuring systems and measurement results. 

For comparisons to provide reliable information, the measurement uncertainty must be known in 
order to evaluate the metrological compatibility of the measurement results (see chapter Definition 
of terms). 

In comparisons, two individual measured values 1y  and 2y  are usually considered to be different if 
they are at an interval of at least two expanded measurement uncertainties U: U2yy 12 ⋅≥−  (Fig. 4a).  

NOTE 3: Different criteria can be determined (e.g. in accordance with appendix G); these criteria must be 
documented if necessary. 

Otherwise the uncertainty ranges of the two values overlap and it is no longer reasonable to exclude 
that the two measured values might represent the same true value (fig. 4b). The extent of the 
uncertainty ranges is determined, among other things, by the confidence level (typically 95%). If 
measurements are exclusively used for the assessment of test results but not for the proof of 
compliance with agreed or specified properties, a lower confidence level may be acceptable than for 
production (e.g. 68% instead of 95%) which, however, means a higher risk of an inaccurate 
evaluation (fig. 4c). 

NOTE 4: Because of the increased risk of inaccurate evaluation, specifications and guidelines for testing 
cannot be derived from measurement results with a reduced confidence level.  

NOTE 5: Statements such as “The measurement results correspond within the limits of measurement 
uncertainty” are frequent conclusions from comparisons. Instead of the correct term “measurement 
uncertainty”, terms such as “error limits”, “error tolerances”, “error” and “measurement error” are often 
incorrectly used as synonyms. These terms should not be used in this context in order to make clear 
assertions. 
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Figure 4: Evaluation of individual readings based on measurement uncertainty 

a)  Individual measured values are different at a high level of confidence; 
b)  Hatched value could be the true value of both measured values, therefore no clear difference; 
c)  Individual measured values are different due to lower measurement uncertainty U* < U, but increased 

risk of inaccurate evaluation since the confidence level is reduced.  

2.4 Measurement uncertainty and production monitoring 
In the case of measurements that are needed for production monitoring, a capability study of the 
measurement process according to [Booklet 10] and evaluating its suitability for the intended 
measuring task is recommended. This will ensure that the uncertainty of the measurement result is 
in a reasonable relation to the characteristic tolerance (cf. chapter 2.2 and appendix E). The 
measured values determined as part of these investigations and any measurement stability 
monitoring may be used for the calculation of the measurement uncertainty (see chapter 6). 

Particularly for production-related application, it is recommended to use preferably data from 
capability studies and measurement stability monitoring according to [Booklet 10] (see chapter 6). If 
such data is not available, additive models according to the chapters 4.3.1 and 4.5 can be used which 
require a relatively low mathematical effort. The applicability of these models must be carefully 
checked, substantiated and accordingly documented. In case of doubt, usually more complex models 
have to be used.  

Taking account of only those input quantities that are relevant for the case being considered is also 
recommended. Quantities with little influence on the magnitude of the measurement uncertainty 
marginally change the calculation result and can be disregarded. This must be carefully checked, 
substantiated and accordingly documented for every quantity. In case of doubt, the quantity must be 
taken into account. 
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2.5 Difference between measurement uncertainty and measuring 
process capability 

As already stated, measurement uncertainty provides a value range where the true value for a 
measurement result can be assumed with a certain level of confidence. However, it does not provide 
any information about the point within this value range where the true value is most likely to be 
found, i.e. no probability distribution for the location of the true value of the measurand. Also, the 
measurement uncertainty is completely independent of any specified tolerances of a characteristic 
to be measured, i.e. the tolerance T of the characteristic is not included in the measurement 
uncertainty calculation.  

In contrast to this, the measurement process capability evaluates the compatibility of the 
measurement results for a specific characteristic with the tolerance zone of this characteristic, i.e. 
the position and dispersion of the measurement result within the tolerance zone of the 
characteristic. 

In order to ensure that the measurement results allow for a sufficiently reliable calculation of 
the statistics Cg, Cgk and %GRR and a corresponding classification of the measuring process according 
to the categories “capable”, “conditionally capable” or “not capable”, a measurement uncertainty is 
required that is sufficiently small (see appendix E). 

2.6 Range of validity for measurement uncertainty 
According to [GUM, 3.1.2] it is mandatory to specify the measurement uncertainty for every 
complete measurement result. This can lead to the misinterpretation that, in principle, an individual 
measurement uncertainty study must be made for every measurement performed. However, this is 
not applicable. Measurement uncertainties are usually determined overall for measurement results 
of a measurand which are measured under the same conditions. 

Even in cases where the measurement uncertainty depends on the quantity value of the measurand, 
it is not usual to specify an individual measurement uncertainty for every possible measured value. 
Instead of this, it is possible to divide the relevant measurement range into several ranges. A 
constant uncertainty is used within each range which is usually the least favorable measurement 
uncertainty within that range.  

  
Figure 5: Example for measurement ranges with generally associated measurement uncertainties 
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3 Flow chart 
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Figure 6: Process flow of a measurement uncertainty study 
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4 Performing a measurement uncertainty study 
This chapter explains the individual process steps that are shown in the flow chart in chapter 3. 

4.1 Describing the measurement 
[GUM, B.2.5] defines the term “measurement” as a “set of operations having the object of 
determining a value of a quantity”. These tasks can be performed either manually or partially or fully 
automatically. At first, all activities have to be described in detail. Usually, the following information 
is included: 

• Measuring task (purpose and objective of measurement, such as proof of the conformity 
of a product characteristic to the specification requirements based on measurement results)  

• Measurand (characteristic property to be measured, e.g. length, volume, mass, current, 
resistance, force, power, time, frequency, radiation dose, pH value),  

• Measurement method (procedure used for measuring, e.g. measurement of time differences 
using a stopwatch controlled by light barriers at defined measuring positions and triggered by the 
measuring object being moved),  

• Measurement procedure (description of the measuring principle and its implementation, 
any explanation of the underlying physical or technical model, e.g. resistance measurement based 
on current and voltage measurements, speed measurement based on path and time 
measurements), 

• Measuring system (technical design, any measuring position on the measuring object, additional 
illustrations, diagrams, sketches, description by means of a so-called “measuring circle”),  

• Preparation of the measuring system (such as heating up), 
• Workflow description (such as manual and automatic steps, clamping and releasing or insertion 

of the measuring object into the measuring system), 
• Measuring objects (such as function, specification, tolerances, specified limit values, stability, 

deviations from provided shape), 
• State of the measuring object  before and possibly after the measurement (e.g. in case of 

destructive measurements), 
• In case of measurement standards the unambiguous identification (e.g. the ID number) of the 

associated calibration certificate and/or reference value, the uncertainty and date of the last 
calibration, the name of the calibration laboratory, 

• Qualitative description of the environmental conditions and general set-up (e.g. indoor air 
conditioning), 

• If necessary for understanding, cross references to physical laws, expected reactions and/or 
interactions between the measuring system and the measuring object, measurand type (such as 
non-repeatable measurement, shear forces), 

• Information from any existing inspection plans (e.g. work instructions for inspection or calibration 
of test equipment). 
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4.2 Gathering information about input quantities 
Usually a measurand (output quantity, measurement result) is dependent on several input 
quantities. Therefore the uncertainty of the measurement result can be determined from the 
information about the input quantities.  

4.2.1 Identifying input quantities 
Input quantities are determined systematically (e.g. by means of a cause-effect diagram) and listed in 
tabular form.  
 

Measuring task:   
Length measurement 
using a yardstick 

Resistance measurement 
using a multimeter 

pH value measurement 
using a pH meter 

Typical input quantities:   
Read length  Current Difference of potential (ECPD) 
Reading angle Voltage Temperature 
Quality of the yardstick Frequency Probe material 
Lighting conditions Cable length Concentration 
Application set-up Contact resistance Liquid composition 
Temperature Internal resistance Measuring principle (device type) 
Reference value of the standard Reference value of the standard Reference value of the standard 
Calibration uncertainty Calibration uncertainty Calibration uncertainty 
… … … 

Table 1: Simple examples of measuring tasks with typically associated input quantities 
 

Using the so-called cause-and-effect diagram (see [EQAT], also called an Ishikawa diagram or a 
fishbone diagram) input quantities can be ordered systematically and combined in groups. Common 
groups are categories based on 5M such as measuring object, measuring system, method, measuring 
process, man (operator), milieu (environment) or the categories measurement procedure, measuring 
object, standard device / calibration. 

 Output
 Quantity

Measurement
principle                          

Input
Quantity

Resolution   

Temperature

...

...

...

...

  
Figure 7: Example of a cause-effect diagram (Ishikawa diagram) 
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Appendix A contains examples of input quantities of different categories. They can be used as leads 
for determining input quantities in a particular case. 

NOTE 1: Selection and properties of the measuring objects and the inspection personnel can influence the 
measurement result and thereby the measurement uncertainty (see appendix A). Corresponding input 
quantities must be taken into account.  

NOTE 2: If measurement data from the procedures according to [Booklet 10] is used to determine the 
measurement uncertainty (see chapter 6), influences from the measuring objects and the inspection 
personnel including possible interactions are already included in the measurement data and need not be 
considered separately. Then, however, it is not possible to consider these factors individually and to 
optimize them since they are not identified as separate input quantities in the uncertainty budget. 

4.2.2 Quantifying based on existing information 

The necessary quantitative and qualitative information must be obtained for each input quantity to 
be determined. Information about input quantities can originate from a variety of sources. Typical 
examples: 

• Results of direct measurements, 
• Results of previous measurements, 
• Experience and subjective evaluations, 
• Information from calibration or test certificates, 
• Manufacturer's specifications, data sheets   

(including indication of constraints to be considered with the measurement such as humidity, 
temperature, atmospheric pressure, sensitivity of the measuring instrument, resolution, 
measurement error, correction values, etc.), 

• Measured value dispersion based on experience or repeated measurements 
(e.g. if specifications are unavailable from the manufacturer or other sources), 

• Existing measurement uncertainty results that are included in the overall evaluation 
(e.g. from individual devices of the measuring chain), 

• Data from investigations of the measuring process capability, 
• Information from the preceding measuring chain and/or calibration chain, 
• Tabular values or literature values (e.g. material constants), 
• Expert forums. 
 
The usability of the information available depends on the type of the input quantities and has to be 
evaluated under various aspects. Typical examples: 

• Temperature, humidity, air pressure,  
• The earth's magnetic field, electromagnetic waves (particularly for electrical quantities), 
• Stray light (in particular for optical quantities), 
• Background radiation (in particular for radioactive quantities). 
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4.3 Compiling the mathematical model 
As already mentioned, a measurand is usually dependent on several input quantities. Therefore the 
uncertainty of the measurement result can be determined from the input quantities information. 
Thus, it is necessary to present the relationship in the form of a mathematical model. 

This chapter describes a generally valid approach 4 and practice-oriented special cases that can be 
derived from this approach. To ensure the quickest possible and most direct access to the subject, the 
special cases are presented first and the general approach is explained at the end of the chapter 5. 

The mathematical representation of the model is implemented as a function f depending on the 
values xi of the input quantities. This is the so-called model equation from which the value y of the 
measurand can be calculated: 

( )n21 x,,x,xfy =  (4.1) 
with 

n21 x,,x,x   Values of the input quantities on which the value y of the measurand depends, 
n  Number of input quantities. 

NOTE 1: In this context, these values are referred to as estimates of the input quantities and measurands. 
This is to express the fact that measured values are always affected by uncertainties. In statistics, estimates 
are represented by lowercase letters while so-called “conventional values” (see chapter Definition of terms) 
are represented by uppercase letters.  

NOTE 2: The literature (e.g. [GUM]) often distinguishes between estimates for a quantity (e.g. the 
measured values for an input quantity) and the quantity itself, to which a conventional value is assigned as 
a quantity value (e.g. the reference value of a standard or the mean value of measured values). 
Correspondingly, the estimates of the quantity are denoted with lowercase letters and the quantity itself 
with uppercase letters. This formal distinction is of subordinate importance for practical application. 
Therefore, this distinction has been dispensed with, i.e. only lowercase letters are used in this booklet. For 
example, the designation “input quantity xi” (or simply “input quantity i”) is used even if the conventional 
value is meant, i.e. the input quantity itself, so that the formally correct designation were “input quantity 
Xi”. Instead, the terms “conventional value” or “reference value” are explicitly used whenever a distinction 
is required.  

NOTE 3: In addition to measured values xi of input quantities i which have a direct effect on the measure-
ment result y of the output quantity and which are used to calculate y, other quantities often exist which do 
not have a direct effect on the output quantity. These indirectly effective quantities are also refered to as 
“influence quantities” [see VIM 2.52]. The distinction is, however, of a more formal nature. Therefore, no 
distinction is made in this booklet between input quantities and influence quantities, and the term “input 
quantity” is used throughout. 

NOTE 4: The values xi of the input quantities can have a positive or a negative sign. 

NOTE 5: The use of SI units (m, s, Ω, etc.) without a so-called “prefix” denoting decimal multiples or 
portions (kilo, milli, micro, etc.) is recommended for all quantities. In this case the model equation allows 
for a simple and efficient dimensional control in order to prevent errors, i.e. the measuring units of the 
input quantities substituted in the model equation must provide the measurement unit of the output 
quantity (possibly after algebraic transformation).  

 
 
 
 
 
 

                                                 
4  “Generally valid” as far as linear approaches are applicable, i.e. the Gaussian error propagation law 
5  In practice, model equations can contain submodels that correspond to one or more of the model 

approaches described below (see appendix J.8, for example) 
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4.3.1 Additive model  
In many cases the model function consists of the sum of two or more input quantities: 

n21 x...xxy +++=  (4.2) 
This model approach requires all xi input quantities to be used consistently and uniformly in the 
measurement unit of the output quantity y (see quantity dimension [VIM, 1.7]). 

EXAMPLE 1: The total resistance R (measurand) of two resistors RA and Ri connected in series (input 
quantities) is calculated according to the model equation R = RA + Ri. The working resistance RA was 
measured at 15 kΩ, the internal resistance Ri of the measuring instrument is specified at 100 mΩ. It is 
essential to ensure that both values are used in the same unit of measurement in the model equation, e.g. 
RA = 15 kΩ and Ri = 0.0001 kΩ or RA = 15,000 Ω and Ri = 0.1 Ω. 
EXAMPLE 2: The velocity v (measurand) is made up of the velocity components v1 and v2 (input quantities), 
i.e. the model equation v = v1 + v2 applies. The values v and v1 are in km/h while the value v2 is in m/s. 
Before application in the model equation, it is therefore necessary to convert either v and v1 into m/s 
(1 km/h = 1000 m / 3600 s ≈ 0.278 m/s) or v2 into km/h (1 m/s = 3.6 km/h). 

The additive approach also can be used to determine measurement uncertainties in line with [GUM] 
in case it is not possible to derive the relation between the input quantities and the measurement 
result in the form of an equation from physical models because of its complexity. A prerequisite 
is that the deviations from the conventional values of the input quantities are quantifiable (see 
chapter 4.2.2) and independent from each other (see chapter 4.4.3). In these cases, a model 
equation is formulated in the form 

n210 xxxyy δ++δ+δ+=   (4.3) 
with 

0y  conventional value for the measurement result y (no uncertainty), often estimated by 
correcting the indication y‘ (cf. chapter 4.3.3); 

n1 xx δδ   deviations from the conventional value of the input quantities in the measuring 
unit of the measurement result; expected value 0;  1 ≤ i ≤ n.  

Application examples: see appendix J (except J.7) 

4.3.2 Multiplicative model 
In some cases, the model function consists of a product and/or quotient of two or more input 
quantities: 

n1n

21

xx...
...xxy

⋅⋅
⋅⋅

=
−

 (4.4) 

This approach requires all input quantities xi to be used in measurement units whose composition as 
a product or quotient according to the model equation gives the measurement unit of the output 
quantity y. When using relative units such as %, chap. 4.4 (see note and example) has to be taken 
into consideration. 

EXAMPLE 1: The resistance R (measurand) is determined by measuring the voltage U and the current I 
(input quantities), i.e. the model equation R = U / I applies. The values U = 6 V and I = 12 mA are measured. 
The resistance R is specified at 500 Ω. Because 1 Ω = 1 V/A applies, the current I must be converted into A 
before the model equation is used, i.e. I = 0.012 A. 
EXAMPLE 2: The velocity v (measurand) is determined by measuring the distance travelled s and the time 
required t (input quantities), i.e. the model equation v = s / t applies. The measured distance is specified as 
s = 100 m, while the measurement result for the time required is t = 14.9 s, so that v = 6.7114 m/s results. 
The speedometer is calibrated in mph (miles per hour) and shows the velocity v = 15 mph. Before application 
in the model equation, it is therefore necessary to convert v into m/s (1 mph = 0.44704 m/s), i.e. to use 
v = 6.7056 m/s (recommended). Alternatively, s could be converted into miles and t into hours (not 
recommended, since SI units are not used consistently). 
NOTE: Conversion factors (and natural constants) must be considered to be constants without uncertainty. 
However, if these quantities are rounded, this inaccuracy (cf. chapter 4.5) must be taken into account 
properly (cf. chapter 4.7.2).  

Application examples: see appendix J.1.3 and appendix J.1.4.  
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4.3.3 Linear function 

In certain cases, the relation between the output quantity y  and one or more input quantities ix  can 
be described using the following model: 

( ) ( ) ( )nnn222111 xbaxbaxbay ⋅+++⋅++⋅+=   (4.5) 

with the constants ia  and ib , ni1 ≤≤ .  

NOTE 1: In the special case n = 1 Eq. (4.5) represents a straight line with intercept a1 and slope b1.  

A common application is the (mathematical) correction of measurement results. The indication of a 
measuring instrument provides a measured value y′  which is subject to a correction ( )yK ′  due to a 
known systematic influence (such as temperature). Then, the corrected measurement result can be 
calculated as follows (see appendix F): 

( )


yK
KK yyy
′=

′⋅β+α+′=  (4.6) 

with 
y  corrected measurement result (often utilized as conventional value y0), 

Kα  correction constant (intercept of the correction function), 

Kβ  correction factor (slope of the correction function), 
y′  uncorrected measurement result (“raw value”). 

NOTE 2: Eq. (4.6) is often used as a submodel for the conventional value y0 in the overall model (see e.g. the 
model equation used in appendix J.3). A use case that is important in practice is using Eq. (4.6) in the form 
y0 = y‘ + K with βK = 0 and K calculated as the difference of the reference value y0 of the standard and of the 
uncorrected measurement result y‘: K = y0 – y‘. In case of several results y‘ with the same standard, the 
mean value y′ is used.  

Application examples regarding correction: see appendix J.2, J.3 and J.8.  

4.3.4 General case 
A generally applicable approach is inherently incomplete and cannot be described in full. The 
approach also places greater demands on the physical and mathematical understanding of the user. 
The essential approach is based on physical laws from which the model equation is derived.  
This is explained using the very simple example of an electrical power 
measurement. The power consumption P of an electrical DC engine 
must be determined based on the measured current IM and the internal 
resistance Ri specified for the engine (e.g. in the manufacturer's data 
sheet). This means that the input quantities IM and Ri are used in this 
case to determine the measurand P. Correspondingly, the general model 
equation ( )n21 x , ,x ,xfy =  is applied in the form  

( )iM R,IfP =  (4.7) 
According to fundamental physics, the following applies to the electrical power consumption of the 
engine: 

IUP ⋅=  (4.8) 
U represents the voltage drop across the engine while I represents the current through the engine. 
Ohm's law provides the relationship between U and Ri: 

IRU i ⋅=  (4.9) 
In the circuit shown the following applies to the current I as per Kirchhoff's current law: 

MII =  (4.10) 
U and I substituted yields the model equation: 

2
MiMMi IRIIRP ⋅=⋅⋅=  (4.11) 

Application examples: see appendix J.7 and appendix J.8.  

IM
A

=
Ri

U0
U, I

M
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4.4 Input quantities:  
Determining the quantity values and standard uncertainties 

The model equation allows the measurement result y to be calculated from known values xi of the 
input quantities (cf. chapter 4.3). The measured value y is always affected by an uncertainty uC(y). 
If the uncertainties u(xi) of the input quantities xi are known, the uncertainty uC(y) of the measured 
value y also can be determined using the model equation. 

[GUM] standardized the determination of measurement uncertainty at international level. The 
determination methods have been adopted accordingly in this guide. [GUM] distinguishes between the 
two following methods for determining the input quantities xi and their standard uncertainties u(xi):  

• Type A evaluation (method A): The values xi and u(xi) are determined based on repeated 
measurements and the statistical analysis of these measurements. 
EXAMPLES: Data measured for the determination of measurement uncertainty; results of stability 
monitoring; records of previous investigations. 

• Type B evaluation (method B): The values xi and u(xi) are determined based on other sources and the 
processing of these. 
EXAMPLES: Manufacturer's specifications; limit values; parameters known from previous investigations; 
values from literature. 

The appropriate approach for determining the values xi and the standard uncertainties u(xi) of the 
input quantities results from the accuracy requirements, the available measurement equipment and 
economic considerations. Either a type A or a type B evaluation must be applied to each input 
quantity. Using the same method for all input quantities is not a requirement (see examples in 
appendices J.3, J.6, J.7 and J.8). Procedures and calculation steps always have to be documented. 

NOTE: In metrology “accuracy specifications” are often given relative to a specific reference value, e.g. as a 
percentage of the full scale value of the measuring range. Experience has shown that specifications of this 
type are a common source of error since it is not recognized that the absolute value of the uncertainty is 
actually given which applies to the entire measuring range. The percentage applies at the reference point 
only. It does not apply to any other point of the remaining measuring range.  

EXAMPLE: The uncertainty of a pressure cell with a measuring range of 0 to 10 bar is specified as 0.5% of 
the full scale value, i.e. 10 bar. This specification is equivalent to the absolute value of 0.05 bar which 
applies to the entire measuring range from 0 to 10 bar. For a measured value of e.g. 0.4 bar, a relative 
uncertainty of 0.05 bar/0.4 bar = 0.125 results, i.e. 12.5%. 

 

4.4.1 Type A evaluation  

4.4.1.1 Determination from latest measurement results 

Measurements of the input quantities i are performed under defined measurement conditions which 
must be documented. Conditions that are to be expected later during the use of the measuring 
system should be realized as far as possible. The value xi is estimated by means of the arithmetic 
mean value 

∑
=

⋅=
m

1k
iki x

m
1x  (4.12) 

of the m individual measured values xik [GUM, 4.2.1]. It is assumed here that a normal distribution 
can be supposed which is usually acceptable. The number m of the individual measured values must 
be sufficiently large to ensure a reliable quantity value xi. A quantitative measure for this “reliability” is 
the so-called confidence level (see appendix D). 
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NOTE 1: The better the measurement conditions meet the repeatability conditions, the more reliable the 
statistical assertions. So, defined measurement conditions have to be seen as measurements which are 
preferably performed  
• using the same measuring system (measuring instrument),  
• the same measuring objects,  
• and the same measurement procedure  
• under the same, stable conditions  
• carried out by the same operator 
• at the same location  
• within a short time interval.  

If there are doubts as to whether the measurement conditions are appropriate, correlations of the 
input quantities have to be investigated by means of parametric studies (see appendix C) and 
corrections of the measured values have to be made as appropriate (see appendix F). Alternatively, it 
should be checked whether a type B evaluation could lead to more reliable results and therefore 
should be used (cf. chapter 4.4.2). 

Random influences during measurement of the input quantity i cause a dispersion of the individual 
measured values xik which are best described by their empirical standard deviation 

( ) ( )    xx
1m

1xs
m

1k

2
iiki ∑

=

−⋅
−

=  (4.13) 

around their mean value ix  [GUM, 4.2.2]. 

The standard uncertainty of the input quantity i is described by the dispersion of the mean value ix   
( )
m
xs)x(u i

i =  (4.14) 

[GUM, 4.2.3]. 
NOTE 2 6: The applicability of Eq. (4.14) with m > 1 assumes mandatorily that the estimate for the 
conventional value xi of the input quantity i is determined as a mean value ix  from m > 1 measured values 
xik , which represent individual observations of the input quantity i that are statistically independent of each 
other, i.e. uncorrelated. 
• Correlations between the individual values of a data series exist if e.g. differences between the 

individual measured values of the data series do not vary randomly, but are constant or change 
systematically (see also chapter 4.4.3). In case of doubt, appropriate data analyses must be performed 
(see appendix C). Otherwise m = 1 has to be used, i.e. the standard deviation of the individual 
measured values xik is used as the standard uncertainty.  

• A measurement uncertainty that is determined based on mean values must only be applied to mean 
values obtained from the same number of individual measured values in the subsequent use of 
the measuring system. This condition is often disregarded in practice.  

EXAMPLE: Instead of individual measured values, a measuring system shows the mean value of a defined 
number of individual measured values as the “measured value”. The number of averaged individual 
measured values is determined by the setting of the sampling time. 
• For the result of the measurement uncertainty study the number of individual measured values 

averaged and output as a single “measured value” is not decisive. However, the number of averaged 
“measured values” included in the uncertainty evaluation is decisive (m = 1 for one “measured value”, 
m > 1 for several “measured values”). 

• The result of the measurement uncertainty study is only applicable to subsequent measurement results 
on the condition that the measuring system works with the same parameter settings as those used 
during the measurement uncertainty study (e.g. integration time, sampling frequency).  

Required measuring system settings and the measurement procedure to be used must be precisely 
defined and documented (e.g. in a test or work instruction). 
 

                                                 
6  In accordance with [EUROLAB], appendix A.5 (page 44) and appendix A.6 (page 47) 
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4.4.1.2 Determination from former measurement results 

The concept of standardized measurement uncertainty allows results of previous measurements to 
be used to determine measurement uncertainty 7. This is advantageous in practice if only a few 
measurements of a certain input quantity i can be performed for technical or economic reasons, so 
that too few individual measured values are available to determine a sufficiently reliable value for 
the dispersion from their standard deviation. In this case, results from former measurements can 
provide more reliable conclusions which, for example, are available as a “pooled” standard deviation 
sp [GUM 4.2.4]. 

If, instead of sp, the results of several measured data sets are available for an input quantity i, i.e. the 
standard deviation sj(xi) and the number mj of the individual measured values xijk are known for each 
data set j whereas the values xijk are unknown, the pooled standard deviation sp is determined 
according to the following calculation rule [GUM, H.3.6; ISO 5725-2, 7.4.5.1]: 

( )    
)1m(

)x(s)1m(
xs

P

p

j

1j
j

j

1j
i

2
jj

ip

∑

∑

=

=

−

⋅−

=  (4.15) 

with  
jP number of pooled data sets, 
mj number of measured values in data set no. j, 
sj(xi) standard deviation of data set no. j for input quantity no. i. 

It is important to note that previous results for sp are only usable provided that date and time and 
parameters of the former measurements have a negligible influence on the input quantities. 
In principle, conditions that are similar to those encountered during practical use of the measuring 
system must be created when determining the measured values. Usually a qualified evaluation of 
this requirement can only be made using the documentation of the earlier measurement uncertainty 
study as a basis. 

The associated standard uncertainty is calculated according to 

( ) ( )
m

xs
xu ip

i =  (4.16) 

In this calculation m > 1 represents the number of individual measured values xik which were actually 
measured to determine the value xi of the input quantity i in the course of the current measurement 
uncertainty study (rather than the number of all previously determined individual measured values 
that have contributed to sp) [GUM H.3.6]. 

NOTE: With regard to the applicability of m > 1, note no. 2 in chap. 4.4.1.1 must be considered. 

4.4.2 Type B evaluation 

The standard uncertainties of input quantities can be determined even if multiple observation is not 
possible so that a type A evalution is not applicable. These include the following cases in particular: 
• It is not possible to perform measurements (e.g. for technical or economic reasons). 
• Measurements were performed previously, however, only the evaluation results are available 

(e.g. dispersion, distribution, unless used according to chap. 4.4.1.2) 7.  
• Input quantities cannot be determined metrologically (e.g. in case of subjective influences, see 

appendix A).  

In such cases the results of former investigations or existing experience can be utilized to estimate 
the value range to be expected for the input quantities and the distributions they can be assigned to.  
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According to [GUM, 4.3.1] standard uncertainties can be obtained from  
• the evaluation results of former measurements 7, 
• experience or general knowledge about behavior and properties of the relevant materials or 

measuring instruments, 
• manufacturer’s specification and data sheets, 
• data provided in calibration certificates and other certificates, 
• uncertainties of reference data taken from handbooks. 

The requirements of the model (cf. chapter 4.3) and the practical experiences of the measurement 
engineer are decisive factors for selecting the data sources which are reasonably utilized. 

Data obtained from interlaboratory tests provide excellent conditions for a type B evaluation. These 
data are particularly utilized for measurement procedures where, because of complex interactions, 
only the overall procedure can be evaluated rather than the individual contributions of existing 
influences (see [ISO 21748] for more information). 

4.4.2.1 Determination using available uncertainty data 

A distinction should be made between the following cases:  
• If the uncertainty data is specified as a multiple of a standard deviation, the standard uncertainty 

is calculated by dividing the available value by this multiplier [GUM, 4.3.3]. 
• If a confidence level is specified for the uncertainty data (e.g. 90%, 95% or 99%), a normal 

distribution can be assumed. The standard uncertainty is calculated by dividing the available value 
by the corresponding coverage factor kp (e.g. 1.64, 1.96 or 2.58; see appendix D) [GUM 4.3.4]. 

NOTE: It is also assumed that sufficient degrees of freedom (ν ≥ 20) were available so that the 
approximation ν → ∞  is sufficiently met (see appendix D). 

• If the uncertainty data is shown to be an expanded measurement uncertainty and the confidence 
level is not specified, the standard uncertainty is calculated by dividing the available value by 
kp = 2 (corresponding to the confidence level of 95.45%, see appendix D). 

• Uncertainty data from available sources (such as data sheets and literature) are applied 
unchanged as standard uncertainty unless further information about contributions and 
components is available and the uncertainty is not explicitly designated as an expanded 
measurement uncertainty. 

4.4.2.2 Determination using available limit values 

It is assumed that the available limit values −a  and +a  were determined based on measured values 
ix  which belong to a statistical distribution and lie with a certain probability within the range 

between −a  and +a . The mid-point ( ) 2/aa −+ +  of this range is at a distance of ( ) 2/aaa −+ −=  from 
these limits.  
• If the distribution and the confidence level are known and included in Table 2, the standard 

uncertainty u(xi) is determined according to the corresponding calculation rule in Table 2.  
• If corresponding data is missing, the information in Table 2 can be used to select an appropriate 

distribution.  
 

                                                 
7  [GUM] does not provide a clear criterion for assigning the utilization of data from previous studies to a type A 

or a type B evaluation. The present guideline primarily assigns such data to type A (see [GUM, 4.2.4]). This 
does not mean that the assignment to type B cannot be equally reasonable (see [GUM, 4.3.1]). Evaluation 
results are not influenced by this assignment.  
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Table 2: Distributions for input quantities with calculation rules for the standard uncertainties 

Examples of practical applications: 
• Normal distribution: Results of statistical analyses (e.g. measured values determined under 

repeatability conditions); calibration certificate data (e.g. reference 
value). 

• Triangular distribution: Interpolated values of input quantities; special measuring systems 
(e.g. Wheatstone bridge circuit with compensation as a zero point 
detector); approximation of normal distribution. 

• Rectangular distribution 8: Results from which only limit values are known; results arising from 
digitization. 

• U-distribution: Sine-wave-like oscillations, measurement results with hysteresis. 

Depending on the application, other distributions are required (e.g. trapezoidal distribution, modal 
distribution). If necessary this must be tested and justified in each case. 

Unless it is ensured in case of triangular, rectangular or U-distributions that all measured values lie 
within the limits a– and a+ (confidence level < 100%), different calculation rules apply to the standard 
uncertainties. The technical literature should be referred to for this point. 
                                                 
8  Worst case leading to the maximum possible contribution of this input quantity to the overall uncertainty 

Distribution 
(density 
function) 

Information 
about the 
measured 
values xi 

Position of  
the measured 
values xi within 
the limits 
a– and a+ 

Confidence level (probability) 
for the position of the 
measured values xi within the 
limits a– and a+ 

Standard 
uncertainty 
u(xi)  

Normal 
distribution 

 

Values are 
random 

Pooled 
around 
central 
position 

Assumption of 
a probability 
of less than 
100% is 
reasonable 
and necessary 

99.73% 
( ) 3/axu i =  

 

[GUM, G.1.3] 

95.45% 
( ) 2/axu i =  

 

[GUM, G.1.3] 

Triangular 
distribution 

  

Values are 
random 

Pooled 
around 
central 
position  

All values 
within the 
limits a– and a+ 
(e.g. for 
physical 
reasons)  

100% 

( ) 6/axu i =  
 
( )45,26 ≈  
 
[GUM, 4.3.9] 

Uniform or 
rectangular 
distribution 

  

None Unknown 

( ) 3/axu i =  
 
( )73,13 ≈  
 
[GUM, 4.3.7] 

U-distribution 

  

None Pooled close 
to the limits 

( ) 2/axu i =  
 
( )41,12 ≈  
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4.4.3 Correlated input quantities  

If a change of the input quantity i also causes a change of the input quantity j and vice versa, these 
input quantities are correlated. Correlations are generally expected when two quantities depend on 
each other or on a common third (possibly hidden) quantity, or on several such quantities. 9  
• This dependence can relate directly to the physical quantities. This means that e.g. the relative 

mass fractions of the constituents of a mixture of substances are dependent on each other, since 
their sum is equal to one. This is true regardless of changes of the relative portions which e.g. 
result from chemical changes within the mixture. 9  

• Physical quantities are often independent of each other, however, their values are not 
determined independently of each other. This is the case if two quantities are determined in the 
same experiment – such as intercept and slope of a calibration curve – or if the same standard is 
used for different input quantities. Further typical examples are shared influences of measuring 
parameters (such as temperature on thermal expansion) and temporal influences on different 
input quantities (such as temporally different warming-up of the measuring instruments used). 
Then, the determined quantities depend on shared quantities: the calibration data set or the 
reference value of the standard. 9  

Taking into account correlations complicates mathematical work considerably (see appendix C). Thus, 
it is avoided as far as possible. Correlations are typically negligible  
• if the data sets originate from different experiments which are independent of each other and 

which were carried out at different times, 
• if constant input quantities are present (i.e. in case an input quantity does not change, this input 

quantity cannot have an effect on another input quantity even if these quantities are correlated), 
• if the standard uncertainty of one of the two input quantities is negligible (see appendix C.1, 

NOTE NOTE 5). 

If non-negligible correlations exist, the detailed analysis and more complex mathematical processing 
often can be avoided if the model considers parameters affecting several input quantities as 
additional and independent input quantities with an independent standard uncertainty (such as 
ambient temperature).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
9  In accordance with [EUROLAB], appendices A.5 and A.6  
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4.5 Calculating the combined standard uncertainty 
NOTE 1: The basis of the following calculation rules – including the general case – is the Gaussian error 
propagation law, i.e. a linear approximation. This is based on the expansion of the model equation into a 
Taylor series which is discontinued after the linear term. In special cases (e.g. in case of high precision 
inspections), it may be necessary to take into account the square term or even higher terms of the Taylor 
expansion. The appropriate literature should be referred to for this purpose.  

NOTE 2: All calculation rules below assume uncorrelated input quantities. 
 

Model Model equation Combined standard uncertainty ( )yuC   
of the measurement result y  

Additive 
(chap. 4.3.1) 

n21 xxxy +++=   ( ) ( ) ( ) ( )n
2

2
2

1
2

C xuxuxuyu +++=   (4.17) 

n210 xxxyy δ++δ+δ+=   ( ) ( ) ( ) ( )n
2

2
2

1
2

C xuxuxuyu δ++δ+δ=   (4.18) 

Multiplicative 
(chap. 4.3.2) 

n1n

21
xx

xxy
⋅⋅

⋅⋅
=

−

  ( ) ( ) ( ) ( ) 2

n

n
2

2

2
2

1

1C

x
xu

x
xu

x
xu

y
yu









++








+








=   (4.19) 

Linear 
function 
(chap. 4.3.3) nnn

111

xba
xbay

⋅++
+⋅+=




 ( ) ( ) ( ) ( )

( ) ( ) ( )n
22

nn
22

nn
2

1
22

11
22

11
2

C
xubbuxau

xubbuxau
yu

⋅+⋅++

+⋅+⋅+
=



  (4.20) 

General 
(chap. 4.3.4) 

( )n21 x ,,x,xfy =  ( ) ( ) ( ) ( )n
22

n2
22

21
22

1C xucxucxucyu ⋅++⋅+⋅=   (4.21) 

 with the sensitivity coefficients 
i

i x
yc

∂
∂

=   

with 
( )ixu  standard uncertainty of the values xi of the input quantities i with 1 ≤ i ≤ n, 
( )ixu δ  standard uncertainties of the deviations δxi from the expected values xi of the 

input quantities i with 1 ≤ i ≤ n, 
( )yuC  combined standard uncertainty of the measurement result y , 

y  measurement result (corrected if necessary).  

Details of the derivation of Eqs. (4.17) to (4.21) are given in appendix B, application examples are 
given in appendix J. 

NOTE 3: In case of the multiplicative model the combined relative standard uncertainty uC (y) / y of 
the measurement result y can be directly determined as the geometric sum of the given relative standard 
uncertainties u(xi) / xi of the input quantities xi. 
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Example 
NOTE 4: The general case usually places greater demands on the physical and mathematical understanding 
of the user. 

 
General case 
 

Example of power measurement according to 
chap. 4.3.4 

 

 

Model equation  
( )n21 x ,  ,x ,xfy =  ( ) 2

MiMi IRI,RPP ⋅==  
 
Sensitivity coefficients  

ni1,
x
yc

i
i ≤≤

∂
∂

=  2
M

2
Mi

ii
R IIR

RR
Pc

i
=⋅

∂
∂

=
∂
∂

=  

 Mi
2

Mi
MM

I IR2IR
II

Pc
M

⋅⋅=⋅
∂

∂
=

∂
∂

=  

 
Combined standard uncertainty  

( ) ( ) ( ) ( )n
22

n2
22

21
22

1C xucxucxucyu ⋅++⋅+⋅=   ( ) ( )

( ) ( )

( ) ( ) MM
22

ii
22

M

M
22

M
2
ii

24
M

M
22

Ii
22

RC

IIuR4RuI

IuIR4RuI

IucRuc)P(u
Mi

⋅⋅⋅+⋅=

⋅⋅⋅+⋅=

⋅+⋅=
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=
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4.6 Expanded measurement uncertainty 
The expanded measurement uncertainty U is a parameter which identifies a range around the 
measurement result that can be expected to include a large proportion of the distribution of the 
values that could reasonably be assigned to the measurand 10. It is calculated as  

Cp ukU ⋅=  (4.22) 
with 

Cu  combined standard uncertainty (cf. chapter 4.5),  
pk  coverage factor for a specific confidence level. 

The factor pk  used (or alternatively the confidence level) must be documented.  

NOTE 1: In metrology a confidence level of 95.45% is preferably used which corresponds to kp = 2. 
This implies m > 20 measured values (see appendix D). 
NOTE 2: The value of kp is not only determined by the confidence level but also by the degrees of freedom. 
The degrees of freedom are relevant in particular if (considerably) less than 20 measured values are 
available, or if an optimal selection of kp is required (e.g. if it is essential to avoid excessive measurement 
uncertainty specification). For further details, see appendix D.3. 

If type A evaluation is used (exclusively), the degrees of freedom always must be specified 
[GUM 4.2.6]. 

NOTE 3: Alternatively, the number of measured values can be specified instead of the degrees of freedom. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
10  According to [GUM, 2.3.5] and [VIM(2), 3.9]  
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4.7 Complete measurement result 

4.7.1 Notation 
The complete measurement result  of a measurand is made up of the measured value y, corrected as 
necessary, and the associated expanded measurement uncertainty U. The following notations can be 
used: 
• y ± U (recommended for Bosch) 
• y, U 
• y, Urel 
• y (1 ± Urel) 
• y (U)  (not recommended) 
Here, Urel denotes the expanded measurement uncertainty related to the measured value: 

yUUrel = . 
NOTE 1: Notations such as 5 mA + 5% are not permitted. 

The range within which the conventional value of the measurement result is expected is given by the 
limits y – U and y + U.  

NOTE 2: In the case of unilaterally limited characteristics, it is possible for y - U to fall below the value 0. If 
this is the case, the range from 0 to y + U applies to the conventional value. 

NOTE 3: If corrections have been calculated and applied when determining the measurement uncertainty, it 
is useful in many cases to specify these corrections separately as an additional information (examples: 
see appendix J.3, page 80; appendix J.8, page 116). 

NOTE 4: If several measurement results are available (no individual value), presenting data in tabular form 
is permitted. 

4.7.2 Rounding rules 

According to [GUM, 7.2.6] the numerical values for the measurement result y and its expanded 
measurement uncertainty U may not be specified with an excessive number of digits. A maximum of 
two significant decimal places11 is usually sufficient to specify U. In some cases, it may be necessary 
to retain additional digits in order to prevent rounding deviations in subsequent calculations. 

NOTE 1: Unlike the rounding of the final result, the rounding of intermediate results and the values of input 
quantities should be avoided as far as possible.  

Correlation coefficients must be specified to three significant decimal places if their absolute values 
are close to one. 

It makes no sense to specify the values for the measurement result y and its expanded measurement 
uncertainty U in the final result with more than one additional decimal place compared to the 
resolution of the measuring system. More decimal places cannot be recorded with the measuring 
instrument being used, and are therefore worthless.  

The final results of uncertainty calculations must be rounded up. Example: U = 0.422 µm is rounded 
up to U = 0.43 µm. Results of degree of freedom calculations (see appendix D.3) must be rounded 
down to integers.  

NOTE  2: However, common sense should always prevail so that marginal cases such as U = 0.4205 µm are 
rounded down to U = 0.42 µm instead of rounding up to U = 0.43 µm.  

                                                 
11  Digits of a number are referred to as “significant digits” if the corresponding number can be considered as lying 

within the limits of the deviation of the least-significant digit (see ISO 80000-1:2009 + Cor 1:2011). Example: 
The numerical value 4.12 has 3 significant digits if the exact value is within the range 4.115 < x < 4.125, since all 
values in this range give the result 4.12 when rounded according to customary rules. 
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4.8 Tabular uncertainty budget 
The required work steps for determining and specifying the measurement uncertainties are 
described in the preceding subchapters of chapter 4. A comprehensible documentation of these 
work steps must be compiled for each specific case of application. No binding format is specified for 
this documentation. However, creating an uncertainty budget in tabular form is recommended. 
Appendix I contains a suggestion for a tabular presentation of this type which is also used for the 
examples in appendix J. Supplementary descriptions are required in most cases with texts and 
images for the measuring task, the measurement setup and the selection of input quantities and 
calculations.  

NOTE 1: Unfortunately, the English term “budget” often results in mistakable terms when translated into 
other languages. Actually it is mainly a consistent listing of contributions to uncertainty, i.e. a sort of “balance-
sheet”.  

For measuring uncertainties of variable quantities (e.g. characteristic curves) that are determined at 
several reference points (parameter settings), the tabular presentation becomes more complex as 
the number of reference points increases (e.g. if there is one table for each reference point). In this 
case, curves or arrays of curves are used in practice in order to provide the measurement uncertainty 
in dependence of selected parameters. 

4.8.1 Minimum requirements for documentation 

A tabular uncertainty budget that complies with the traceability requirements should contain the 
following minimum information (along with additional descriptions if necessary):  
• the model equation 12, 
• all input quantities (in the form of symbols) which were included in the uncertainty study, 
• the (estimated) value of each input quantity  12, 
• the associated standard uncertainty for each input quantity 12, 
• details of correlations 12 and also covariances where applicable, 
• the applied probability density function 12 (e.g. normal distribution, rectangular distribution), 
• the degrees of freedom 12 (according to [GUM 4.2.6] always required for type A evaluation) 
• type of measurement uncertainty determination 12 (type A or type B evaluation), 
• the sensitivity coefficients, 
• the uncertainty contributions to the output quantity, 
• the value of output quantity, 
• the combined standard uncertainty of the output quantity, 
• the coverage factor 12 . 
The form sheet shown in appendix I conforms to [VIM] and also contains further information. 

4.8.2 Pareto chart and analysis of measurement uncertainty components 

The Pareto chart is a graphical illustration of the Pareto principle according to which most 
consequences of a problem (typically around 80%) are frequently attributable to only a small number 
of causes (typically around 20%) [EQAT]. It is therefore advisable to identify these causes. In the case 
of measurement uncertainties, the Pareto chart is used to filter the largest uncertainty contributions 
out of the input quantities.  

NOTE: The measurement uncertainty of a measuring system often can be significantly reduced by analyzing 
the component with the largest contribution according to Pareto and optimizing that component in order 
to reduce the uncertainty. 

Examples: See appendix J, diagrams on pages 80, 89, 91, 102, 116 and 119. 
 

                                                 
12  according to [VIM, 2.33, comment] 
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5 Approach according to ISO 22514-7 13 

Chapters 1 and 2.5 explain that the measurement uncertainty provides an assertion about the range 
where the true value can be expected that is associated with a measured value. However, unlike 
measuring process capability, it makes no assertion as to whether measurement errors and 
dispersions of measured values are compatible with the tolerance zone of a characteristic (cf. 
chapter 2.5). 

Whether both or only one of the two parameters (statistics) are required to ensure that defined 
requirements are met, usually can be decided based on the following criteria: 

• Where measuring tasks change frequently (e.g. in development and testing departments), 
it is preferable to determine measurement uncertainties.  

• Where a sufficiently large number of similar measurements of a specific characteristic are made 
repeatedly (e.g. in production), it is preferable to determine measuring process capabilities.  

• If conformity statements are required according to [ISO 14253], it is essential to determine 
measurement uncertainties instead of or in addition to the proof of capabilities. 

Capability and performance evaluations of production processes are based on measurement results. 
Substantiated assertions therefore require adequate consideration of the uncertainty to be allocated 
to the measuring process 14. The procedures according to [AIAG MSA] and [Booklet 10] globally 
include all components of measurement uncertainty that are relevant to the measuring process into 
the evaluation results, since these uncertainties are already contained in the measurement results. 

In contrast to this, [ISO 22514-7] provides a practice-oriented approach for the determination of 
measurement uncertainties based on [GUM] and the evaluation of the capability (suitability 15) of 
measuring systems and measurement processes based on the determined individual components of 
the measurement uncertainty.   

Initially the capability of the measuring system (MS) is determined and evaluated by means of the 
parameters QMS and CMS with defined limit values.  

Only after meeting these criteria the capability of the measuring process (MP) is determined and 
evaluated by means the parameters QMP and CMP with defined limit values. 

                                                 
13  The approach according to [VDA-5] corresponds to the approach according to  [ISO 22514-7] 
14  In accordance with [ISO 22514-7], chap. “Introduction” 
15  Unlike the ISO standard, the German version of the VDA volume uses a German term which translates to 

English “suitability” or “appropriateness”. To ensure that the different language versions are unambiguous, 
the term “capability” is used throughout this guide including in the German version. 
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5.1 Procedure according to ISO 22514-7 
Start

Resolution
sufficient

(RE < 5% T)? 

Maximum
permissible error (MPE) 

known and used?

Determine
standard uncertainty

uMPE 

Determine
standard uncertainties

uCal, uEV, uBi, uLin, uMS-Rest  

no

ja

QMS < 15% ?

CMS >  1.33 ?

Calculate measuring system parameters:

• Combined standard uncertainty uMS

• Expanded measurement uncertainty UMS

• Tolerance related uncertainty QMS

• Capability index CMS 

Determine
standard uncertainties

uEVO, uAV, uGV, uStab, uIA, uObj,  uT, uRest 

Calculate measuring process parameters:

• Combined standard uncertainty uMP

• Expanded measurement uncertainty UMP

• Tolerance related uncertainty QMP

• Capability index CMP 

QMP < 30% ?

CMP > 1,33 ?

End

Measuring process 
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Define measuring task, 
specifiy limit values 

Optimize
measuring system / 
measuring process 

noyes

no

no

yes
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measuring 
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(MS)

Analyze
measuring

process
(MP)

  
Figure 8: Procedure according to [ISO 22514-7] and limit values as recommended by the standard 
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5.2 Model equation 

Model equations are not explicitly formulated in [ISO 22514-7]. However, the approach can be 
described according to [GUM] by means of the model equations 

)MS(RESTLINBI)MS(EVCALMS xxxxxyy δ+δ+δ+δ+δ+′=  (5.1) 
for the measuring system and  

( ) )MP(RESTSTABGVOBJIAAV)MS(EV)MP(EVMSMP xxxxxxxxxyy δ+δ+δ+δ+δ+δ+δ+δ−δ+= ϑ  (5.2) 
the measuring process. The equations represent a standardized specification based on an additive 
model (cf. chapter 4.3.1) with the following components: 
 

y′  (Uncorrected) indication for the measurement results MSy  of the measuring 
system or MPy  of the measuring process, 

 
CALxδ  Deviation due to finite precision of calibration, 

)MS(EVxδ  Deviation due to finite repeatability of the measuring system, 
BIxδ  Systematic measurement error, 
LINxδ  Linearity error, 

)MS(RESTxδ  Deviation due to other influences attributable to the measuring system, 
 

)MP(EVxδ  Deviation due to finite repeatability of the measuring process, 
AVxδ  Deviation due to operator influence, 
OBJxδ  Deviation due to inhomogeneity of the measuring object, e.g. form deviations 

(if relevant), 
IAxδ  Deviation due to interactions between input quantities, 
STABxδ  Deviation due to temporal instability of the measuring process, 
ϑδx  Deviation due to temperature differences, 
GVxδ  Deviation between different, technically comparable measuring systems 

(if relevant), 
)MP(RESTxδ  Deviation due to other influences attributable to the measuring process.  

 

NOTE 1: The expected value of the deviation δxi from the conventional value xi of the input quantity i is 0. 
This applies to all input quantities i. 

NOTE 2: The repeatability of the measuring system is one of several components that determines and also 
limits the repeatability of the measuring process in case all other components have no significant effect on 
the measuring process. Therefore, deviations of the measuring process caused by finite repeatability cannot 
be less than the corresponding deviations of the measuring system, so that the term δxEV(MP) – δxEV(MS) 
cannot be negative. 
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5.3 Uncertainties of the measurement system 
The standard uncertainties ii u)x(u =δ  of the input quantities i are determined as follows: 

Uncertainty 
component 

Symbol Source, calculation 

Calibration 
uncertainty 
(Type B evaluation) 

( ) CALCAL uxu =δ

 
Calibration certificate of the standards or manufacturer’s data 
sheet: 
• If the expanded measurement uncertainty CALU  is specified 

with the confidence level %100)1( ⋅α−  it is divided by the 
corresponding coverage factor pk :  

p

CAL
CAL k

Uu =  

• If the confidence level is not specified, 2kp =  is assumed. 
• Data that is not specified in more detail is adopted 

unchanged as standard uncertainty CALu (i.e. 1kp = ). 

Resolution 
(Type B evaluation) 

REu  Resolution RE  taken from the manufacturer data sheet or 
estimated from readings: 

2
RE

3
1uRE =  (Rectangular distribution) 

Repeatability at 
the standard 
(Type A evaluation,  
MSA study of  
type-1 or -4) 

EVRu  30m ≥  repeated measurements, calculation of the standard 
deviation s  and the standard uncertainty (see [GUM],  
chap. 4.2.3; [Booklet 10], type-1 study) 16: 

( )∑
=

−⋅
−

=
m

1k

2
kEVR xx

1m
1u  

Multiple standards:  
A total of 30m ≥ repeated measurements evenly distributed 
over all standards; common alternatives: 
• Determination of EVRu for each standard (multiple type-1 

study), determination of the maximum value of all EVRu  
(see [VDA-5]); 

• Linear regression and estimation of EVRu from the residual 
dispersion s  of the measurement deviation around the 
regression line (see [Booklet 10], appendix E.1; [AIAG MSA]); 

• Determination of EVRu  and LINu  by means of ANOVA 17. 

 ( )
)MS(EV

)MS(EV

u

xu

=

δ
 

( )EVRRE)MS(EV u,uMAXu =  

Systematic 
measurement 
error 
(Type A evaluation, 
MSA study of  
type-1 or -4) 

( ) BIBI uxu =δ  
3
xxu m

BI
−

=  (Rectangular distribution) 18 

x   – Mean value of the measured values 
mx   – Reference value of the standard 

Multiple standards:  
Determination of BIu  for each standard (multiple type-1 study), 
determination of the maximum value of all BIu (see [VDA-5]). 

                                                 
16  [ISO 22514-7] provides no consideration of whether the smaller mean value dispersion can be used 
17  Analysis of Variances, abbreviated to ANOVA; mathematical method for decomposing variances into individual 

components 
18  Formula is applicable if systematic and random measurement errors are not distinguishable [ISO 22514-7] 
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Uncertainty 
component 

Symbol Source, calculation 

Linearity error ( ) LINLIN uxu =δ  • Ad-hoc assumption 0uLIN = ; 
• Calculation based on available limit values and adoption  

of a uniform distribution, e.g. ( ) 2aaa −+ −=  (cf. chap. 
4.4.2.2): 

3
auLIN =  (Rectangular distribution) 

• Experimental determination (see [Booklet 10], type-4 
study, appendix E.1; [AIAG MSA], page 96 - 101); 

• Calibration certificate; 
• Determination EVRu  and LINu  by means of ANOVA17. 

Residual 
deviations 
of the  
measuring 
system  

( )
)MS(REST

)MS(REST

u

xu

=

δ
 

If presumed or available: Determination based on tests 
(type A evaluation), data sheets, manufacturer's 
specifications, literature, etc. (type B evaluation) 

Table 3: Uncertainty contributions of the measuring system according to [ISO 22514-7] 
 
The combined standard uncertainty of the measuring system is calculated as  

2
)MS(REST

2
LIN

2
BI

2
)MS(EV

2
CALMS uuuuuu ++++=  (5.3) 

(see chapter 4.5) and the expanded measurement uncertainty of the measuring system as  
MSpMS ukU ⋅=  (5.4) 

(see chapter 4.6 and appendix D). A tabular uncertainty budget is not explicitly required by 
[ISO 22514-7]. 

5.4 Evaluation of the measuring system 
For evaluating the capability of the measuring system the standard recommends the following 
parameters and limits: 

%15%100
T
U2Q MS

MS ≤⋅
⋅

=  (5.5) 

33,1
u6

T3,0C
MS

MS ≥
⋅

⋅
=  (5.6) 

NOTE 1: The following relationship exists between these two parameters 

p
MS

MS k
C

%10Q ⋅=  

In the case kp > 2 the criterion QMS < 15% represents the higher requirement for the measuring system, in 
case kp < 2 the criterion CMS > 1.33.  

NOTE 2: The index CMS must not be confused with the index Cg of a type-1 study [Booklet 10], since 
the standard uncertainty uMS and the standard deviation s of a type-1 study are not equivalent in general. 
Equivalence assumes that the uncertainty contribution uEVR (repeatability at the standard) is the only 
significant uncertainty component. This can be verified, for example by means of an uncertainty budget. 
However, even in this case the indexes are not comparable, since the use of the factor 0.3 instead of 0.2 
means a reduction of the requirements according to [Booklet 10] and [CDQ0402] to 2/3, i.e. from 1.33 to 
0.89. 

Unless capability is achieved, the measuring system should be optimized before the measuring 
process is evaluated.  
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5.5 Uncertainties of the measuring process 

Uncertainty 
component 

Symbol Source, calculation 

Repeatability at 
the measuring 
object 

EVOu  Minimum requirements: 
• ≥ 30 data (sample size)  
from 
• ≥ 2 repeated measurements, 
• ≥ 5 measuring objects [ISO 22514-7]  

or 
≥ 3 measuring objects [VDA-5], 

• ≥ 2 operators (if relevant), 
• ≥ 2 measuring devices (if relevant);  
Determination by means of ANOVA  
(see [Booklet 10], EV from a type-2 or type-3 study) 

 ( )
)MP(EV

)MP(EV

u

xu

=

δ
 

( )EVOEVRRE)MP(EV u,u,uMAXu =  

Operator 
comparison 

( ) AVAV uxu =δ  Minimum requirements: see EVOu ; 
Determination by means of ANOVA 
(see [Booklet 10], AV from a type-2 study) 

Inhomogeneity of 
the individual 
measuring object 

( ) OBJOBJ uxu =δ

 3
au OBJ

OBJ =  (Rectangular distribution) 

Determination of the maximum deviation OBJa  (e.g. shape): 
• Drawing (maximum permissible deviation) 
• Control chart (actual deviation) 
• Experiment (actual deviation) 
• Data sheet, manufacturer's specifications (estimate) 

Interactions ( ) IAIA uxu =δ  
∑
=

=
maxj

1j

2
jIAIA uu  

Determination of individual interactions jIAu by means of ANOVA 
(see [Booklet 10], type-2 study, IA operator - measuring object) 

Instability of the 
measuring process 
over time 

( )
STAB

STAB

u
xu
=

δ
 

Minimum requirements: see EVOu ;  
Determination by means of ANOVA 
(see [Booklet 10], type 2 / 3 study) 

Temperature ( ) ϑϑ =δ uxu  Possible determination of uncertainty from temperature 
differences in case of mechanical / geometric characteristics: 

2
TA

2
TD uuu +=ϑ  

• Temperature difference (according to ISO/TR 14523-2): 

3
luTD

⋅α⋅ϑ∆
=  (Rectangular distribution) 

ϑ∆   – Temperature change in K, 
α   – Coefficient of expansion, 
l   – Result of the length measurement. 

• Thermal expansion (according to ISO/TR 15530-3): 
luC20uTA ⋅⋅°−ϑ= α  

ϑ   – Mean temperature in °C during the measurement, 
αu   – Standard uncertainty of the coefficients of expansion 

  – (e.g. from tables, data sheets or technical literature). 
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Uncertainty 
component 

Symbol Source, calculation 

Comparability 
of different 
measurement 
systems 

( ) GVGV uxu =δ  Relevant in case of more than one measuring system; 
consideration of the minimum and maximum values of 
individual and mean values measured for each reference 
part on the different measuring systems  

Residual 
deviations 
of the  
measuring 
process 

( )
)MP(REST

)MP(REST

u

xu

=

δ
 

If presumed or available: Determination based on tests 
(type A evaluation), data sheets, manufacturer's specifications, 
literature, etc. (type B evaluation) 

Table 4: Uncertainty contributions of the measuring process according to [ISO 22514-7] 
 
The combined standard uncertainty MPu  of the measuring process is calculated as 19 

( ) 2
)MP(REST

2
GV

22
STAB

2
IA

2
OBJ

2
AV

2
)MS(EV

2
)MP(EV

2
MSMP uuuuuuuuuuu +++++++−+= ϑ  (5.7) 

(see chapter 4.5) and the expanded measurement uncertainty of the measuring process as  
MPpMP ukU ⋅=  (5.8) 

(see chapter 4.6 and appendix D). A tabular measurement uncertainty analysis is not explicitly 
required by [ISO 22514-7]. 

5.6 Evaluation of the measurement process 
For evaluating the capability of the measuring process the standard recommends the following 
parameters and limits:  

%30%100
T
U2Q MP

MP ≤⋅
⋅

=  (5.9) 

33,1
u3

T3,0C
MP

MP ≥
⋅

⋅
=  (5.10) 

NOTE 1: The following relationship exists between these two parameters 

p
MP

MP k
C

%20Q ⋅=  

In the case kp > 2, the criterion QMS < 30% represents the higher requirement for the measuring process, 
in case kp < 2 the criterion CMP > 1.33. 

NOTE 2: The index CMP must not be confused with the index Cg of a type-1 study [Booklet 10], since 
the standard uncertainty uMP and the standard deviation s of a type-1 study are not equivalent in general. 
Equivalence assumes that the uncertainty contribution uEVR (repeatability at the standard) is the only 
significant uncertainty component. This can be verified, e.g. by means of a measurement uncertainty 
analysis. However, even in this case the indexes are not comparable, since the use of the factors 0.3 and 3 
instead of 0.2 and 6 means a reduction of the requirements according to [Booklet 10] and [CDQ0402] to 
1/3, i.e. from 1.33 to 0.44. 

NOTE 3: With kp = 3 the defining equation for QMP is formally transferred into the defining equation for 
%GRR. However, comparability with %GRR according to a type-2 study [Booklet 10] requires that uEVO 
(repeatability at the test object), uAV (operator comparison) and uIA (interactions) are the only contributions 
to uncertainty which are verified as significant.  

Unless capability is achieved, the entire process must be optimized. 

                                                 
19  Only the difference uEV(MP)

2 – uEV(MS)
2 must be considered, since the fraction uEV(MS)

2 is already included in 
uMS

2. Mathematically, this eliminates the term uEV(MS)
2 in uMS

2 and replaces it with uEV(MP)
2.  
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5.7 Maximum permissible error (MPE) 

For the evaluation of the measuring system (MS) the concept of “maximum permissible error” (MPE) 
can be used as an alternative to the determination of measurement uncertainties according to 
[GUM].  

The calibration of the measuring system or its components ensures that the equipment meets 
the requirements of defined metrological properties. This can be documented by specifying one or 
more MPE parameters.  

MPE can be particularly useful when several similar, but physically different, measuring systems are 
used for a measuring process. If only one measuring system is used, the experimental method 
according to [GUM] is usually more advantageous, since it provides lower measurement 
uncertainties. 

Using MPE to evaluate the measuring system and the measuring process can be described by 
following model equation: 

MPEMS xyy δ+′=  (5.11) 

)MP(RESTSTABGVIAOBJAVMSMP xxxxxxxyy δ+δ+δ+δ+δ+δ+δ+= ϑ  (5.12) 
with 

MPExδ  deviation less than or at most equal to the maximum permissible error MPE. 
 
Uncertainty 
component 

Symbol Source, calculation 

Maximum 
permissible 
error 

( ) MPEMPE uxu =δ

 3
MPEuMPE =  (Rectangular distribution) 

In the case of several MPE values that can affect the 
measurement result: 

3
MPE

3
MPE

3
MPEu

2
n

2
2

2
1

MPE +++=   

MPE values are taken e.g. from the calibration documents 

Table 5: Contribution of the maximum permissible error to uncertainty 

The remaining uncertainty components are determined according to Table 4. The combined standard 
uncertainty and the expanded measurement uncertainty of the measuring process are calculated as  

2
)MP(REST

2
GV

22
STAB

2
IA

2
OBJ

2
AV

2
MPEMP uuuuuuuuu +++++++= ϑ  (5.13) 

MPpMP ukU ⋅= . (5.14) 

NOTE: [ISO 22514-7] does not include any information about how these equations take account of the case  
“uEVO greater than uEVR and uRE”. 
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6 Measurement uncertainty based on the procedures 
according to booklet 10 and ISO 22514-7  

Capability studies according to [Booklet 10] require carrying out several specific investigations (studies 
of type 1 to 5). These procedures take into account influences on the measuring result such as 
the measuring system, operators, measuring objects, measurement strategy, environmental conditions 
and stability over time. Thus, most uncertainty components according to [ISO 22514-7] are already 
included in the measurement data. This data can be used to determine a value for the measurement 
uncertainty U so that the requirements of various standards and guidelines for identifying and taking 
account of the uncertainty of measurement results (cf. chap. 1) are met without any additional 
investigation effort. If these data are not available or merely partially available, the following 
explanations do not apply and the procedures according to chap. 4 or, where appropriate, chap. 5 have 
to be used.   
The uncertainty components according to [ISO 22514-7] are primarily attributed to the following 
data sources: 

Symbol Uncertainty component  
according to chap. 5.2 (ISO 22514-7) 

Included in information or data source 

CALu  Deviation CALxδ  due to finite precision of 
calibration  

Calibration certificate of the standard or 
reference part used 

)MS(EVu  Deviation )MS(EVxδ  due to finite 
repeatability of the measuring system 

Type-5 study: Dispersion of the measuring 
system with a standard or a reference part 

BIu  Systematic measurement error BIxδ  Type-5 study: Mean deviation of the 
measured values from the reference 
value of the standard or series part 

LINu  Linearity error LINxδ  If relevant according to chap. 5.3, Table 3 

)MS(RESTu  Deviation )MS(RESTxδ due to other 
influences attributable to the measuring 
system 

Type-5 study: All other influences not 
mentioned above, that are not caused by 
series parts 

)MP(EVu  Deviation )MP(EVxδ due to finite 
repeatability of the measuring process 

Type-1 and type-2/3 studies (difference): 
Increase in measuring system dispersion 
due to series parts  

AVu  Deviation AVxδ due to operator influence Type-5 study: Dispersion as a result of 
different operators 

OBJu  Deviation OBJxδ due to inhomogeneity of 
the individual measuring object, e.g. 
caused by shape variation, surface quality 
or material properties  

If relevant according to chap. 5.5, Table 4 

)1(IAu  Deviation )1(IAxδ due to interactions 
between input  quantities 

Type-5 study: Interactions that are not 
caused by series parts  

)2(IAu  Deviation )2(IAxδ  due to interactions 
between input quantities 

Type-2 study: Interactions between 
operators and series parts 

STABu  Deviation STABxδ  due to instability of the 
measuring process over time  
“Reproducibility over time” [ISO 22514-7, pp. 21] 

Type-5 study: Dispersion as a result of 
deviations from the long term stability of 
the measuring process 

ϑu  Deviation ϑδx  due to temperature 
differences 

Type-5 study: Influence of temperature 
changes and settings that deviate from 
the nominal value 

GVu  Deviation GVxδ  between different, but 
technically comparable measuring systems 

If relevant according to chap. 5.5, Table 4 

)MP(RESTu  Deviation )MP(RESTxδ due to other 
influences attributable to the measuring 
process 

If relevant according to chap. 5.5, Table 4 
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The individual uncertainty components are defined according to the model equation  

EXTPARPROBICAL xxxxxyy δ+δ+δ+δ+δ+′=  (6.1) 

and applied or combined as follows: 

• Standard uncertainty of the calibration of the standard or reference part used (calibration): 

CALu  (6.2) 

• Standard uncertainty due to uncorrected, systematic measurement errors (bias):  

BIu  (6.3) 

• Standard uncertainty of the measurement procedure (procedure); random and uncorrected 
deviations under intermediate precision conditions caused by the measuring system, the 
standard, the operator, time and environment: 

( )∑
=

ϑ −⋅
−

≈+++++=
m

1k

2
k

22
STAB

2
)1(IA

2
AV

2
)MS(REST

2
)MS(EVPRO xx

1m
1uuuuuuu  (6.4) 

• Standard uncertainty due to series parts (parts); influence of the measurement strategy and the 
measuring object during measurements on series parts: 

( )
222

)MS(EV
2

MPEVPAR sEVuuu −≈−=  (6.5) 

• Additional standard uncertainty due to other influences (extra); provided that one or more 
individual components are relevant (if applicable see chap. 5.3, Table 3, and chap. 5.5, Table 4): 

2
)MP(REST

2
GV

2
)2(IA

2
OBJ

2
LINEXT uuuuuu ++++=  (6.6) 

 

6.1 Determining uncertainty components 

6.1.1 Standard uncertainty uCAL of the standard calibration 

The value of the expanded measurement uncertainty CALU  must be taken from the calibration 
certificate of the standard or reference part and divided by the coverage factor kp (kp = 2 at 
confidence level 95.45%): 

p

CAL
CAL k

U
u =  (6.7) 

6.1.2 Standard uncertainty uBI due to a systematic measurement error 
The difference between the mean value x  of the measured values of the relevant stability charts and 
the conventional value mx  of the standard or reference part according to the calibration certificate 
must be taken into account as a standard uncertainty according to appendix F:  

xxu mBI −=  (6.8) 

NOTE 1: In contrast to [ISO 22514-7] and according to [GUM], this difference is applied unmodified as 
standard uncertainty uBI. Alternatively, a corresponding correction can be made and the uncertainty 
contribution uBI can be omitted. 

NOTE 2: The uncertainty of this standard uncertainty (or correction) is contained in the dispersion of the 
measured values. Thus, it is already included via uPRO in the measurement uncertainty of the measuring 
process and does not need to be considered separately.  
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6.1.3 Standard uncertainty uPRO of the measurement procedure 
The individual values documented in the stability chart (type-5 study) represent the dispersion of the 
measuring process under varying external conditions (e.g. variations of temperature or measuring 
force or changes of operators). At least m = 25 measurements should be available. 

( )∑
=

−⋅
−

=
m

1k

2
kPRO xx

1m
1u  (6.9) 

NOTE 1: Since the expanded measurement uncertainty U to be determined here shall refer to individual 
measurements, uPRO corresponds to the standard deviation of all individual values. 

NOTE 2: A type-5 study is performed using a standard just as used with a type-1 study or a reference part 
(stability part). Therefore, uncertainty components resulting from series parts are not included in the 
measurement results and must be considered separately. 

6.1.4 Standard uncertainty uPAR of the measuring object 
Unlike a type-1 study, an additional uncertainty component uPAR is usually effective in case of 
measurements on series parts (e.g. caused by shape deviations). That is why EV from a type-2 or a 
type-3 study usually is larger than s from a type-1 study. This difference is significant if the condition 

22 s2EV >  (6.10) 
is fulfilled. Only then, uPAR must be taken into account: 

22
PAR sEVu −=  (6.11) 

NOTE: The criterion EV 2/s 2 > 2 is based on an F-test with a confidence level of 95% and approximately 
20 – 30 individual values for determining EV or s, respectively; the corresponding quantiles of the 
F-distribution are in the 1.85 to 2.15 value range. 

6.1.5 Standard uncertainty uEXT of other uncertainty components 
If the influence of other uncertainty components (such as linearity, homogeneity, interactions or 
system differences) is evaluated or assumed to be relevant: 

2
)MP(REST

2
GV

2
)2(IA

2
OBJ

2
LINEXT uuuuuu ++++=  (6.12) 

6.2 Combined standard uncertainty uC 
2
EXT

2
PAR

2
PRO

2
BI

2
CALC uuuuuu ++++=  (6.13) 

6.3 Expanded measurement uncertainty U 
Cp ukU ⋅=  (6.14) 

The calculated measurement uncertainty U applies to an individual measurement and the period 
being considered (according to the stability chart). kp = 2 applies to a confidence interval of 95.45%. 

NOTE: The uncertainties uC and U can be utilized for a capability evaluation of the measuring process 
according to [ISO 22514-7] (cf. chapter 6.5).  

6.4 Complete measurement result y 
Uyy ±′=  (6.15) 

Application examples: See chapter 6.5 and appendix J.6 
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6.5 Example from booklet 10: Outer diameter of a shaft  

Required data 
• Calibration or test certificate providing reference value and calibration uncertainty of the standard; 
• Results from type-1 and type-2 (or -3) studies; 
• Stability chart with at least 25 sample results (type-5 study); 
• Tolerance of the characteristic (in this case T = 0.06 mm = 60 µm). 

NOTE: The data for this example were taken from the forms shown in [Booklet 10], chap. 4. 

Standard uncertainty uCAL of the calibration of the standard 
The calibration certificate of the standard provides the reference value mm002.6xm = and 

mm001.0UCAL = . The standard uncertainty CALu  is calculated by dividing the uncertainty CALU  by 
the coverage factor kp (here kp = 2):  

mμ5,0mm0005,0mm
2
001,0

k
Uu

p

CAL
CAL ====  

Standard uncertainty uBI due to systematic measurement error 
Reference value: µm6002mm002,6xm ==  from the calibration certificate of the standard, 
Mean value: µm6002mm002,6x ==  from type-5 study. 

µm0µm6002µm6002xxu mBI =−=−=  

Standard uncertainty uPRO of the measurement procedure 
uPRO is the standard deviation of all individual values in the stability chart: 

µm3,1mm0013,0uPRO ==  from type-5 study. 

Standard uncertainty uPAR by measurements on series parts 
In addition to s from a type-1 study, EV from both type-2 and type-3 studies is available in this example: 

µm00,1mm00100,0s ==  from type-1 study, 
µm53,1mm00153,0EV ==  from type-2 study, 
µm47,1mm00147,0EV ==  from type-3 study. 

The larger one of the two standard deviations EV is used (type-2 study): 
2222 µm00,2s2µm34,2EV =⋅>=  i.e. the difference is significant. 

Accordingly, Eq. (6.11) must be taken into account: 

µm2,1µm00,153,1sEVu 2222
PAR ≈−=−=  

Standard uncertainty uEXT due to other uncertainty components 
Interactions operators – parts are insignificant, other components are considered non-relevant. 

Combined standard uncertainty uC 

µm8,1µm4,3µm2,13,10,05,0uuuuu 22222
PAR

2
PRO

2
BI

2
CALC ≈=+++=+++=  

Expanded measurement uncertainty U for the considered period 
mμ6,3mμ8,12ukU Cp =⋅=⋅=  

Classification 
The capability requirements recommended by [ISO 22514-7] are met: 

%30%12%100
µm60

µm6,32%100
T
U2%100

T
U2Q MP

MP ≤=⋅
⋅

=⋅
⋅

=⋅
⋅

=  (6.16) 

33,133,3
8,1
6

µm8,13
µm603,0

u3
T3,0

u3
T3,0C

CMP
MP ≥==

⋅
⋅

=
⋅

⋅
=

⋅
⋅

=  (6.17) 

The requirement according to the “golden rule of metrology”  is also met: 

1,006,0
µm60
µm6,3

T
U

≤==  (6.18) 
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Appendix 

A Examples of input quantities and influences 

The following list – which is not exhaustive – contains typical examples from different categories 
which can serve as a guide in determining input quantities.   
 
Environmental influences 
 
• Temperature: Absolute temperature, 

spatial and temporal gradient 
• Vibrations 
• Noise 
• Humidity 
• Contamination 
• Lighting 
• Atmospheric pressure 
• Air composition 
• Air draft 

• Gravity 
• Electrical interference fields 
• Power supply variations 
• Pressure variations in the compressed 

air supply 
• Heat radiation 
• Influence of the measuring object 
• Thermal equilibrium of the measuring 

instrument 
 

 
Standards and material measures 
 
• Stability 
• Quality of the reference 
• Physical principle of the reference:  

analog, optically digital, magnetically digital,  
toothed rack, interferometry 

• Uncertainty of calibration 
• Resolution of the standard instrument 
• Thermal coefficient of expansion 

 

 
Measuring system 
 
• Resolution 
• Output system 
• Mechanical or electrical boost 
• Wavelength error 
• Stability of the zero point 
• Stability of the measuring force, 

absolute force 
• Hysteresis  
• Accuracy of mechanical guidance 
• Probe system 

• Stiffness, elasticity 
• Reading head of the measuring system  
• Thermal expansion 
• Parallax 
• Time since last calibration 
• Sensitivity characteristics 
• Interpolation system  
• Resolution of interpolation 
• Digitizing 

 
 
Measuring the measuring object 
 
• Cosine and sine errors 
• Violation of the Abbe principle 
• Temperature sensitivity 
• Stiffness and elasticity 
• Probe tip radius 
• Flattening of the probe tip 

• Stiffness of the stylus 
• Optical aperture 
• Influence of clamping device on the 

measuring object 
• Thermal compensation 
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Data processing 
 
• Rounding rules 
• Algorithms 
• Application of algorithms 
• Number of significant places 

used in the calculation 

• Sample 
• Filtering 
• Certification of algorithms 
• Interpolation and extrapolation 
• Outlier handling 

 
Human influence 
 
• Experience 
• Training 
• Physical and mental condition 
• Expertise 

• Honesty 
• Interest in the task 
• Diligence 

 
 
Properties of the measuring object 
 
• Surface roughness 
• Form deviation 
• Elastic modulus (E-modulus) 
• Stability beyond the elastic modulus 
• Thermal coefficient of expansion 
• Electrical conductivity 
• Weight 
• Dimensions 
• Surface 

• Magnetism 
• Hygroscopic property 
• Aging 
• Cleanliness 
• Temperature 
• Internal stress 
• Creep characteristics 
• Object deformation during clamping  

on the measuring instrument 
 
Definition of characteristics 
 
• Date 
• Reference system 
• Degrees of freedom 
• Assessment methods 

(e.g. surface texture, ISO 4288) 

• Distance 
• Angle 
• Toleranced characteristics 

 

 
Measurement methods 
 
• Course of action 
• Number of measurements 
• Sequence of measurements 
• Duration of the measurement 
• Choice of measuring principle 
• Alignment 
• Choice of reference, reference object 
• Alignment of the probe system 

• Choice of equipment 
• Choice of operators 
• Number of operators 
• Strategy 
• Measuring object fastening 
• Number of measuring points 
• Probe head system 
• Drift behavior 
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B Calculation of sensitivity coefficients 

The combined standard uncertainty for any (linear) model 
( )n21 x,,x,xfy =  (B.1) 

for n uncorrelated input quantities xi with 1 ≤ i ≤ n is calculated as  

( ) ( ) ( )( )
2n

1i
ii

2n

1i
i

i
c xucxu

x
yyu ∑∑

==
⋅=








⋅

∂
∂

=  (B.2) 

with the sensitivity coefficients 
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B.1 Additive model 
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The sensitivity coefficient c1 is calculated as 
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or any sensitivity coefficient ck with 1 ≤ k ≤ n as 
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The combined standard uncertainty is then calculated as 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )n
2

2
2

1
2

n

1i
i

2
n

1i

2
i

2n

1i
i

i
c xuxuxuxuxu1xu

x
yyu +++==⋅=








⋅

∂
∂

= ∑∑∑
===

  (B.6) 

 

B.2 Multiplicative model 
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A special case of this model equation is  
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In this case the sensitivity coefficient c1 is calculated as 

( )
11

n21
n2

1

n21

1

n

1i
i

1
1 x

y
x

xxxxx1
x

xxx
x

x

x
yc =

⋅⋅⋅
=⋅⋅⋅=

∂
⋅⋅⋅∂

=
∂

∂
=

∂
∂

=
∏

= 


    

or any sensitivity coefficient ck with 1 ≤ k ≤ n as  
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Another special case of this model equation is  

∏
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In this case the sensitivity coefficient c1 is calculated as  
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or any sensitivity coefficient ck with 1 ≤ k ≤ n as 
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The sensitivity coefficients of both special cases differ only in terms of the sign. Because the 
sensitivity coefficients are squared for the calculation of the combined standard uncertainty, the sign 
is not relevant. Thus, for both special cases and the general case, the combined standard uncertainty 
is always calculated according to 
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 (B.12) 
or by means of this equation divided by y: 
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B.3 Linear function 
( ) ( ) ( ) ( )nnn222111
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  (B.14) 

The linear function according to Eq. (B.14) mathematically represents a combination of the additive 
model and the multiplicative model. The constants ai and bi are also subject to uncertainty since 
usually they are not precisely known. If, in the first step, only additive relations are considered, the 
following results according to  Eq. (B.6): 
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Then, in the second step, the multiplicative relations in the second summand is considered according 
to Eq. (B.12) so that 
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In the special case n = 1 (linear equation) the following applies: 

xbay ⋅+=  (B.17) 
with the standard uncertainty 
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C Correlated input quantities 
NOTE 1: The consideration of correlations make higher demands on the user’s physical and mathematical 
understanding. 

NOTE 2: The applicability of the following observations presupposes that there is a linear relationship 
between the correlated quantities.  

 

C.1 Uncertainties of input quantities 
In case of a type A evaluation the correlation of the input quantities i and j can be verified by means of the 
covariance of the data sets ikx  and jkx , each consisting of m measured values:  

( ) ( ) ( )   xxxx
1m

1x,xs jjk

m

1k
iikji −⋅−⋅

−
= ∑

=

 (C.1) 

The covariance related to the product of both standard deviations ( )ixs  and ( )jxs  is referred to as 
correlation coefficient: 

)x(s)x(s
)x,x(s

)x,x(r
ji

ji
ji ⋅

=  (C.2) 

The value of ( )ji x,xr  is a measure for the strength of the correlation: 
( ) 1x,xr ji +=  complete positive correlation (e.g. bxax ij +⋅+= ), 
( ) 0x,xr ji =  no correlation, 
( ) 1x,xr ji −=  complete negative correlation (e.g. bxax ij +⋅−= ). 

The covariances of the correlated mean values ix  and jx are calculated as 

( )
m

)x,x(s
x,xu ji

ji =  (C.3) 

NOTE 1: For the applicability of m > 1 the note 2 in chap. 4.4.1.1 must be considered. 

In practice, the representation using correlation coefficients and standard uncertainties of the mean 
values is mostly preferred: 

( ) ( ) ( ) ( )jijiji xuxux,xrx,xu ⋅⋅=  (C.4) 

NOTE 2: The notation with horizontal bars on the xi and xj means that mean values are concerned. The 
relationships nevertheless apply in the same way if the xi and/or xj were not determined as mean values. 

Based on these equations, it is easy to verify that the following relationships always apply for the 
statistical quantities defined above: 

( ) ( )ijji x,xsx,xs =  ( ) ( )i2
ii xsx,xs =  ( ) ( )j2

jj xsx,xs =  

( ) ( )ijji x,xrx,xr =  ( ) 1x,xr ii =  ( ) 1x,xr jj =  

( ) ( )ijji x,xux,xu =  ( ) ( )i2
ii xux,xu =  ( ) ( )j2

jj xux,xu =  

According to [GUM] the covariances ( )ji x,xs  or ( )ji x,xu  or the correlation coefficients ( )ji x,xr  have to 
be specified in addition to the standard uncertainties ( )ixu  and ( )jxu  in case of correlated input 
quantities. They are usually represented as elements of matrices. 

The diagonal elements of the covariance matrix are the squares of the standard deviations 
(i.e. the variances) of the input quantities; the non-diagonal elements are the covariances. 
Example of 3 input quantities x1, x2 and x3: 
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The diagonal elements of the correlation coefficient matrix are 1, the non-diagonal elements are the 
correlation coefficients. Example of 3 input quantities x1, x2 and x3: 

( ) ( )
( ) ( )
( ) ( ) 
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The uncertainty matrix is analogous to the covariance matrix of the individual values according to 
Eq. (C.5). The diagonal elements are the squares of the standard uncertainties of the mean values. 
Example of 3 input quantities x1, x2 and x3: 
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The following approximation can be used as a basis for the empirical determination. If the variation 
δxi of an input quantity i with standard uncertainty u(xi) causes a variation δxj of the correlated input 
quantity j with standard uncertainty u(xj), the following relationship applies approximately [GUM, 
C.3.6, note 3]: 

( )
ij

ji
ji x)x(u

x)x(u
x,xr

δ⋅

δ⋅
≈  (C.8) 

NOTE 3: It is important to note that r(xi , xj ) = r(xj , xi ) exactly applies in the special case u(xi ) / u(xj ) = |δxi / δxj | 
only. This special case must be met in good approximation, so that calculations of the combined standard 
uncertainty according to Eq. (C.9) provide acceptable results. 

In case a type B evaluation is required for one or more input quantities, the covariances usually can 
be calculated only partially or not at all by means of Eq. (C.1). Instead, estimated values are used for 
the elements of the correlation coefficient matrix.  

NOTE 4: If there is a positive (negative) correlation with r > 0 (r < 0), the correlation coefficient can be 
estimated with r(xi , xj ) = 0.5 (-0.5) in case more detailed information is unavailable (see [EUROLAB, A.6.4]). 

NOTE 5: If the magnitudes of the standard uncertainties of input quantities are very different, correlations 
are negligible under certain circumstances. 
Correlation coefficients take values in the range -1 ≤ r(xi , xj ) ≤ +1. Thus, the condition |u(xi , xj )| ≤ u(xi ) ∙ u(xj ) 
results from Eq. (C.4). If one of the two uncertainties u(xi ) or u(xj ) is small in relation to the other, the absolute 
value of covariance |u(xi , xj )| is also small. Examples: 
• The standard uncertainties u(x1 ) = 0.80 and u(x2 ) = 0.02 have been determined. Even in the worst case 

of full correlation |r(x1 , x2 )| = 1, the absolute value of the covariance |u(x1 , x2 )| cannot not take 
values greater than u(x1 ) ∙ u(x2 ) = 0.80 ∙ 0.02 = 0.016. Thus, the covariance cannot amount to more 
than 2.5% of the total variance u²(x1 ) + u²(x2 ) = 0.80 2 + 0.02 2 ≈ 0.64. This may be neglected. 

• In the case u(x2 ) = 0.90, the covariance can rise to u(x1 ) ∙ u(x2 ) = 0.80 ∙ 0.90 = 0.72 in the worst case 
and represent approximately 50% of the total variance u²(x1 ) + u²(x2 ) = 0.80 2 + 0.90 2 = 1.45. This is 
not negligible. 

 

C.2 Calculating the combined standard uncertainty 
According to [GUM, 5.2] the following calculation rule applies to the combined standard uncertainty: 
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with the sensitivity coefficients 
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This calculation rule represents a generalization of Eq. (4.21). Unlike Eq. (4.21), it applies to both  
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correlated and uncorrelated input quantities.  

NOTE 1: In the case of uncorrelated input quantities i and j, r(xi , xj ) = 0 applies. Therefore, these input 
quantities do not make any contribution to the double sum in Eq. (C.9). If all input quantities are 
uncorrelated, the double sum disappears and Eq. (C.9) reduces to Eq. (4.21). 

NOTE 2: If all input quantities are fully correlated, i.e. r(xi , xj ) = +1 or r(xi , xj ) = -1 applies to all i and j, the 
combined standard uncertainty results from a simple arithmetic addition of the standard uncertainties of 
the individual input quantities rather than an addition of the squared quantities [GUM, 5.2.2, NOTE 1]. In 
this case the uncertainties can compensate for each other. This effect can be easily verified by means of 
Eq. (C.12). 

NOTE 3: Appendix B provides sensitivity coefficients for specific model equations. 
 

C.3 Mathematical supplements 
 
C.3.1 Covariances and standard uncertainties of mean values 
Covariances of mean values can be described by means of Eq. (C.4) using the correlation coefficients 
and standard uncertainties of the mean values. For this purpose Eq. (C.2) is solved for )x,x(s ji  and 
substituted in Eq. (C.3). Finally the dispersion terms are replaced according to Eq. (4.14): 
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C.3.2 Combined standard uncertainty 
The combined standard uncertainty is calculated by making up all possible combinations of the two 
elements ( )ii xuc ⋅  and ( )jj xuc ⋅  including combinations with themselves and calculating the product 
in each case. Then, these products are totaled whereby the contribution of each product to the 
grand total is weighted by the respective correlation ( )ji x,xr . 

If the various elements ( )ii xuc ⋅  are considered as being components of a vector, the calculation can 
be described in a systematic way as a vector equation utilizing the above matrix representations. 
Example for n = 3 input quantities: 
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According to the rules of vector algebra the following is true for any n > 0: 

( ) ( ) ( ) ( )∑∑
==

⋅⋅⋅⋅=
n
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jjji

n

1i
iiC xucx,xrxucyu  (C.12) 

Taking account of ( ) 1x,xr ii =  (diagonal elements of the correlation coefficient matrix), all terms with 
indexes that meet the condition ji =  can be pooled. Then, Eq. (C.12) can be decomposed into two 
summation terms: 

( ) ( ) ( ) ( ) ( ) ( )∑ ∑∑
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≠
==

⋅⋅⋅⋅+⋅⋅⋅⋅=
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1i

n

ij
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1i
iiiiC xucx,xrxucxuc1xucyu  (C.13) 

Taking account of the symmetry ( ) ( )ijji x,xrx,xr = , the summation in the second summation term can 
be restricted to the elements above the diagonal of the correlation coefficient matrix (i.e. the terms 
with the row index ni1 <≤  and column index nj1i ≤≤+ ) if these elements are counted twice. 
This results in the representation according to Eq. (C.9). 
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D Coverage factors and degrees of freedom 

D.1 Table of coverage factors kp 
 

Degrees 
of 

freedom 
ν 

Confidence level (1 – α)∙100% 

68.2700% 90.0000% 95.0000% 95.4500% 99.0000% 99.7300% 99.9937% 99.9999% 

1 1.84 6.31 12.71 13.97 63.66 235.78 10105.08 1097620.30 
2 1.32 2.92 4.30 4.53 9.92 19.21 125.98 1313.06 
3 1.20 2.35 3.18 3.31 5.84 9.22 32.68 156.07 
4 1.14 2.13 2.78 2.87 4.60 6.62 17.47 56.68 
5 1.11 2.02 2.57 2.65 4.03 5.51 12.30 31.77 
6 1.09 1.94 2.45 2.52 3.71 4.90 9.85 21.98 
7 1.08 1.89 2.36 2.43 3.50 4.53 8.47 17.07 
8 1.07 1.86 2.31 2.37 3.36 4.28 7.60 14.23 
9 1.06 1.83 2.26 2.32 3.25 4.09 7.00 12.41 

10 1.05 1.81 2.23 2.28 3.17 3.96 6.57 11.15 
11 1.05 1.80 2.20 2.25 3.11 3.85 6.25 10.25 
12 1.04 1.78 2.18 2.23 3.05 3.76 5.99 9.56 
13 1.04 1.77 2.16 2.21 3.01 3.69 5.79 9.03 
14 1.04 1.76 2.14 2.20 2.98 3.64 5.62 8.61 
15 1.03 1.75 2.13 2.18 2.95 3.59 5.48 8.26 
16 1.03 1.75 2.12 2.17 2.92 3.54 5.37 7.97 
17 1.03 1.74 2.11 2.16 2.90 3.51 5.27 7.73 
18 1.03 1.73 2.10 2.15 2.88 3.48 5.18 7.52 
19 1.03 1.73 2.09 2.14 2.86 3.45 5.10 7.35 
20 1.03 1.72 2.09 2.13 2.85 3.42 5.04 7.19 
25 1.02 1.71 2.06 2.11 2.79 3.33 4.80 6.65 
30 1.02 1.70 2.04 2.09 2.75 3.27 4.65 6.32 
35 1.01 1.69 2.03 2.07 2.72 3.23 4.54 6.09 
40 1.01 1.68 2.02 2.06 2.70 3.20 4.47 5.94 
45 1.01 1.68 2.01 2.06 2.69 3.18 4.41 5.82 
50 1.01 1.68 2.01 2.05 2.68 3.16 4.37 5.73 

100 1.01 1.66 1.98 2.03 2.63 3.08 4.18 5.34 
1,000 1.00 1.65 1.96 2.00 2.58 3.01 4.02 5.03 

10,000 1.00 1.65 1.96 2.00 2.58 3.00 4.00 5.00 
100,000 1.00 1.64 1.96 2.00 2.58 3.00 4.00 5.00 

∞ 1.00 1.64 1.96 2.00 2.58 3.00 4.00 5.00 

Table 6: Coverage factors kp in case of normal distribution 
NOTE 1: The kp values for the degrees of freedom ν and the confidence level (1 – α) 100% are calculated as  
the (two-sided) quantiles of the t-distribution: kp = tν;1–α/2 (e.g. using the EXCEL worksheet function  TINV(α; ν)). 

NOTE 2: If normal distribution is not applicable, other kp factors apply (see e.g. Table 2 for triangular, 
rectangular and U-distribution at a confidence level of 100%; also see  [GUM; G.1.3]).  
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D.2 Meaning of the coverage factor: Example of mean values 
If the measured values mk21 x,,x,,x,x   with mk1 ≤≤  were recorded for a measurand and these 
values are affected by random measurement errors, a more accurate estimate of the conventional value 
of the measurand is obtained according to the theory of errors by calculating the arithmetic mean value 

∑
=

=
m

1k
kx

m
1x  (D.1) 

The associated empirical standard deviation is a measure for the dispersion of the measured values 
mk21 x,,x,,x,x   around the mean value: 

( )∑
=

−
−

=
m

1k

2
k xx

1m
1s  (D.2) 

NOTE 1: The quantities x and s are estimates for the parameters of a normal distribution which is 
“implicitly taken for granted” for the distribution of the measured values  x1 , x2 , …, xk , …, xm whenever 
these formulae are applied.  

Without systematic measurement errors, i.e. if only random measurement errors occur, the mean 
value approaches the conventional value of the measurand with increasing number m of measured 
values and finally reaches it when m increases above all limits, i.e. when ∞→m . 

Since the number of measured values is always limited in practice, i.e. there is a finite number of values, 
the mean value also includes at least random deviations. A measure for the mean value dispersion to be 
expected in case of repeated measurements is the so-called standard uncertainty 

( ) ( )∑
=

−
−⋅

==
m

1k

2
k xx

1mm
1

m
su  (D.3) 

The uncertainty u decreases continuously as m increases and disappears when ∞→m . 

The expectation to discover the mean values of repeated measurements within the interval 
uxxux +≤≤−  where the true value of the measurand is assumed, only can be met with a certain 

probability. In order to quantify this probability it is necessary to specify a so-called confidence 
interval: 

utxxutx 2/1;1m2/1;1m ⋅+≤≤⋅− α−−α−−  (D.4) 

The magnitude of the factor 2/1;1mt α−−  is determined by the number m of measured values and the 
confidence level α−1  which has to be specified. 2/1;1mt α−−  is the (two-sided) quantile of the 
t-distribution20 for 1m −=ν  degrees of freedom  and the confidence level α−1 .  
The confidence level 95% and m ≥ 20 measured values are common in metrology. In this case, 

2t 2/1;1m =α−−  applies. This means that 95 mean values of 100 (hypothetical) measurement series 
each consisting of 20 measured values are to be expected within the interval u2xxu2x ⋅+≤≤⋅− ,  
whereby x  were determined from any randomly selected measurement series out of the total of 100 
measurement series. 

NOTE 2: The term “hypothetical” means that these measurement series are not actually performed. In fact, 
an estimate of the value range is made within which the mean values of these measurement series could be 
expected with a certain specified probability in case the measurement series were actually performed. 

In the context of measurement uncertainty studies 
p2/1;1m kt =α−−  (D.5) 

is referred to as the coverage factor and 
Uukut p2/1;1m =⋅=⋅α−−  (D.6) 

as the expanded measurement uncertainty. 

                                                 
20  Values for t as a function of ν and α can be taken from tables or determined using e.g. the MS EXCEL work-

sheet function TINV(α;ν); in case of EXCEL it should be noted that TINV(α;ν) directly yields the value 2/1;t α−ν . 
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D.3 Degrees of freedom 
The coverage factor kp is determined by the confidence level and the so-called degrees of freedom. 
The number of expressions in a sum minus the number of side conditions which these terms are 
subjected to are referred to as degrees of freedom [ISO 3534-1, 2.54].  

EXAMPLE: The sum y = x1 + x2 + x3 should lead to the same result (side condition) for all value combinations xi. 
Apparently arbitrary values can be used for two of the three summands. However, the third summand must 
attain a certain value which is determined by the predetermined result and the other two values. Since two 
values xi can be varied in any way, two degrees of freedom exist.  

The “reliability” of probability data and results of statistical calculations increase with the number m 
of the values that contribute to the result, i.e. the better ∞→m  is approximated. A limited number of 
values leads to side conditions for these values, i.e. a limited number of degrees of freedom. 
 
D.3.1 Input quantities (Type A evaluation) 

When determining the standard uncertainty of the input quantity i according to a type A evaluation 
based on m measured values that can be assumed to be normally distributed, the number of degrees 
of freedom is calculated as 

1mi −=ν . (D.7) 
 
D.3.2 Input quantities (Type B evaluation) 

When determining the standard uncertainty of the input quantity i according to a type B evaluation, 
the following relationship can be used to estimate the number of degrees of freedom [GUM G.4.2]: 

( )
( )

2

i

i
i

xu
xu

1
2
1








 ∆
⋅=ν  (D.8) 

The term ( ) ( )ii xuxu∆  represents the relative uncertainty of the standard uncertainty which affects 
the determined standard uncertainty ( )ixu , i.e. a numerical value between 0 and 1. Estimates within 
the range ( ) ( ) 15,0xuxu ii ≤∆  result in 20i >ν  degrees of freedom. At a confidence level of 95.45%, 

13.2k00.2 p ≤≤  or 0.2kp ≈  results. At ( ) ( ) 25.0xuxu ii =∆  only 8i =ν  degrees of freedom are left 
and 4.2kp ≈  results. 

In case of input quantities which can be assumed to have values lying between certain limits without 
exception (e.g. for physical reasons), there is no uncertainty of the uncertainty data, 
i.e. ( ) ( ) 0xuxu ii =∆ . Then, ∞→νi  results for the degrees of freedom. This applies e.g. to input 
quantities with rectangular, triangular or U-distribution according to chap. 4.4.2.2.  

The situation is different for a normal distribution with values which will never lie 100% between two 
limits. The same applies to any other distribution if you cannot be sure of 100% of all values to lie 
between certain limits. In such cases a finite number of degrees of freedom exists. Unless at least 
15 – 20 degrees of freedom can be assumed so that 0.2kp ≈  is applicable at a confidence level of 
95.45%, an analysis of the degrees of freedom is essential. 

On the other hand, if the values of an input quantity i are expressly declared to be normally 
distributed whereas no limits are specified (cf. chapter 4.4.2.1), it can be shown theoretically that 

∞→im  individual measured values were needed in order to ensure with a sufficiently high 
confidence level (≥ 95%) that it is not a limited distribution (e.g. a triangular or a rectangular 
distribution which fits the data set equally well). In this case ∞→νi  degrees of freedom can be 
supposed.  
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D.3.3 Output quantities 

For the combined standard uncertainty, the effective number of degrees of freedom can be 
approximated using the so-called Welch-Satterthwaite equation [GUM, G.4.1]: 

( )
( )( )∑

= ν
⋅

=ν
n

1i i

4
ii

4
C

eff
xuc

yu  or transformed ( )( ) ( )
eff

4
C

n

1i i

4
ii yuxuc

ν
=

ν
⋅∑

=

 (D.9) 

Input quantities i with a sufficiently large number of degrees of freedom ∞→νi  do not contribute 
to the sum. This applies e.g. to input quantities with rectangular, triangular or U-distribution according 
to chap. 4.4.2.2. If all n input quantities have a sufficiently large number of degrees of freedom, the 
effective number of degrees of freedom ∞→νeff  also results for the output quantity, and 
consequently 0.2kp ≈  at a confidence level of 95.45%. 

NOTE 1: νi > 15 ... 20 is usually regarded as sufficiently large. 

If this requirement is not met for all input quantities i, an analysis of the degrees of freedom is 
needed. With 

( )
( ) i

C

ii

yu
xuc

λ=
⋅  (D.10) 

Eq. (D.9) can be rewritten as 

eff

n

1i i

4
i 1

ν
=

ν
λ∑

=

 (D.11) 

which is suitable for analysis purposes since it is independent of the absolute values of uncertainty 
contributions. 

NOTE 2: λi
2 represents the relative contribution of the input quantity i to the uncertainty budget (see 

appendix I, column “Contribution to MU budget” of the form sheet). 
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E Requirements of the procedures according to booklet 10 on 
measurement uncertainty 

E.1 Allocation of capability categories 
As mentioned in chap. 2.5, a sufficiently small measurement uncertainty is required so that  
the measurement results ensure a sufficiently reliable calculation of the parameters Cg, Cgk and %GRR 
and a corresponding assignment of the measuring process to the categories “capable”, “conditionally 
capable” or “not capable”.  

In the case of measuring processes, the so-called “golden rule of metrology”  

%10%100
T
U

≤⋅  

represents a recommendation for the empirical upper limit of measurement uncertainty U in relation 
to the tolerance T of the characteristic 21. This results in U10T ⋅≥  or the minimum required tolerance 

U10Tmin ⋅= . 

The requirement of a type-1 study according to [Booklet 10] 

3
433.1

s6
T2.0Cg =≥

⋅
⋅

=  

results in s40T ⋅≥  or the minimum required tolerance s40Tmin ⋅=  for the characteristic. 

The requirement of a type-2 or a type-3 study according to [Booklet 10] 

%10%100
T
GRR6GRR% ≤⋅

⋅
=  

results in GRR60T ⋅≥  or the minimum required tolerance GRR60Tmin ⋅=  for the characteristic. 

NOTE 1: See [Booklet 10], appendix D, for inconsistencies of the minimum requirements of a type-1 study 
compared to a type-2 and type-3 study. 

The consequence of these three requirements is that the measurement uncertainty U must meet 
both conditions  

s4U ⋅≤  (E.1) 
and  

GRR6U ⋅≤  (E.2) 
independently of the tolerance T of the characteristic so that the measurement results allow for a 
reliable assessment of the measuring process. 

NOTE 2: The fulfillment or non-fulfillment of these conditions does not imply any statement about 
“capability” or “non-capability” of the measuring process.  

 

                                                 
21  There is no normative specification 
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E.2 Significance of bias according to a type-1 study, VDA volume 5 and 
AIAG MSA 

This chapter shows (by exclusively using common definitions and limit values) that a meaningful 
significance test is linked to certain requirements on measurement uncertainty. 

Definitions 

Capability index:  
s6
T2.0Cg ⋅

⋅
=  

Minimum capability index: 
s3

xxT1.0
C 0

gk ⋅

−−⋅
=  

Step 1 
The definition for Cg utilized in the definition for Cgk 

s3
xx

C
s3
xx

s6
T2.0

s3
xx

s3
T1.0C 0

g
00

gk ⋅

−
−=

⋅

−
−

⋅
⋅

=
⋅

−
−

⋅
⋅

=  

and solved for gkg CC −  yields 

s
xx

3
1CC 0

gkg
−

⋅=− . 

The systematic measurement error 0xx −  of a sample of size m related to the standard deviation s 
is insignificant at a confidence level of 1 - α if 

m

t
s
xx 2/1;1m0 α−−≤

−
 

(see [Booklet 10], appendix C), i.e. if 

m

t
3
1CC 2/1;1m

gkg
α−−⋅≤−  . (E.3) 

2/1;1mt α−−  denotes the quantile of the t-distribution for m – 1 degrees of freedom and a confidence 
level 1 – α and a confidence interval limited on both sides.  

Step 2 
The definition for Cg solved for 3s  

gC
T1,0s3 ⋅

=⋅  

substituted in the definition of Cgk 

T
xx

C10C

C
T1,0

xxT1,0
C 0

gg

g

0
gk

−
⋅⋅−=

⋅
−−⋅

= , 

solved for gkg CC − and taking account of Eq. (E.3) from step 1 yields 

m

t
3
1

T
xx

C10CC 2/1;1m0
ggkg

α−−⋅≤
−

⋅⋅=−   (E.4) 

The inequality (E.4) solved for T/xx 0−  finally results in 

m

t
C30

1
T
xx 2/1;1m

g

0 α−−⋅
⋅

≤
−

  (E.5) 

Result 
In terms of figures, a confidence level of 95%, usual sample size (m = 25 ... 50) and capability in the 
range Cg > 1.33 result in the requirement 

%1%100
T
xx 0 <⋅

−
. 

This means that the systematic measurement error of a measuring system must not be greater than 
1% of the tolerance of the characteristic in order to be considered insignificant. 
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Figure 9: Limit values for insignificant systematic measurement error with a type-1 study 

Maximum values related to the characteristic tolerance at a confidence level of 95% shown for the 
sample sizes m = 50 and m = 25 dependent on the capability index Cg of the measuring process. 

 
Significance for practical application 
In practice, a significance test of this type is only relevant if the measurement uncertainty U meets 
the condition  

%1%100
T
U

<⋅ . 

This is often not achieved. Instead, the so-called “golden rule of metrology” is considered to be 
the rule of thumb for “suitable” measuring systems,  

%10%100
T
U

<⋅ , 

i.e. a requirement reduced by a factor 10. It should be also noted that the upper limit of 10% 
represents a limit which has proven itself empirically, however, which is not clearly defined in 
guidelines and standards. Depending on the measuring system, it may happen that limit values up to 
approximately 20% are acceptable. 
It should be noted as well that the measurement uncertainty U never can be less than the resolution 
of the measuring system.  
 
Conclusion 
In the case 

T
U

T
xx 0 <

−
 or simply Uxx 0 <−  

the evaluation of the systematic measurement error of a measuring system by means of a 
significance test is not useful, since it is within the range of measurement uncertainty (value range 
for the true value of the measurement result). Then, it is not possible to decide whether the test 
result represents a purely computational result or an actual technical deviation.  
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F Consideration of systematic measurement errors (correction) 
NOTE: Numerous guidelines provide approaches more or less different from [GUM]. The approach 
described below is directly based on [GUM, H.3]. 

F.1 Uncertainty of the corrected measurement result 
Provided that a linear correction of an observed measurement result y′  (indication) is sufficient, the 
following model equation is applied to describe the relationship with the corrected measurement 
result 0y  (conventional value, “correct” value):  

( )yKyy0 ′+′=  (F.1) 
with the correction 

( ) yyyyK KK0 ′⋅β+α=′−=′  (F.2) 
NOTE 1: αK and βK are parameters of the correction curve, i.e. they usually represent the intercept and slope 
of a regression line. This line is determined e.g. as part of a calibration using several standards with 
different reference values (see appendix F.2 and [GUM, H.3]).  
NOTE 2: For non-linear corrections, e.g. by means of higher order polynomials, specialist literature should be 
referred to. 

When determining the uncertainty ( )0yu  of the corrected measurement result ( )y,,yy KK00 ′βα= , 
only the uncertainty ( )( )yKu ′  of the correction ( )yK ′  must be considered but not the correction 
itself. With the sensitivity coefficients 

1K
K

=
α∂

∂ , yK
K

′=
β∂

∂  and Ky
K

β=
′∂

∂   (F.3) 

the uncertainty of the correction is calculated according to 
( )( ) ( ) ( ) ( ) ( )KK

22
KK

22
K

2 ,uy2yuuyuyKu βα⋅′⋅+′⋅β+β⋅′+α=′ . (F.4) 

NOTE 3: It is essential to note that the regression coefficients αK and βK normally are determined from the 
same measurement data set and therefore they are correlated (see appendix C). Usually, this contribution 
is not negligible and must be taken into account in the uncertainty analysis [EUROLAB, A.2.1]. The term 
2 ∙ y‘ ∙ u(αK , βK ) represents this correlation.  

Accordingly, the following applies to the uncertainty of the corrected measurement result: 

( ) ( ) ( )( )yKuyuyu 22
0 ′+′=  (F.5) 

Practical special cases 

• 0K =β , i.e. a constant additive correction according to K0 yy α+′=  which is independent of the 
measured value:  

( ) ( ) ( )yuuyu 2
K

2
0 ′+α=  (F.6) 

• 0K =α , i.e. a correction by a constant factor relative the measured value according to 
( ) y1y K0 ′⋅β+= : 

( ) ( ) ( ) ( )yu1uyyu 22
KK

22
0 ′⋅β++β⋅′=  (F.7) 

F.2 Correction and correction uncertainty in case of linear regression 
The parameters Kα  and Kβ  for the correction ( )yK ′  and its standard uncertainty ( )( )yKu ′  are usually 
determined by means of several standards with different reference values j,0x  and the associated 
values jx′  indicated by the measuring system. The evaluation is performed with the aid of Eq. (F.2) 
where 0x  takes the place of 0y  and x′  takes the place of y′ : 

( ) xxxxK KK0 ′⋅β+α=′−=′  (F.8) 
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The following Eqs. (F.9) to (F.14) are standard relationships which can be taken e.g. from textbooks 
covering linear regression (see also [GUM, H.3] and [EUROLAB, A.2]). The nomenclature has been 
adapted to the present case. The applicability assumes insignificant effects of the reading 
uncertainty and the calibration uncertainty of the standards on the uncertainty of the calculated 
parameters and a sufficiently constant residual dispersion Rs  around the regression line. Otherwise, 
different relationships apply. The technical literature should be referred to for this point. 

Observed correction at standard j: 
jj,0j xxK ′−=   (F.9) 

Mean values of the observed correction values and the measured values for 0n  standards: 

∑
=

=
0n

1j
j

0
K

n
1K  ∑

=

′=′
0n

1j
j

0
x

n
1x    (F.10) 

Variance of the observed measured values and covariance of the observed measured values and the 
correction values, each multiplied by the factor ( )1n0 − : 

( )∑
=

′ ′−′=
0n

1j

2
jx xxQ  ( ) ( )∑

=
−⋅′−′=

0n

1j
jjK KKxxQ    (F.11) 

Slope and intercept of the regression line: 

x

K
K Q

Q
′

=β  xK KK ′⋅β−=α    (F.12) 

Residual dispersion of the observed correction values around the regression line: 

( ){ }
2n

xK
s

0

n

1j

2
jKKj

2
R

0

−

′⋅β+α−

=
∑
=    (F.13) 

Variance and covariance of intercept and slope of the regression line: 

( ) 











 ′
+⋅=α

′x

2

0

2
RK

2

Q
x

n
1su  ( )

x

2
RK

2

Q
1su

′
⋅=β  ( )

x

2
RKK Q

xs,u
′

′
⋅−=βα    (F.14) 

In order to determine the correction ( )yK ′  of any measurement result y′  observed within the range 
( ) ( )j,0j,0 xMAXyxMIN ≤′≤ , the parameter values determined according to the Eqs. (F.12) for the 

intercept Kα  and the slope Kβ  of the regression line are substituted in Eq. (F.2). To determine 
the uncertainty of the correction ( )( )yKu ′ , the parameter values determined according to the 
Eqs. (F.14) for the variances ( )K

2u α  and ( )K
2u β  and the covariance ( )KK,u βα  of the intercept and 

slope are substituted in Eq. (F.4). 

F.3 Uncertainty of the uncorrected measurement result 
NOTE: According to [GUM, 6.3.1, note] measurement results not being corrected although the 
required corrections are known have to be avoided in general. Sometimes, however, this case 
cannot be avoided (see [GUM, F.2.4.5]). Even so, it must be restricted to special circumstances, 
substantially reasoned and documented. 

If the measurement result is not corrected y′  despite the correction ( )yK ′ is known, both 
the uncertainty ( )( )yKu ′  of the correction as well as the correction ( )yK ′  itself must be taken into 
account as uncertainty components in the uncertainty ( )yu ′∗  of the uncorrected measurement result 
(see [EUROLAB], chap. 4) 22 : 

( ) ( ) ( )( ) ( ) ( ) ( )yKyuyKyKuyuyu 2
0

2222 ′+=′+′+′=′∗  (F.15) 

                                                 
22  See also I.H.Lira, W.Wöger, Meas. Sci. Technol. 9 (1998), 1010-1011 as well as “Erklärung der PTB zur 

Behandlung systematischer Abweichungen bei der Berechnung der Messunsicherheit” (2010-05-12) 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf


Booklet 8 – Measurement Uncertainty 
 

© Robert Bosch GmbH 2015 | Status 06.2015 59 

G Comparability of measurement results 
For the purpose of evaluating the comparability of measurement results of different laboratories and 
measuring instruments, the European Cooperation for Accreditation (EA) suggested using the 
parameter nE  [ISO 17043; ISO 13528]:   

2
REF

2
LAB

REFLAB
n

UU

yyE
+

−
=  (G.1) 

with 
LABy  Measurement result of the laboratory considered, 

LABU  Associated expanded measurement uncertainty of the laboratory considered, 

REFy  Reference value of a higher-level laboratory (e.g. PTB, NIST, NPL), 

REFU  Associated expanded measurement uncertainty of the higher-level laboratory. 

The comparability of the measurement results will be classified as acceptable if the criterion 1En ≤  
is met. In the case 1En >  corrective and possibly monitoring measures are required.  

NOTE: The applicability of this parameter is not restricted to different laboratories. It can be applied equally 
to several measuring systems of the same laboratory, for example. Application to several measurement 
results of the same measuring system is also possible. 

If a reference value REFy  of a higher-level laboratory with significantly smaller measurement 
uncertainty REFU  is unavailable, the mean value of the measurement results of all laboratories 
concerned can be used as a reference value REFy :  

∑
=

⋅==
LAB

N

N

1N
LAB

LAB
LABREF y

N
1yy  (G.2) 

with 

NLABy  Measurement result of laboratory no. N, 

LABN  Total number of laboratories concerned. 

Accordingly, REFU  is calculated from the average of the variances of the standard uncertainties of all 
laboratories concerned:  

2
LABp

N

1N

2

LABp

LAB

LAB
pLABREF uk

k
U

N
1kUU

LAB

N

N ⋅=









⋅== ∑

=

  (G.3) 

with 

NLABU  Expanded measurement uncertainty for the measurement result of laboratory no. N, 

NLABpk  Coverage factor of the expanded measurement uncertainty of laboratory no. N, 

pk  Coverage factor of the expanded reference uncertainty. 

Moreover, Eq. (G.1) enables a criterion for the distinctness of measurement results from the same 
measuring system to be defined in an alternative way to chap. 2.3. According to Eq. (G.1) the 
measurement results 1y  and 2y  are different if  

1
UU

yy
2
1

2
2

12 >
+

−  (G.4) 

is fulfilled. Since the measuring results were obtained with the same measuring system, UUU 12 ==  
can be assumed so that  

U2yy 12 ⋅>−  (G.5) 
results as a criterion for distinguishable values 1y  and 2y .  
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H Monte Carlo simulation 
It is not always possible to determine the measurement uncertainty of a measurand with reasonable 
effort in an analytical way based on the Gaussian error propagation law, i.e. through the manual 
analysis of a mathematical model equation. The effort for calculating partial derivatives or output 
quantity values can increase dramatically, in particular in the case of complex (e.g. nonlinear) 
mathematical relationships.  

In such cases, the Monte Carlo simulation method provides an alternative. Based on stochastics 
(probability theory) and by means of random numbers, this method simulates the impact of the 
variation of the input quantities (variables) of a mathematical formula (model equation) on the 
output quantity (result). 

Accordingly, just as with manual analysis, it is a basic prerequisite for the Monte Carlo method that 
the functional relationship (model equation) between the input quantities and the output quantity 
(cf. chapter 4.3) is available. Furthermore, knowledge about the target value or the expected value 
and the distribution model of associated input values around the target value or the expected value 
is required for each input quantity. The input values may be estimated or measured values which 
represent the practical application as closely to reality as possible. 

Unlike manual evaluations, highly complex relationships which cannot be described by means of a 
single analytical equation and unusual distributions of input values are possible. Examples are: 

• Absolute value, 
• Hysteresis, 
• limited range (“clipping”, e.g. in the case of limited frequency bands), 
• Idle time, 
• Backlash (e.g. differences of coordinate measuring machines when approaching a measuring 

point from the left or the right) 
• Constraint (e.g. overcoming frictional resistance) 
• Interpolation using predetermined points. 

The simulation is performed with estimated or measured values being used for each input quantity 
and each individual value being varied randomly according to the established distribution models. 
A sufficiently large number of simulation runs provides assertions about the dispersion range and 
distribution of the output values. 

Please, refer to [GUM-S1] for details. 
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I Form for tabular uncertainty budgets 
 
 

Table 7: Form sheet “Tabular uncertainty budget” form (proposal) 
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The form contains four groups of columns with the following contents: 
• Information about input quantities: Systematic documentation of all available information 

about the input quantities; 
• Standard uncertainties of input quantities: Calculation from the available information; 
• Contributions to the measurement uncertainty of the measurand: Calculation from the 

standard uncertainties; 
• Determining kp for the measurand. 
Every row of the table refers to a specific input quantity.  
One or more auxiliary lines containing intermediate and auxiliary calculations for this input quantity 
can be inserted above each table line. Auxiliary lines do not include a “seq. no.” and only contain 
data in the column group “Information about input quantities” . All other columns remain empty 23 . 

Information about input quantities 

Column heading Column content 

Seq. no. Integer 

Description Unique identifier (name) of the input quantity, e.g. “bracket length” 
(i.e. not merely unspecific “length”) 

Variable (symbol) Symbol for the input quantity, e.g. LB  
(i.e. L for “length” and “B” for bracket ) 

Measuring unit Measuring unit of the numeric value of the input quantity and the 
associated uncertainty data (e.g. m for meters) 

Value of the variable Numerical value of the input quantity (e.g. 7.5) 

Value of the uncertainty data Numerical value of the uncertainty data (e.g. 0.02) 

Comments (e.g. …) Free text, e.g. sources, notes, calculation formulas, references, links 
to documents 

Standard uncertainties of input quantities 

Column heading Column content 

Evaluation type A or B in accordance with the evaluation type used for the standard 
uncertainty of the corresponding input quantity 

Type A:  
Number of measured values  
 
Type B:  
kp (≥ 1), confidence level (%), 
distribution 

• Type A:  Unspecified or integer ≥ 1 
• Type B:  Value ≥ 1  

or confidence level  
(Percentage between 0% and 100%)  
or designation of the distribution model  
(e.g. triangular distribution) 

Numerical factor for 
calculating the standard 
uncertainty 

Numerical value by which the uncertainty data associated with the 
input quantity are divided to determine the standard uncertainty: 
• Type A:  1 or m  
• Type B:  kp  

Standard uncertainty Determined standard uncertainty of the input quantity 

                                                 
23  For exceptions, see tables in examples J.5.1 and J.5.2  
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Contributions to the measurement uncertainty of the output quantity 

Column heading  Column content 

Sensitivity coefficient Numerical value of the sensitivity coefficient of the corresponding 
input quantity 

Contribution to uncertainty Standard uncertainty multiplied by the sensitivity coefficients  

Contribution to uncertainty 
(squared) 

Numerical value of the column “contribution to uncertainty” 
multiplied by itself 

Percentage contribution to 
MU budget  

Numerical value of the column “contribution to uncertainty 
(squared)” as a percentage of the grand total of this column 

Rank 
(according to Pareto) 

Numerical values sorted by decreasing quantity, i.e. rank 1 has the 
highest significance, rank 2 has the second highest, etc. 

 
Determining kp for the output quantity (optional) 

Column heading  Column content 

Estimated uncertainty of 
the uncertainty data 

Numerical value as a percentage (see appendix D.3.2) 

Degrees of freedom Integer (see appendix D.3 for details) 

Contribution to the 
denominator of the 
Welch-Satterthwaite formula  

Numerical value (for further details, see appendix D.3.3) 
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J Examples 
With the exception of the “folding ruler” example, examples from real life are used in all cases. 
Simplifications are only made in some cases where not all possible input quantities are considered (e.g. 
uncertainties of material parameters such as the thermal coefficient of expansion).  

• J.1 Marking using a folding ruler (coll. yardstick) 
Simple illustration of the basic procedure of a measurement uncertainty study using the example 
of length and surface markings; application of the additive and multiplicative model, normal and 
triangular distribution and consideration of correlations. 

• J.2 Evaluating the suitability of a dial gauge 
Determining the uncertainty of the measurement results of a dial gauge that is calibrated for the 
special application of testing a specific product characteristic for compliance with a (fixed) 
specification; application of the additive model, avoidance of corrections.  

• J.3 Measuring a bolt diameter 
Determining the uncertainty of measurement results for bolt diameters; application of corrections 
and degrees of freedom (input quantities of type A and B, Welch-Satterthwaite formula).  

• J.4 Torque measurement using an engine test   
Determining the uncertainty of torque measurement results based exclusively on the manufacturer's 
specifications, calibration certificates and experience (type B evaluation, no measurements). 

• J.5 Optical measurement using a measuring microscope  
Determining and assessing the uncertainty of visually determined measurement results in 
accordance with ISO 22514-7. 

• J.6 In-process tactile diameter measurement  
Determining the uncertainty of the measurement results of a measuring process based on 
stability charts. 

• J.7 Injection quantity indicator (EMI)  
More sophisticated practical example: Uncertainty of the calibration of a measuring system 
based on a closed-form mathematical model; establishing the model equation, non-linear 
correction, uncertainty of the correction, using sensitivity coefficients. 

• J.8 Pressure sensor  
More sophisticated practical example: Determining correction and measurement uncertainty 
using a “mixed” model (additive overall model with closed-form mathematical submodel) for 
direct use in practical applications; impact of corrections that are not made; impact of use 
outside the calibrated temperature range.  

The aim is to illustrate the determination (calculation) of measurement uncertainties by means of 
real-life data (numerical values) in a clear, comprehensible and reproducible way. Therefore, all 
information is waived that is not essential for determining the measurement uncertainty. However, it 
is expressly pointed out that the full documentation of a measurement uncertainty study must 
include at least the following information: 

• unique identification of the measuring system (e.g. location, department, measuring system 
designation, inventory number, serial number); 

• date and time of the beginning and end of each measurement with indication of relevant 
environmental conditions (such as ambient temperature, humidity, air pressure and light intensity); 

• unique identification of the operators (operating, checking and analyzing) and the persons in 
charge by means of ID codes or names (note that uncoded names are not allowed in all countries); 

• any particular incidents during the measurement where applicable;  

• clear references to related documents (e.g. ID number, designation, version, date). 
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J.1 Marking using a folding ruler (coll. yardstick) 
Lengths and area sections should be marked. Commercially available folding rulers (coll. “yardstick”, 
see Figure 10) with the following characteristics are used for this purpose:  

• Total length of the ruler LT = 2 m = 2000 mm, 

• Length of a ruler element LE = 20 cm = 200 mm, 

• Scale spacing LS = 1 mm. 

 

•  

 

According to its labeling the ruler is of accuracy class III. Thus, the maximum permissible 
measurement error (“error limit”) in mm is calculated according to the formula 24: 

∗⋅+=δ≤δ L4.06.0LL MAXL . 

For ∗L  the numerical value has to be substituted which results from rounding up the length L0 to be 
measured to the next full meter (e.g. L* = 1 for the length L0 = 0.30 m to be measured, L* = 2 for the 
length L0 = 1.75 m to be measured). 

NOTE: In order to present the basic procedure as simple as possible, only those uncertainties are considered 
that are caused by the folding ruler itself. Other uncertainties such as arising from placing the ruler in 
position against certain datum points, marking of the desired position, squareness and position of the 4th 
corner point when marking surfaces are not considered in this example. In order to take account of these 
additional uncertainties, appropriate input quantities need to be identified and included. 

 
J.1.1 Marking two points at a distance up to the length of one ruler element 

Description of the measurement 
A second point should be marked at a distance of L0 = 15 cm from a predetermined point. The 
marking is done by simply applying and measuring using one ruler element.  

Input quantities 

• Nominal value of the length to be measured mm150L0 =  

Model 

L0 LLL δ+=  
with 

L  Actual value of the measured length, 

0L  Nominal value of the measured length (no uncertainty), 

LLδ  Deviation due to the limited accuracy of the total ruler length. 

 

                                                 
24  According to “Directive 2004/22/EC of the European Parliament and Council of March 31, 2004, on measuring 

instruments”, “Appendix MI-008 Material Measures”, table 1 

Figure 10: Commercially available folding ruler (accuracy class III, total length 2 m) 
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Standard uncertainties of the input quantities 

• The maximum permissible measurement deviation may lead to variations within the limits  

MAXLa δ+=+   and  MAXLa δ−=−  

i.e. cause the maximum deviation 
( ) ( ) ( ) mm0.1mm14.06.0mmL4.06.0L

2
L2

2
LL

2
aaa MAX

MAXMAXMAX =⋅+=⋅+=δ=
δ⋅

=
δ−−δ

=
−

= ∗−+  

As explained above, L* = 1 is used since the length to be measured is L0 = 0.15 m. Assuming a 
normal distribution the standard uncertainty is  

mm5.0mm
2
0.1

2
auL ===  

• Further input quantities are considered to be insignificant (see introduction, chap. J.1, note). 

Standard uncertainty of the output quantity 

Since only one input quantity is taken into account, it is likewise the output quantity : 

mm5.0uu LC ==  

Expanded measurement uncertainty 

The expanded measurement uncertainty is calculated using kp = 2: 

cm1.0mm0.1mm5.02ukU Cp ==⋅=⋅=  

Complete measurement result 

( ) mc1.00.15UL ±=± . 

Accordingly, a marking at a nominal distance L0 = 15 cm from a specified point is actually located in 
the range between L = 14.9 cm and L = 15.1 cm with a confidence level of 95.45% (corresponding to 
kp = 2). 

 
J.1.2 Marking two points at a distance of several lengths of a ruler element 

Description of the measurement 
A second point should be marked at a distance of L0 = 150 cm from a predetermined point. The 
marking is done by simply applying and measuring using several ruler elements.  

Input quantities 
• Nominal value of the length to be measured mm1500L0 =  

• Locking mechanism between the ruler elements  
(see Figure 12): 

 

o Distance between link axis and center of the bevelled edge area mm12s =  

o Width of the bevelled edge area mm1s =∆  

• Length of a single ruler element mm200LE =  
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Model 

ϕδ⋅+δ+= LnLLL EL0  
with 

L  Actual value of the measured length, 

0L  Nominal value of the measured length (no uncertainty), 

LLδ  Deviation due to the limited accuracy of the total ruler length, 

En  Required number of ruler elements (decimal digit), 

ϕδL  Deviation due to limited accuracy of the alignment of two ruler elements in 
an exactly straight line. 

Standard uncertainties of the input quantities 

• The maximum permissible measurement deviation may lead to variations within the limits  

MAXLa δ+=+   and  MAXLa δ−=−  

i.e. cause the maximum deviation 
( ) ( ) ( ) mm4.1mm24.06.0mmL4.06.0L

2
L2

2
LL

2
aaa MAX

MAXMAXMAX =⋅+=⋅+=δ=
δ⋅

=
δ−−δ

=
−

= ∗−+

As explained above, L* = 2 is used since the length to be measured is L0 = 1.5 m. Assuming a 
normal distribution the standard uncertainty is  

mm7.0mm
2
4.1

2
auL ===  

• The measurement requires the application of several ruler elements. Therefore, an angle ϕ 
between the individual elements of the ruler must be considered which leads to a deviation from 
the exact straightness of the ruler and thereby to a shortening of the actually measured length L 
compared to its nominal value L0 (see Figure 11):  

 
Figure 11: Deviations of the applied folding ruler from precise straightness 

The angle between two elements is caused by the backlash of the locking which is mainly due to 
the bevelled step at the edge of the locking mechanism (see Figure 12). 

 
Figure 12: Folding ruler, link and locking mechnism between ruler elements 

 

 

ϕ 2
ϕ

2
ϕ

0L
L
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The bevel width is ∆s = 1 mm. ∆s related to the distance s = 12 mm between the link axis and the 
center of the beveled edge area yields the following relationship for the maximum angle ϕ: 

083333.0
mm12

mm1
s
stan ≈=

∆
=ϕ  or 083141.0

mm12
mm1arctan

s
sarctan ≈








≈






 ∆

=ϕ  

or °≈ϕ 764,4  when converted from radian measure into angular measure. 

NOTE: Conversion by multiplying by 360° / (2π ) ≈ 57.296°. 

In relation to the ideally straight line between the start and end point of the length to be 
measured, the deviations δϕ  vary in the range  

22
ϕ

+≤δϕ≤
ϕ

−   

(see Figure 11). These deviations can cause a shortening of the actually gauged length up to  

EEE L
2

cos1
2

cosLLL ⋅





 ϕ

−=
ϕ

⋅−=δ ϕ  

for each ruler element which, however, actually contributes its nominal value LE to the 
measurement result (see Figure 13). 

 

Figure 13: Deviation of the length measurement due to angle deviation 
 

The approximation 
2

22
11

2
cos 






 ϕ

⋅−≈
ϕ  applies to small angles, so that  

E

2
L

8
L ⋅

ϕ
≈δ ϕ  . 

Per ruler element, this uncertainty of the alignment can lead to a deviation of the actually marked 
length within the limits  

ϕ+ δ+= La   and  ϕ− δ−= La  

i.e. the maximum deviation is 
( )

mm173.0mm200
8

083141.0L
8

L
2
L2

2
LL

2
aaa

2

E

2
≈⋅=⋅

ϕ
≈δ=

δ⋅
=

δ−−δ
=

−
= ϕ

ϕϕϕ−+ . 

The total length cm150L0 =  to be measured requires  

5.7cm20/cm150L/Ln E0E ===  

ruler elements, i.e. 7 complete elements and half of the 8th element. So, assuming a triangular 
distribution as an approximation for a limited, i.e. truncated normal distribution (exceeding the 
limit value is impossible for mechanical reasons), the following standard uncertainty caused by 
angular deviations results for the total length to be gauged:  

mm529.0
449.2

mm173.05.7
6

anu E ≈⋅=⋅=ϕ . 

• Further input quantities are considered to be insignificant (see introduction, chap. J.1, note). 

 

2
ϕ

EL

2
cosLE

ϕ
⋅

2
cosLL EE

ϕ
⋅−
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Standard uncertainty of the output quantity 

mm877.0mm769973.0mm279973.049.0mm529.0mm7.0uuu 222222
LC ≈=+≈+≈+= ϕ  

Expanded measurement uncertainty 

The expanded measurement uncertainty is calculated using kp = 2: 

cm18.0mm754.1mm877.02ukU Cp ≈=⋅=⋅=  

Complete measurement result 

( ) mc18.000.150UL ±=±  

Accordingly, a marking at a nominal distance L0 = 150 cm from a specified point is actually located in 
the range between L = 149.82 cm and L = 150.18 cm with a confidence level of 95.45% 
(corresponding to kp = 2). 

 
J.1.3 Marking an area using two folding rulers 

Description of the measurement 

A rectangular area with the edge lengths L0x = 15 cm and L0y = 150 cm shall be marked. Marking is 
done by applying and measuring using two different rulers. One ruler is used for the x-direction, the 
other one is used for the y-direction.  

Input quantities 
• Short side (edge length cm15L x0 = ): cf. chapter J.1.1  

• Long side (edge length cm150L y0 = ): cf. chapter J.1.2   

Model 
( ) ( )ϕδ⋅+δ+⋅δ+=⋅= LnLLLLLLA Eyy0xx0yx  (J.1) 

with 
A  Actual value of the marked area, 

xL , yL  Actual values of the measured lengths in the x-direction or the y-direction, 

x0L , y0L  Nominal values of the measured lengths in the x-direction or the y-direction 
(conventional values, no uncertainty), 

xLδ , yLδ  Deviations in the x-direction or the y-direction due to the limited accuracy of 
the total ruler length, 

En  Required number of ruler elements (decimal number), 

ϕδL  Deviation due to the limited accuracy of alignment of two ruler elements in 
an exactly straight line. 
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Standard uncertainties of the input quantities 

• The edge length to be measured in the x-direction is L0x = 0.15 m. Therefore, the standard 
uncertainty determined in chap. J.1.1 applies to the x-direction: 

mm5.0uu Cx ==  

• The edge length to be measured in the y direction is L0y = 1.50 m. Therefore, the standard 
uncertainty determined in chap. J.1.2 applies to the y-direction: 

mm877.0uu Cy ==  

• Further input quantities are considered to be insignificant (see introduction chap. J.1, note). 

Standard uncertainty of the output quantity 

In case of multiplicative models such as Eq. (J.1) the combined standard uncertainty of the output 
quantity can be determined from the following relationship (cf. chapter 4.5): 

003384.0
mm1500
mm877.0

mm150
mm5.0

L
u

L
u

A
u

222

y

y
2

x

xC ≈







+








≈










+








=  

Thus, the standard uncertainty Cu  of the area 
22

yx cm2250mm225000mm1500mm150LLA ==⋅=⋅=  

is  
222

C cm6.7mm4.761mm225000003384.0u ≈=⋅=  

Expanded measurement uncertainty 

The expanded measurement uncertainty is calculated using kp = 2: 
222

Cp cm2.15mm8.1522mm4.7612ukU ≈=⋅=⋅=  

Complete measurement result 

( ) 2mc2.150.2250UA ±=±  

Accordingly, in case of marking a rectangular area of nominal size A = 2250 cm2, the actual size of the 
marked area ranges between A = 2234.8 cm2 and A = 2265.2 cm2 with a confidence interval of 
95.45% (according to kp = 2). These are approximately 0.68% uncertainty in relation to the nominal 
size. 

 
J.1.4 Marking an area using a single folding ruler 

Description of the measurement 

The task is exactly the same as in chap. J.1.3: A rectangular area section with the edge lengths Lx = 15 
cm and Ly = 150 cm is to be marked. However, in contrast to chap. J.1.3, the same ruler is used for 
the x-direction and the y-direction.  

Input quantities 

See chapter J.1.3 

Model 

See chapter J.1.3 
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Standard uncertainties of the input quantities 

See chapter J.1.3 

In addition, the angle-independent uncertainty contribution as determined in chap. J.1.2 is needed: 

mm7.0uu LLy ==  

Standard uncertainty of the output quantity 

Since the measurements in the x-direction and the y-direction are performed using the same ruler, 
so that both measurement results can be influenced by the ruler in the same way, a correlation term 
has to be considered. It should be noted that only the length uncertainties in the x-direction the and 
y-direction have to be included in the correlation. The angle uncertainty, however, must not be 
included since uncertainties due to angular deviations between ruler elements cannot occur in the 
x-direction (short side). Accordingly, the basic equation of chap. J.1.3 expanded by a correlation term 
(3rd summand under the root symbol) applies: 

003816.0
mm1500

mm7.0
mm150
mm5.02

mm1500
mm877.0

mm150
mm5.0

L
u

L
u2

L
u

L
u

A
u

22

y

Ly

x

x
2

y

y
2

x

xC

≈







⋅








⋅+








+








≈











⋅








⋅+










+








=

 

Thus the standard uncertainty Cu  of the area 
22

yx cm2250mm225000mm1500mm150LLA ==⋅=⋅=  

is  
222

C cm6.8mm6.858mm225000003816.0u ≈=⋅=  

Expanded measurement uncertainty 

The expanded measurement uncertainty is calculated using kp = 2: 
222

Cp cm2.17mm2.1717mm6.8582ukU ≈=⋅=⋅=  

Complete measurement result 

( ) 2mc2.170.2250UA ±=±  

Accordingly, in case of marking a rectangular area of nominal size A = 2250 cm2, the actual size of the 
marked area ranges between A = 2232.8 cm2 and A = 2267.2 cm2 with a confidence interval of 
95.45% (according to kp = 2). These are approximately 0.76% uncertainty in relation to the nominal 
size. 
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J.2 Evaluating the suitability of a dial gauge 

Description of the measurement 

A dial gauge is to be calibrated for the special use case of testing a product characteristic on 
compliance with the specification (8.0 ± 0.1) mm (T = 200 µm).  

 
Figure 14: Calibrating a dial gauge 

NOTE: With the aid of the bracket the dial gauge is “adapted” to the standard device and thus the 
calibration is enabled. 

Input quantities 
 
• Information about the standard device  

Manufacturer's specification of the measurement uncertainty:   I
-6

CAL L100.6µm4.0U ⋅⋅+=  
IL  – indicated length in µm, kp = 2, temperature range (20 ± 0.5) °C 

Digit increment of the indication µm1.0LI =∆  
 
• Information about the object to be measured Dial gauge as per ISO 463 

Scale interval mm01.0SI =  
Uncertainty of the estimate of the pointer position on the scale SI1.0SI ⋅=∆  
Length of the measuring bolt mm100LX =  
Linear thermal coefficient of expansion of the measuring bolt -1-6

X K10 1.5)5.8( ⋅±=α  
 
• Information about the procedure 

Temperature deviation from C 200 °=ϑ  during measurement K1=ϑ∆  
Length of the bracket mm200LB =  
Linear thermal expansion coefficient of the bracket -1-6

B K10 1.5)5.10( ⋅±=α  
Effective length of the glass scale of the standard device mm70LN =  
Linear thermal expansion coefficient of the glass scale  -1-6

N K101.5)5.11( ⋅±=α  
 

NOTE: It is assumed that the solid parts of the standard device do not change during the short period of 
measurement time as a result of temperature fluctuations in the ± ∆ϑ range. 
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Model 

BXNOCAL

0

xxxxx
y

Kyy δ+δ+δ+δ+δ+

=

+′=


  

with 
y  Indication of the dial gauge, 
y′  Uncorrected indication of the dial gauge, 
K  Correction, 

0y  Indication of the standard device (conventional value, no uncertainty), 

CALxδ  Deviation due to the limited precision of standard device calibration, 

Oxδ  Deviation due to the limited accuracy of the scale readability, 

Nxδ  Deviation due to the temperature influence on the standard device, 

Xxδ  Deviation due to the temperature influence on the measuring object, 

Bxδ  Deviation due to the temperature influence on the bracket. 

xxx ∆≤δ≤∆−  applies to all above-mentioned deviations. Here, xδ  describes the instantaneous 
value of the fluctuating deviation (expected value 0x =δ ), x∆  the associated maximum deviation. 

Measurement results 
 

Measured displacement between the pointer positions 0 mm (initial position) and 8 mm (end position): 
When the pointer position is mm00.8y =′ , the standard device indicates the measured displacement 

mm022.8y0 = . 

Correction 
 

The deviation of the dial gauge indication y′  from the conventional value 0y  of the standard device 
is mµ22− , i.e. 

mµ22mm022,0mm00,8mm022,8yyK 0 ==−=′−=  

NOTE: This correction applies exclusively to the dial gauge indication y‘ = 8 mm. In order to calibrate 
the entire measuring range of the dial gauge, measurements at various indications (calibration points) 
distributed throughout the measuring range and evaluation according to appendix F are required. This 
often leads to corrections that are dependent on the respective displacement and additional uncertainties.  

In practice, corrections are not common for this type of dial gauge so that the systematic error must be 
considered as an uncertainty contribution in the uncertainty budget (see appendix F.3). 

Standard uncertainties of the input quantities 
 

• Standard device: Standard uncertainty in case of the measured displacement 
mm022,8yL 0I == and assuming a normal distribution 

mµ0.203mµ0.2024 
2

mµ0.0048+mµ0.4=
2

µm8022100.6+mµ4.0
k

Uu
-6

p

CAL
CAL ≈=

⋅⋅
==  

The standard uncertainty of the digit increment is included in this uncertainty.  

• Measuring object: Standard uncertainty due to the uncertainty of the scale reading 
Upper and lower limit values for the deviation of the reading value from the pointer position: 

mµ0.1mm01,01.0SI1.0SIa +=⋅+=⋅+=∆+=+  
mµ0.1mm01.01.0SI1.0SIa −=⋅−=⋅−=∆−=−  

Standard uncertainty assuming rectangular distribution:  

mµ578.0mµ5774.0
3
µm.01

3
1

2
aa

3
auO ≈≈=

−
== −+  
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• Procedure: Standard uncertainty of the (effective) glass scale length NL  of the standard device 
due to deviations of the ambient temperature from the reference temperature C200 °=ϑ  

Upper and lower limit values of the deviations from NL : 
( ) ( ) mµ0.805=mm0.000805=K1mm70K105.11La 16

NN +⋅⋅⋅=ϑ∆+⋅⋅α= −−
+  

( ) ( ) mµ0.805mm0.000805K1mm70K105.11La 16
NN −=−=−⋅⋅⋅=ϑ∆−⋅⋅α= −−

−  

Standard uncertainty assuming rectangular distribution: 

mµ465.0
3

µm.8050
3
1

2
aa

3
auN ≈=

−
== −+  

 

• Procedure: Standard uncertainty of the measuring bolt length XL  of the measuring instrument 
due to deviations of the ambient temperature from the reference temperature C200 °=ϑ  

Upper and lower limit values of the deviations from XL : 
( ) ( ) mµ0.85mm0.00085K1mm100K105.8La 16

XX ==+⋅⋅⋅=ϑ∆+⋅⋅α= −−
+  

( ) ( ) mµ0.85mm0.00085K1mm100K105.8La 16
XX −=−=−⋅⋅⋅=ϑ∆−⋅⋅α= −−

−  

Standard uncertainty assuming rectangular distribution: 

mµ491.0
3
µm.850

3
1

2
aa

3
auX ≈=

−
== −+  

 

• Procedure: Standard uncertainty of the bracket length BL  due to deviations of the ambient 
temperature from the reference temperature C200 °=ϑ  

Upper and lower limit values of the deviations from BL : 
( ) ( ) mµ10.2mm0.00210K1mm200K105.10La 16

BB ==+⋅⋅⋅=ϑ∆+⋅⋅α= −−
+  

( ) ( ) mµ0 2.1mm0.00210 K1mm200K105.10La 16
BB −=−=−⋅⋅⋅=ϑ∆−⋅⋅α= −−

−  

Standard uncertainty assuming rectangular distribution: 

mµ213.1mµ2124.1
3
µm.102

3
1

2
aa

3
auB ≈≈=

−
== −+  

Standard uncertainty of the output quantity 

( ) mµ053.22µm304.486 mµ22213.1491.0465.0578.0203.0

Kuuuuuu
2222222

22
B

2
X

2
N

2
O

2
CALC

≈≈+++++=

+++++=
 

Expanded measurement uncertainty 

With the coverage factor kp = 2 the expanded measurement uncertainty of the calibration results in 
mµ.244mµ106.44mµ.053222  ukU Cp ≈=⋅≈⋅=  

Complete measurement result 

( ) mµ.244mm8.0mµ.2448000Uyy ±=±=±′=  

Accordingly, the conventional value of the measurement result can be expected in the range 
between 7.955 mm and 8.045 mm with a confidence level of 95.45%. This applies to the 8 mm 
measuring point only. 
Conclusion: 22,0mµ200mµ,244TU >=  (22%) violates the “golden rule of metrology” according to 
which TU  preferably should be less than 10%, but not at all greater than 20%. Therefore, it does not 
make sense to use the dial gauge for the intended task (see chapter 2.2, note 1).  

NOTE: Correcting the indications could reduce the uncertainty to U < 3.1 µm so that  U/T < 0.02 (2%). 
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Table 8: Uncertainty budget for the “dial gauge” example 
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J.3 Measuring a bolt diameter 
The example shows the basic procedure for determining the uncertainty of a measurement result 
according to [GUM]. This includes determining the correction, the correction uncertainty and the 
coverage factor kp for the expanded measurement uncertainty of the output quantity using the 
degrees of freedom. Only a few less significant uncertainties are disregarded right from the 
beginning (e.g. uncertainties of the thermal coefficient of expansion). By means of the evaluation, 
the input quantities with major and minor impact on the measurement uncertainty can be 
distinguished. 

NOTE 1: In operational practice, it is customary to neglect input quantities that are classified (after 
thorough examination) as being less significant or not at all significant.  
NOTE 2: Roundings must be performed in line with the rules according to chap. 4.7.2. If the evaluation is 
largely done without roundings of intermediate results, smaller values for the measurement uncertainty of 
the output quantity (diameter) may result.  

Description of the measurement 
 
The diameter of a bolt is measured using a comparator with the measuring object being inserted 
between two plane-parallel measuring surfaces (probing planes):  
• Two-point measurement between plane surfaces, fully float-mounted, 
• Measurements at m = 8 different points of the bolt circumference, 
• Temperatures of the measuring object and the glass scale are measured. 
Zero compensation is performed prior to measuring. 
 

 
Figure 15: Measuring setup for the measurement of a diameter 

 

Input quantities 
 
• Standard device: 

Manufacturer's specification of the measurement uncertainty: I
6

N L101µm3.0U ⋅⋅+= −  
LI – indicated length in µm, kp = 2, temperature range (20 ± 0.5) °C 

Thermal coefficient of expansion (glass scale): 16
N K108 −− ⋅⋅=α  

Digit increment of the indication: µm1,0LI =∆  
 
• Measuring object: 

Nominal diameter of the bolt (at C200 °=ϑ ): µm20000mm20LO ==  

Thermal coefficient of expansion (aluminum): 16
O K1024 −−⋅=α  
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• Measurement procedure: 

Number of different measuring points: 8m =  

Uncertainty of the alignment of the measuring object:  µm15.0UA =  
kp = 2; AU  known from m = 25 previous measurements  
under the same conditions 

Uncertainty of the probing operation due to deviations  
of the probing planes from plane parallelism: µm15.0UP =  
kp = 2; PU  known from previous measurements under  
the same conditions with a standard 

Temperature of the glass scale during the measurement: C5.23N °=ϑ  

Temperature of the measuring object during the measurement: C0.25O °=ϑ  

Uncertainty of the thermometer: K5.0U =ϑ  
Thermometer with resolution of 0.1 K 

 
Model 
 

Kxxxx
y

Kyy PARN

0

δ+δ+δ+δ+δ+

=

+′=


 

with 
y  Indication for the diameter, 
y′  Uncorrected indication, 
K  Correction, 

0y  Corrected indication (conventional value, no uncertainty), 

Nxδ  Deviation due to the limited precision of standard device calibration, 

Rxδ  Deviation due to the dispersion during repeated measurements, 

Axδ  Deviation due to the inaccurate alignment of the measuring object, 

Pxδ  Deviation due to inexact plane-parallel probing planes, 
Kδ  Deviation due to inaccurate correction of the systematic measurement error 

resulting from limited temperature measurement accuracy. 

xxx ∆≤δ≤∆−  applies to all above-mentioned deviations. Here, xδ  describes the instantaneous 
value of the fluctuating deviation (expected value 0x =δ ), x∆  the associated maximum deviation. 

 
Measurement results 
 

Measurement 
no. 

1 2 3 4 5 6 7 8 

∅ in mm 20.0052 20.0045 20.0055 20.0047 20.0051 20.0046 20.0053 20.0051 

Mean value:  mm 0050.20x =  
Standard deviation: mµ 0.36mm 00036.0s ==  
The mean value is considered to be an uncorrected measurement 
result: xy =′  
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Correction 

At operating temperatures that deviate from the reference temperature of 20 °C, systematic errors 
may occur due to different changes in the lengths of the measuring system components and of the 
measuring object. In the present case, it is assumed that the relevant changes in length of the glass 
scale and the solid parts of the standard device neutralize each other except for insignificant 
proportions so that only the measuring object must be considered. 

NOTE: This assumption is possibly no longer justified for operating temperatures that deviate significantly 
from the reference temperature. In this case, temperature influences on the standard device must be taken 
into account as well. Accordingly, the determination of the correction will be more complex.  

Thermal expansion of the measuring object: 
( ) ( ) mµ2.4µm20000K2025 K1024LC20L -16

OOOO =⋅−⋅⋅=⋅°−ϑ⋅α=∆ −  

Correction of the bold diameter: 
mm0.0024µm4.2LK O −=−=∆−=  

Corrected measurement result according to appendix F:  
( ) mm0026.20mm0024.0mm0050.20Kyy0 =−+=+′=  

Standard uncertainties of the input quantities 

• Standard device: The standard uncertainty for a measured displacement of mm20LN =  is 
determined using the calculation rule for the measurement uncertainty specified by the 
manufacturer:  

µm0.32µm0.02)+(0.3=µm20000101mµ3.0=L101mµ3.0U 6
N

6
N =⋅⋅+⋅⋅+= −−  

For this expanded measurement uncertainty, a normal distribution with a confidence interval of 
95.45% is assumed, i.e. kp = 2. Standard uncertainty resulting from kp = 2: 

mµ16.0
2

mµ32.0
2

Uu N
N ===  

Degrees of freedom according to chap. 4.4.2.1:  
∞→νN  

• Standard device: The standard uncertainty due to the digit increment of the indication is 
included in the measurement uncertainty specified by the manufacturer and in the measurement 
series dispersion. 

• Measuring object: The measuring object does not contribute to the uncertainty budget, since 
the measurements are performed at eight different points on the measuring object so that the 
effect of shape deviations is included in great part in the measured values of repeated 
measurements. 

• Procedure: Standard uncertainty due to repeated measurements on the measuring object 
The measurement results of repeated measurements are considered to be normally distributed. 
Standard uncertainty according to chap. 4.4.1.1: 

mµ13.0
8

mµ36.0
m
suR ≈==  

Degrees of freedom according to appendix D.3.1: 
7181mR =−=−=ν  

• Procedure: Standard uncertainty due to inexact alignment of the measuring object 

The empirical value mµ15,0 UA =  with a confidence interval of 95.45% is available from previous 
measurements for the alignment uncertainty. This uncertainty was determined based on m = 25 
repeated measurements. 
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Degrees of freedom according to appendix D.3.1: 
241251mA =−=−=ν  

According to appendix D.1 the coverage factor 2kp ≈  results in case of ν = 24 degrees of 
freedom and a confidence interval of 95.45%. Standard uncertainty according to chap. 4.4.2.1: 

mµ08.0
2

mµ15.0
k
Uu

p

A
A ≈==  

• Procedure: Standard uncertainty due to inexactly plane-parallel probing planes 
For the probing uncertainty due to probing planes that are not plane-parallel, the empirical value 

mµ15,0UP =  with a confidence level of 95.45% is available. Standard uncertainty according to 
chap. 4.4.2.1: 

mµ08.0
2

mµ15.0
k
Uu

p

P
P ≈==  

Degrees of freedom according to chap. 4.4.2.1:  
∞→νP  

• Procedure: Standard uncertainty of the correction due to temperature measurement uncertainty 
The uncertainty K5,0U =ϑ  of the thermometer results in the following limit values 25: 

( ) ( ) ( ) µm2.64µm20000K205.025 K1024LC20ULL -16
OOOOO ≈⋅−+⋅⋅=⋅°−+ϑ⋅α+= −

ϑ
+  

( ) ( ) ( ) µm2.16µm20000K205.025 K1024LC20ULL -16
OOOOO ≈⋅−−⋅⋅=⋅°−−ϑ⋅α+= −

ϑ
−  

Standard uncertainty according to chap. 4.4.2.2 assuming rectangular distribution: 
( ) ( )

µm14.0
732.1
1

2
µm2.16µm2.64

3
1

2
LL

3
au OO

K ≈⋅
−

≈⋅
−

==
−+

 

The uncertainty K5.0U =ϑ  of the temperature recording is estimated to be uncertain at 50%. 
Then, an uncertainty of 50% also results for Ku . Corresponding degrees of freedom according to 
appendix D.3.2: 

( ) 2
5.02

15.0
2
1

u
u

2
1

2
2

2

K

K
K =

⋅
==







 ∆
≈ν −

−

 

Standard uncertainty of the output quantity 

Combined standard uncertainty according to chap. 4.5: 

( ) ( ) ( ) ( ) ( ) µm28.0µm2737.0mµ14.0mµ0.08mµ0.08mµ0.13mµ0.16

uuuuuu
22222

2
K

2
P

2
A

2
R

2
NC

≈≈++++=

++++=
 

Degrees of freedom according to appendix D.3.3 (Welch-Satterthwaite equation): 

( )
( ) ( ) ( ) ( ) ( )

261574.26
000235.0
006147.0

000192.00000002.0000041.00
006147.0

2
µm14.0µm08.0lim

24
µm08.0

7
µm13.0µm16.0lim

µm28.0

uuuuu
u

4

P

444

N

4

4
K

4
K

P

4
P

A

4
A

R

4
R

N

4
N

4
C

eff

PN

≈≈=
++++

=

+
ν

+++
ν

=

ν
+

ν
+

ν
+

ν
+

ν

=ν

∞→ν∞→ν

 

                                                 
25  See note 5 on page 111 on the subject of using the expanded measurement uncertainty Uϑ as a deviation ∆ϑ 
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Figure 16: Bolt diameter; Pareto chart of the uncertainty contributions ui

2 

On the basis of the chart, a reduction of the measurement uncertainty up to approximately 25% can be 
expected if, for example, the uncertainty of the correction could be reduced. If applicable, it should be 
checked whether a reduction can be achieved by means of an improved adjustment of the operating 
temperature to the reference temperature 20°C and the associated smaller correction. 

Expanded measurement uncertainty 

According to appendix D.1, 26eff =ν  degrees of freedom together with a confidence level of 95.45% 
result in the coverage factor kp = 2.10. 

Expanded measurement uncertainty according to chap. 4.6: 
mµ0.6mµ0.59= mµ28.010.2ukU Cp ≈⋅=⋅=   

NOTE: Without an analysis of the degrees of freedom, typically the coverage factor kp = 2.00 is used. In 
doing so, it is (often tacitly and in a manner that is not always justified) assumed that ν ≥ 20 degrees of 
freedom are present. This leads to the slightly lower measurement uncertainty of U = 0.56 µm. Rounded up 
to the nearest decimal place (see chap. 4.7.2), however, the result is also U = 0.6 µm. 

This expanded measurement uncertainty – which is calculated taking account of the boundary conditions 
described above – is only valid for the period of time when the measurement is carried out. If the 
uncertainty shall be also valid for later measurements, influencing quantities which might additionally 
take effect during this period of time must be considered as well. 

Complete measurement result 

Complete measurement result according to chap. 4.7: 
( ) mµ0.6 mm0026.20mµ6.04.20.20005UKyUyy 0 ±=±−=±+′=±=   

The conventional value of the measurement result can be expected in the range between 
20.0020 mm and 20.0032 mm with a confidence level of 95.45%. 
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Table 9: Uncertainty budget for the “bolt diameter” example 
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J.4 Torque measurement using an engine test station 
Description of the measurement 

Engine test stations include torque measuring equipment. Figure 17 presents the measurement chain 
schematically. The measurement tasks vary greatly across different test stations and instants of time. 
Thus, it is impossible to determine the uncertainty of the measurement results for each individual case. 
Instead, it is determined once for certain reference values and then applied to all structurally identical 
systems and measurements that are performed under the same conditions. The approach is explained 
by means of the reference point M0 = 100 Nm as an example. The same procedure is used for other 
reference points. 

Load cell

Mechanical
 force

transmission
Display of the 

automated 
measuring 
system /
data file

CAN 
Message

Flange
 at the
 load

machine

A/D 
converter

-10V ... +10V

  
Figure 17: Measuring chain of an engine test station, typical measuring range: ‒50 Nm to +500 Nm 

Using the engine test station, the torque is determined that acts on the flange between the engine 
and the load machine. The load machine is simultaneously used as a measuring instrument and 
provides a load cell for this purpose. The torque is calculated from the measured force and the 
known length of the lever arm of the mechanical system. 

 
Figure 18: Schematic structure of an engine test station 

Recurrent calibration of the entire measuring chain is essential for the practical use of the measuring 
process (Figure 17). For this purpose, the engine is replaced with a torque measurement standard at 
the connection flange which is traced back to national and international primary standards 
(calibration certificate). The standard essentially consists of a mechanical lever arm and calibrated 
reference masses 26 exerting defined reference forces on the load cell. Depending on the calibration 
result, the system is adjusted and re-calibrated as required.  

Input quantities 

• Torque (reference value) Nm100M0 =  

• Resolution of indication (digit increment) Nm05.0MR =∆  

• Lever arm length, nominal value (manufacturer's specification) mm1000L0 =  

• Maximum deviation of the lever arm length from the nominal value mm32.0L =∆  
(based on manufacturer's specifications) 

                                                 
26 Also imprecisely described as “weight piece” (see DIN 8127:2007-11) or coll. “weight” 

Combustion 
engine 

Self-aligning  
ball bearing 

Load machine 

Load cell 

Flange 

Lever arm 
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• Maximum deviation of the reference masses from the nominal value %005.0% m =∆  
(manufacturer's specifications) 

• Ambient temperature during calibration C0.200 °=ϑ  

• Maximum deviation of the ambient temperature during calibration K0.30 =ϑ∆  

• Maximum deviation of the ambient temperature during measurement K0.6=ϑ∆  

• Maximum deviation of the torque indication due to deviation K/%05.0% =∆ϑ   
of the load cell resulting from temperature deviation (related to M0) 
(manufacturer's specifications) 

• Full scale value of the measuring range Nm500MMAX =  

• Maximum permissible deviation between reference value and %4,0% =∆  
indication within which the measuring system is classified as (based on MMAX) 
OK when calibrated 

This “acceptance range” ∆%  is used to consider the effect of the following effects: 
o The torque which is actually effective at the flange is only indirectly recorded via the load cell 

and the lever arm length. 
o Friction in the bearings of the lever arm leads to measurement errors and hysteresis of the 

calibration curve.  
o The zero point and sensitivity of the entire system have a long-term drift.  
These effects are not compensated by recurring adjustment and calibration. Instead, the control 
of inspection, measuring and test equipment is utilized to ensure that the overall impact of these 
effects remains within specified limits (± 0.4% of the full scale value of the measuring range). 

 

Model equation 

∆ϑ δ+δ+δ+δ+δ+= MMMMMMM mLR0  
with 

M  Indication for the torque, 

0M  Conventional value (no uncertainty), 

RMδ  Deviation due to the limited resolution of the measuring system, 

LMδ  Deviation due to the uncertainty of the lever arm length, 

mMδ  Deviation due to the uncertainty of the reference masses, 

ϑδM  Deviation due to the uncertainty of the force measurement resulting from 
temperature fluctuation, 

∆δM  Deviation due to the uncertainty of the difference between the reference value and 
the indication. 

MMM ∆≤δ≤∆− applies to all above-mentioned deviations. Here, Mδ  describes instantaneous value 
of the fluctuating deviation (expected value 0M =δ ), M∆  the associated maximum deviation. 

Measurement results 

No measurements are carried out, all details are taken from the manufacturer's data sheets or they 
are based on experience. 

Correction 

No corrections are performed. 
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Standard uncertainties of the input quantities 
 
• The limited resolution ∆MR = 0.05 Nm (digit increment) of the torque indication can lead to 

deviations within the limits  

2
Ma R∆

+=+   and  
2
Maa R∆

−=−= +−   

i.e. cause the maximum deviation 

Nm025.0
2
Ma

2
aaa R =

∆
==

−
= +

−+  

Assuming a rectangular distribution results in the standard uncertainty 

Nm015.0Nm
3

025.0
3

auR ≈==  

 
• The lever arm length is uncertain during calibration with respect to the manufacturing tolerance of 

the lever arm and its mechanical mounting. Moreover, temperature fluctuations up to 
K300 ±=ϑ∆±=δϑ are assumed which may occur during the calibration process without  

corrections being made. These effects all in all can cause deviations of the lever arm length up to 
mm32,0LL ±=∆±=δ  (which is determined based on manufacturer's specifications). Further-

more it is assumed that torque and lever arm length change with the same ratio, i.e. 
proportionally: 

00

L
L
L

M
M δ

=
δ  

This may lead to deviations of the measured torque within the limits  

0
0

L M
L

LMa ⋅
∆

=∆+=+   and  0
0

L M
L
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∆

−=∆−=−= +−  

i.e. cause the maximum deviation 

Nm032.0Nm100
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L
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2
aaa 0

0
=⋅=⋅

∆
=

−
= −+  

Assuming a rectangular distribution results in the standard uncertainty 

Nm019.0Nm
3

032.0
3

auL ≈==  

 
• For the reference masses the tolerances %∆m = 0.005% apply which are specified by the 

manufacturer and related to the nominal value m0 of the corresponding reference mass. It is 
assumed that the torque and the reference mass change with the same ratio, i.e. proportionally: 

%100
%

 m
m

 M
M m

00

m ∆
≤

δ
=

δ  

This may lead to deviations of the measured torque within the limits  

0
m

m M
%100
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m

m M
%100
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i.e. cause the maximum deviation  
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2
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m
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∆
=∆=

−
= −+  

Assuming a rectangular distribution results in the standard uncertainty  

Nm003.0Nm
3

005.0
3

aum ≈==  

NOTE: The corresponding reference forces g⋅ m0 are calculated using the gravitational acceleration g which is 
applicable at the operating site of the standard device according to data provided by “Physikalisch-Technische 
Bundesanstalt” (PTB, Federal Physical-Technical Institute, Germany). Here, however, the uncertainty of g 
(0.0002%) is evaluated as negligible, so that regardless of whether forces or masses are considered, the same 
standard uncertainty um results. 
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• The ambient temperature during the measurement influences the zero point and the sensitivity 
of the load cell. In contrast to the calibration procedure (no engine is coupled, so there is no 
waste heat) temperature fluctuations up to K6±=ϑ∆±=δϑ  can occur during measuring 
operation (engine is coupled, i.e. waste heat is present). Per Kelvin temperature deviation of the 
load cell from the calibration temperature C200 °=ϑ , a measurement error of K/%05,0% =∆ϑ  
from the conventional value M0 has to be expected (manufacturer's specifications). This may lead 
to deviations of the measured torque within the limits  

0M
%100

%Ma ⋅
∆

⋅ϑ∆=∆+= ϑ
ϑ+   and  0M

%100
%Maa ⋅

∆
⋅ϑ∆−=∆−=−= ϑ

ϑ+−  

i.e. cause the maximum deviation  

Nm300.0Nm100
%100
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2
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∆
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−

= ϑ
ϑ

−+  

Assuming a rectangular distribution results in the standard uncertainty  
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3

300,0
3

au ≈==ϑ  

 
• The “acceptance range” for deviations between the reference value and the indication of the 

test stations during calibration is %∆ = 0.4% of the full scale value MMAX = 500 Nm of the 
measuring range. Therefore deviations within the limits  

MAXM
%100

%Ma ⋅
∆

=∆+= ∆+   and  MAXM
%100

%Maa ⋅
∆

−=∆−=−= ∆+−  

must be taken into account, i.e. a maximum of  

Nm0.2Nm500
%100
%4.0M

%100
%M

2
aaa MAX =⋅=⋅

∆
=∆=

−
= ∆

−+  

The values within the limits of ±2.0 Nm are assumed to be distributed according to a triangular 
distribution which, unlike the normal distribution, has fixed limits. This assumption is based on 
the graphical analysis of the measurement errors occurring in practice which were observed 
during various calibrations of different test stations of identical construction. The corresponding 
standard uncertainty is calculated according to 

Nm817.0Nm
6
0.2

6
au ≈==∆  

 

Standard uncertainty of the output quantity 

Nm836.0Nm698360.0Nm667489.0030276.0000009.0000361.0000225.0

Nm817.0174.0003.0019.0015.0

uuuuuu
22222

222
m

2
L

2
RC

≈≈++++≈

++++≈

++++= ∆ϑ

 

 

Expanded measurement uncertainty 

The expanded measurement uncertainty is calculated using kp = 2: 

Nm7.1Nm672.1Nm836.02ukU Cp ≈=⋅=⋅=  
 

Complete measurement result 

mN7.1MUM ±=±  

U applies to measurements close to the reference point M0 = 100 Nm. M denotes the torque value 
actually indicated by the measuring system.  
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Table 10: Uncertainty budget for the “torque” example 
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J.5 Optical measurement using a measuring microscope 
Description of the measurement 
The width of a weld seam is measured manually using microsections and a measuring microscope 
(10x lens) with an image processing system. Before the measurement, the weld seam of the steel 
part is severed in its center and a microsection is made. The width of the weld seam is specified as 
(1.6 ± 0.5) mm, T = 1.0 mm. 

 
Figure 19: Measurement setup for the optical measurement of microsections 
 

 
Figure 20: Product part and measuring task (measuring the seam width using a microsection) 
 

The task is to determine the measurement uncertainty according to [ISO 22514-7] and to evaluate 
the suitability of the measuring system and the measuring process accordingly (cf. chapter 5). 

NOTE: Input quantities and model equations are implicitely standardized in case of the approach according 
to [ISO 22514-7]. The standard does not require any separate specification. Instead, it is sufficient to specify 
the standard uncertainties of the input quantities according to chapter 5, Table 3 und Table 4, and to 
calculate the combined output quantities according to the equations (5.1) and (5.2) which correspond to an 
additive model. Thus, the following sections “input quantities”, “model”, “measurement results” and 
“correction” are not mandatory and often omitted in practice. This applies as well to tabular uncertainty 
budgets.  

Camera 

Microscope 

PC Microsection 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf
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Input quantities 

• Calibration uncertainty of the calibration plate (measurement standard) 
Data source: DAkkS calibration certificate 

µm15.0UCAL =  
2kp =  

• Resolution of the measuring system  
Data source: Output of the image processing system (software) 

µm382.1RE =  

• Repeatability at the standard 
Data source: Standard deviation according to booklet 10, type-1 study 

µm0.919s =  

• Systematic measurement error of the measuring system  
Data source: Measurement error according to booklet 10, type-1 study 

mµ0.0176BI =  

• Repeatability of measurement results of the measuring object 
Data source: EV according to booklet 10, type-2 study 

mµ6.529EV =  

• Operator impact on measurement results of the measuring object 
Data source: AV according to booklet 10, type-2 study 

mµ7.298AV =  

• Interaction between operator and measuring object 
Data source: IA according to booklet 10, type-2 study 

mµ8.604IA =  

 

Model (according to chap. 5.2) 

Measuring system:  
BI)MS(EVCALMS xxxyy δ+δ+δ+′=  (J.2) 

Measuring process: 
( ) IAAV)MS(EV)MP(EVMSMP xxxxyy δ+δ+δ−δ+=  (J.3) 

with  
y′  Indication for the measurement results MSy  of the measuring system 

or MPy  of the measuring process, 
CALxδ  Deviation due to the limited precision of calibration, 

)MS(EVxδ  Deviation due to the limited repeatability of the measuring system, 
BIxδ  Systematic measurement error, 

)MP(EVxδ  Deviation due to the limited repeatability of the measuring process, 
AVxδ  Deviation due to operator influence, 
IAxδ  Deviation due to interactions between input quantities. 

Deviations caused by inhomogeneities of the measuring object ( OBJxδ ) during the measurement 
(due to setting the positions of measuring points in the measuring microscope based on the 
operator's visual assessment) are included in the operator influence ( AVxδ ) and the interaction 
( IAxδ ) between the operator and the measuring object. Further potential deviations according to 
[ISO 22514-7] and chap. 5.2, i.e. deviations from linearity ( LINxδ ), deviations due to instability over 
time ( STABxδ ) and temperature influences ( ϑδx ), deviations between different measuring systems 
( GVxδ ) and deviations due to any other influences ( )MS(RESTxδ , )MP(RESTxδ ) are evaluated as being 
insignificant or irrelevant. Thus they are not taken into account.  
 
Measurement results  

Use of measurement data and evaluation results from type-1 and type-2 studies according to 
[Booklet 10]. 
 
Correction 
None 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf
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J.5.1 Uncertainties of the measurement system 

Standard uncertainties of the measuring system input quantities 

• Calibration uncertainty uCAL of the calibration plate from the DAkkS calibration certificate: 

µm0.075=
2

µm15.0
k

Uu
p

CAL
CAL ==  

• Resolution of the measuring system (set by the selected lens, the basic magnification of the camera 
adapter and the camera, determined and output by the image processing software): 

µm0.399
2

µm382.1
3
1

2
RE

3
1uRE =⋅==  

• Repeatability when using a standard (standard deviation s from type-1 study): 
µm919.0 suEVR ==  

• Determining the measuring system dispersion uEV(MS) from uRE and uEVR: 
( ) µm919.0u,uMAXu EVRRE)MS(EV ==  

• Systematic measurement error (bias from type-1 study): 

µm0.0102= 
3

µm0176.0
3
xx

u m
BI =

−
=  

Other uncertainties are evaluated as insignificant. 

 

Combined standard uncertainty of the measuring system 

µm0.922=)µm0102.0()µm919.0()µm075.0(uuuu 2222
BI

2
)MS(EV

2
CALMS ++=++=  

 

Expanded measurement uncertainty of the measuring system 

µm1.844=µm0.9222=ukU MSpMS ⋅⋅=  

 

Evaluation of the measuring system 

%150.37%  %100
µm1000

µm844.12%100
T
U2Q MS

MS ≤=⋅
⋅

=⋅
⋅

=  

Result: The measuring system is suitable (QMS < 15%). 
 

 
Figure 21: Pareto chart of uncertainty contributions ui

2 to the uncertainty of the measuring system 
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Table 11: “Microscope” example according to [ISO 22514-7]; uncertainty budget “measuring system” 
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J.5.2 Uncertainties of the measuring process 

Standard uncertainties of the measuring process input quantities 

• Standard uncertainty of the measuring system (uMS from chap. J.5.1): 
 µm0.922uMS =  

• Repeatability on the measuring object (EV from type-2 study): 
 µm6,529 =EVuEVO =   

• Determining uEV(MP) from uRE, uEVR and uEVO: 
µm6.529 =)u,u,u(MAXu EVOEVRRE)MP(EV =  

• Reproducibility, operator influence (AV from type-2 study): 
µm7.298 = AVuAV =  

• Interaction (IA from type-2 study): 
µm8.604 = IAuIA =  

Other uncertainties are evaluated as insignificant. 

 

Combined standard uncertainty of the measuring process 

( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) µm13.035µm604.8µm298.7µm919.0µm529.6µm922.0

uuuuuu

22222

2
IA

2
AV

2
MSEV

2
MPEV

2
MSMP

=++−+=

++−+=
 

 

Expanded measurement uncertainty of the measuring process 

µm26.070 = µm13.035  2 = ukU MPpMP ⋅⋅=  

 

Evaluation of the measuring process 

%305.21%  %100
µm1000

µm070.262%100
T
U2Q MP

MP ≤=⋅
⋅

=⋅
⋅

=  

Result: The measuring process is suitable (QMP < 30%). 

 

 
Figure 22: Pareto chart of uncertainty contributions ui

2 to the uncertainty of the measuring process 

NOTE: u2
EV(MP) cleaned up, i.e. without u2

EV(MS) which is already included in u2
MS. 
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Table 12: “Microscope” example according to [ISO 22514-7]; uncertainty budget “measuring process” 
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J.6 In-process tactile diameter measurement  
Description of the measurement 

During shaft production the process step “grinding” is monitored by tactile sampling inspections of 
the shaft diameter. The operator places the shaft to be tested in a horizontal position between tip-
shaped brackets (briefly “tips”). After that, the shaft surface is scanned fully automatically by the 
measuring system and the shaft diameter is determined from the measured data. 

The capability of the measuring process is proven by means of type-1 and type-3 studies [Booklet 10]. 
For continuous monitoring of the measuring process stability, a calibrated series part (a so-called 
“stability part”) is measured in exactly the same way as series parts and a measurement stability 
chart is maintained according to a type-5 study [Booklet 10]. The calibration certificate of the 
“stability part” provides the uncertainty of the calibration of this standard.  

The data from the calibration certificates and the procedures according to [Booklet 10] are used to 
determine the uncertainty of the results of the measuring process which is updated ongoing during 
production. 

 
Figure 23: Principle of tactile measurement of a shaft diameter 

 

Input quantities 

• Reference value of the standard (calibration certificate) µm1.36457xCAL =  

• Calibration uncertainty of the standard (calibration certificate) µm7.1UCAL = ; 2kp =  

• Resolution of indication (digit increment) 
NOTE 1: The uncertainty of a measurement result basically cannot be less than 
the resolution of the measuring system. In the present case the resolution is 
determined by the indication of the measuring system. Therefore, it is already 
included in the deviations of the measured values from the respective 
conventional value and must not be considered separately once again. 

Digit5.0xRE ≤δ  

• Mean value of the (uncorrected) measured values 
Data source: Stability chart according to booklet 10, type-5 study 

µm476.36457x =  

• Standard deviation of the measured values 
Data source: Stability chart according to booklet 10, type-5 study 
NOTE 2: Dispersion is caused by all influences affecting in total the measuring 
process including their interactions, finite repeatability of the measuring system 
and measuring process, operator influence, finite long-term stability, tempera-
ture fluctuations, as well as other factors that are not caused by the measured 
parts such as vibrations in the manufacturing environment. These effects are 
taken into account to the extent they are contained in the last 25 values of the 
stability charts. 

mµ10.125sx =  

Shaft 
Tip (bracket) 

Tip (bracket) 

Rotational axis 

Prober (stylus) 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf


Booklet 8 – Measurement Uncertainty 
 

© Robert Bosch GmbH 2015 | Status 06.2015 94 

• Deviation due to impact of parts  
Data source: Results of type-1 and type-3 studies according to booklet 10;  
Determination from: 

 

o Standard deviation from type-1 study: µm139.0s =  

o Measuring system dispersion from type-3 study: µm131.0EV =  

NOTE 3: Deviations are caused by the different nature of the standard (“stability 
part”) and the serial parts. 

 

 
Model 

PARPROBICAL xxxxyy δ+δ+δ+δ+′=  

with 
y  (Current) indication for the diameter, 
y′  Uncorrected average indication (mean value of the stability chart), 

CALxδ  Deviation due to the limited precision of the calibration of the standard, 

BIxδ  Deviation due to the uncorrected systematic measurement error, 

PROxδ  Deviation due to the measurement procedure, 

PARxδ  Deviation due to the difference between the standard and series parts. 

xxx ∆≤δ≤∆−  applies to all above-mentioned deviations. Here, xδ  describes the instantaneous 
value of the fluctuating deviation (expected value 0x =δ ), x∆  the associated maximum deviation. 

 
Measurement results  

Use of measured data and evaluation results of type-1, type-3 and type-5 studies according to 
[Booklet 10]. 

 
Correction 
None. 

NOTE 4: Systematic measurement errors are considered to be a standard uncertainty uBI in the uncertainty 
budget (cf. chapter 6.1.2 and appendix F.3). 

 

Standard uncertainties of the input quantities 
 
• Uncertainty uCAL of the calibration of the standard used 

The calibration certificate of the standard provides the expanded measurement uncertainty 
UCAL = 1.70 µm and the coverage factor kp = 2. The corresponding standard uncertainty is 
calculated as  

µm85.0µm
2
70.1

k
Uu

p

CAL
CAL ===  

 
• Uncertainty uRE due to the limited resolution of the indication 

As already explained, the corresponding deviations are included in the measured values and 
thereby taken into account via the uncertainty uPRO of the measurement procedure. So, there is 
no need to consider a separate standard uncertainty uRE. 
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• Uncertainty uBI due to uncorrected systematic errors (“bias”) 

The systematic error is calculated as the difference of the mean value x  calculated from 25 
measured values recorded in the stability charts of the recent weeks and the reference value 

CALx  of the standard:  
µm0.376µm36457.100µm36457.476xxx CALBI =−=−=∆  

Systematic errors that are not compensated by correction must be included in the measurement 
uncertainty as a standard uncertainty (see appendix F.3): 

µm0.376xu BIBI =∆=  
 
• Uncertainty uPRO due to the measurement procedure 

The standard uncertainty of the measurement procedure is calculated as standard deviation sX of 
the last 25 values x  documented in the stability charts:  

µm0.1251su xPRO ==  

NOTE 5: The measurement uncertainty U to be determined is intended to allow a statement about the 
respective individual measured value. Accordingly, for uPRO , the standard deviation s of the individual 
measured values from their mean value x  must be used (rather than the standard deviation of the mean 
value that is smaller by the factor 251 ).  

 
• Uncertainty uPAR due to measured parts 

Deviations caused by the different nature of the standard (i.e. the “stability part”) and the series 
parts must be considered to be significant and included in the measurement uncertainty only if 
the following condition is fulfilled (cf. chapter 6.1.4): 

22 s2EV ⋅>  
With EV = 0.131 µm from a type-3 study and s = 0.139 µm from a type-1 study: 

( ) ( ) 2222222 µm038642.0µm019321.02µm139.02s2µm017161.0µm131.0EV =⋅=⋅=⋅<==  
Therefore, the significance condition is not met so that the uncertainty uPAR is negligible:  

µm0uPAR =  

NOTE 6: Reports of measuring process analyses often specify %EV instead of EV. Then, %EV must be 
multiplied by the reference value in order to calculate EV. The reference value is often the tolerance of the 
characteristic, but may be also another quantity. This must be clarified if necessary.  

 

Standard uncertainty of the output quantity 

µm168.10µm379471.103µm0515625.102141376.0722500.0

µm0125.10376.0850.0

uuuuu
2222

2
PAR

2
PRO

2
BI

2
CALC

≈≈+++≈

+++≈

+++=

 

 

Expanded measurement uncertainty 

The expanded measurement uncertainty is calculated using kp = 2: 

µm336.20µm168.102ukU Cp =⋅=⋅=  

 

Complete measurement result 

µm336.20yUyy ±′=±′=  
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Table 13: Uncertainty budget for the “shaft diameter” example based on stability charts 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf


Booklet 8 – Measurement Uncertainty 
 

© Robert Bosch GmbH 2015 | Status 06.2015 97 

J.7 Injection quantity indicator (EMI) 
The injection quantity indicator (or briefly EMI according to German Einspritzmengenindikator) 
measures injected masses (coll. also called injection quantities). The calibration uncertainty is to be 
determined. 

 

Description of the measurement 

The mass of test oil injected into the EMI working chamber (e.g. diesel fuel) displaces a piston. 
An inductive measuring system records the path x traveled by the piston. The injected mass m 
(output quantity) is calculated from the measured path x, the cross-sectional area A of the piston and 
the density ρ of the test oil (input quantities). The pressure p and the temperature ϑ inside the EMI 
chamber must be considered as well. The calculated injection mass m is adjusted by means of a 
correction value kf to the indication m0 of the standard device (scale) which directly measures the 
actually injected mass. In fact, the measured path x is rescaled into the injected mass m. 

 

 

 

 

 

 

 

 

 

 
Figure 24: Measuring principle for adjustment and calibration of an injection quantity indicator (EMI) 

Because of the limited sensitivity and resolution of the standard device (scale), a sufficiently large mass 
of the test medium is required for each weighing process. Therefore, the total mass m of n = 1000 
injection processes is weighed. The balancing between the EMI and the scale is based on the 
measurement results of the total mass m, rather than the (calculated) mean values for a single injection 
process. 

 

Basic equation for determining the injection mass m from the injection volume V: 
Vm ⋅ρ=  (J.4) 

with 
( )p,ϑρ  Volume density of the injected medium at temperature ϑ and pressure p, 

AxV ⋅=  Chamber volume which is displaced by the injected mass, 
x  Piston travel, 

2
f

2
kdA 






 +

⋅π=  Piston area, 

d  Piston diameter (data sheet), 
fk  Correction value (result of the adjustment), 

so that 

( )
2

f
2
kdxp,m 






 +

⋅π⋅⋅ϑρ= . (J.5) 

Injection system 

Drain to scale  
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The correction value kf is determined by comparison with a standard device (scale). The indication m 
of the EMI is adjusted to the indication m0 of the scale, i.e. 

0mm = , (J.6) 
or equation (J.5) substituted for m  

( ) 0

2
f m

2
kdxp, =






 +

⋅π⋅⋅ϑρ  (J.7) 

and solved for kf yields  

( ) d
xp,

m2k 0
f −

π⋅⋅ϑρ
⋅=  (J.8) 

This additive correction value kf for the piston diameter is the result of the adjustment. In relation to 
the EMI indication, kf effectively provides a (non-linear) correction of the deviation of the EMI 
indication from the scale indication, of the test medium density, of the piston travel and of the piston 
diameter at the time of adjustment. The value determined is added to the EMI configuration data 
(flash EEPROM). Therefore, kf represents a parameter which is invariant until the next adjustment 
and equally impressed to all EMI measurement results for the “injection mass”. The uncertainty of 
this correction must be considered in the uncertainty analysis. 

Subsequently, the determined correction value kf is used to perform another comparison of the EMI 
measuring instrument with the scale at the calibration point (200 g), i.e. a calibration is carried out. 

 

Input quantities 

• Temperature ϑ in the EMI measurement chamber: 
The temperature ϑ is measured using a calibrated thermocouple. The 
measurement result is adversely affected by a measurement deviation 
δϑ of the thermocouple in the installed state which results from its 
calibration. K0.5≤δϑ  

• Pressure p in the EMI measurement chamber: 
Pressure differences within the EMI are disregarded.  bar0p ≈δ  

• Volume density ρ(ϑ,p) of the test medium:  
The density at the measured EMI chamber temperature ϑ and the 
atmospheric pressure p is determined by linear interpolation from the 
densities measured at the reference temperatures ϑ1 and ϑ2.  

 

o Reference temperature #1: C201 °=ϑ  

o Measured density at reference temperature #1: 31 cm
g820.0=ρ  

o Reference temperature #2:  C802 °=ϑ  

o Measured density at reference temperature #2: 32 cm
g778.0=ρ  

o Uncertainties δϑ and δρ of the reference points (ϑ1; ρ1) and (ϑ2; ρ2) 
as well as deviations of the function ρ(ϑ) from a straight line are 
evaluated as negligible. 

 

o Density variations δρ due to pressure fluctuations δp are considered 
to be negligible 

( ) 3cm
g0p, ≈δϑδρ  
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• (Uncorrected) volume V‘ of the EMI measurement chamber: 
The piston travel is measured using an LVDT (Linear Variable Differential 
Transformer). Plotting the determined values versus the reference values of 
the travel measuring system results in an S-shaped curve. The S-shape is 
corrected using a correction table provided by the EMI manufacturer so 
that a linearized characteristic curve of the LVDT is obtained. The deviation 
resulting from this linearization for each injection process is specified in the 
data sheet of the EMI manufacturer as a deviation δV‘ from the 
(uncorrected) nominal volume V‘ of the EMI chamber. 

3mm1.0V ≤′δ  

• (Uncorrected) indication m‘ of the EMI:  
It is assumed that the measurand is adversely affected by a measure-
ment error which is caused particularly by the dispersion of the injected 
mass rather than the linearization of the LVDT characteristic curve. This 
deviation is estimated based on the standard deviation of nM repeated 
measurements (measured values xi see Table 14). 

5nM =  

( )∑
=

−
−

=
Mn

1i

2
i

M
xx

1n
1s  

• Diameter d of the EMI piston:  
The diameter is assumed to be constant at d = 16.97 mm (mean value 
known from production). Deviations δd due to individual dispersion are 
contained in the correction value kf. 

 

o Piston diameter mc697.1d =  
o Individual dispersion mc0d ≈δ  

• Measurement uncertainty of the scale: 
The measurement uncertainty of the standard device (scale) is specified 
by the calibration laboratory. 

 

o Reference value g200m0 =  
o Expanded measurement uncertainty ( 2kp = ) g184.0U0 =  

• Number of injections n per measurement result: 
It is always the total mass of n injection processes which is weighed. It 
must be ensured for this purpose that always exactly n injections are 
evaluated. 

 

o Number of injections per weighing operation 1000n =  
o Deviations from the nominal number of injections 0n =δ  
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J.7.1 Adjustment and uncertainty of the EMI measuring instrument  

Model equation 
The model equation is given by Eq. (J.5). In this form the equation includes the piston travel x and the 
correction factor kf as input quantities. However, information about uncertainties is not immediately 
available for these quantities. This fact usually complicates the calculations significantly. Therefore,  
it is advantageous to transform the model equation algebraically and to represent it as far as possible 
using quantities with directly available uncertainty data. 

First, Eq. (J.8) for kf is transformed. Expanding the term under the root operator with ( )22d and 
defining the uncorrected EMI indication m‘ and the EMI chamber volume V‘ according to 

( ) ( )
2

2
dxp,Vp,Tm 






⋅π⋅⋅ϑρ=′⋅ρ=′  (J.9)  

results in 

( ) d1
m
md

xp,
m2k 00

f ⋅









−

′
=−

π⋅⋅ϑρ
⋅=   (J.10) 

Solving Eq. (J.10) for ( ) 2kd f+  and substituting it in the model equation Eq. (J.5) yields 

m
mV

m
m

2
dx

2
d

m
mx

2
kdxm 00

22
0

2
f

′
⋅′⋅ρ=

′
⋅







⋅π⋅⋅ρ=









⋅

′
⋅π⋅⋅ρ=







 +
⋅π⋅⋅ρ=   (J.11) 

This equation represents the corrected EMI indication m exclusively dependent on input quantities 
providing uncorrected measured values which are directly readable as well as uncertainty data which 
are independent of each other. 
 

Measurement results 

Measurement no.   1 2 3 4 5 Mean 
value 

Standard 
deviation 

Scale indication  m0 / g 200.35 200.40 200.42 200.44 200.45 200.412 0.039623 

EMI indication 
(uncorrected) m‘ / g 200.24 200.24 200.28 200.32 200.31 200.278 0.037683 

EMI chamber 
temperature ϑ / °C 67.30 67.45 67.40 67.33 67.40 67.376 0.060249 

Table 14: Scale and EMI indications for injected masses and measured EMI chamber temperature 
 (Mass of 1000 individual injection operations added up in each case)  

 

Correction (of the adjustment) 
With the above input quantities, the linearly interpolated volume density at the mean EMI chamber 
temperature C376,67 °=ϑ  

( ) ( ) ( ) ( ) ( )

( ) 33

33

11
12

12

cm
g0.786837

cm
g820.0C20C376.67

C20C80
cm

g820.0
cm

g778.0

p,
TT

p,p,p,

=+°−°
°−°

−
=

ϑρ+ϑ−ϑ⋅
−

ϑρ−ϑρ
=ϑρ

 (J.12) 

and the mean values 0m  and m′  of the measurement data, the correction fk  is calculated according 
to Eq. (J.10):  

cm0.000568cm697.11
g278.002
g412.200d1

m
m

k 0
f =⋅










−=⋅













−

′
=   (J.13) 
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Standard uncertainties of the input quantities 

• Uncertainty due to the temperature ϑ in the measurement chamber 
Because of a lack of more precise knowledge, the standard uncertainty is determined from 
the calibration uncertainty of the thermocouple assuming a rectangular distribution:  

K0.288676K
3
5.0

3
u ==

δϑ
=ϑ  

The temperature affects the volume density of the test medium. The associated sensitivity 
coefficient is calculated according to  

( )
( ) ( )

K
g0.178294
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cm
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cm
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mVmc
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Here, the relationship Vm ′⋅ρ=′  is used. For ( )p,ϑρ  the interpolated value is used which is 
calculated according to Eq. (J.12) for C376,67 °=ϑ . For 0m  the mean value 0m  of the scale 
indications is used. The term ϑ∂ρ∂  is approximated by the slope of the straight line used for the 
linear interpolation of the volume density.  

• Uncertainty due to the pressure in the measurement chamber 
Because of bar0p ≈δ , bar0up =  is assumed. Thus, there is no need to calculate the sensitivity 
coefficient. 

• Uncertainty due to the (uncorrected) volume V‘ of the measurment chamber  
The standard uncertainty is calculated based on the manufacturer's specifications assuming a 
normal distribution: 

33
V cm05.0cm

2
1.0

2
V

u ==
′δ

=′  

The associated sensitivity coefficient is calculated according to 

( ) 33
00

V cm
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VV
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For ( )p,ϑρ  the interpolated value is used which is calculated according to Eq. (J.12) for 
C376.67 °=ϑ .  For 0m  the mean value 0m  of the scale indications is used, for m′  the mean 

value m ′  of the uncorrected EMI indications. 

• Uncertainty due to limited repeatability of the (uncorrected) EMI indications m‘  
The uncertainty is determined using the standard deviation of the EMI indications: 

( )∑
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2
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m mm
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The measured values given in Table 14 and 5nM =  result in 
g0.037683sm =′ . 

The corresponding standard deviation of the mean value is used as standard uncertainty: 
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m
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The following applies to the associated sensitivity coefficient:  
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Here, the relationship Vm ′⋅ρ=′ is used. For 0m  the mean value 0m  of the scale indications is 
used, for m′  the mean value m ′  of the uncorrected EMI indications. 
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• Uncertainty due to deviations from the nominal diameter d of the piston  
Because of mm0d ≈δ , mm0ud =  is assumed. Thus, there is no need to calculate the sensitivity 
coefficient. 

• Uncertainty owing to deviations from the nominal number n of injections  
Because of 0n ≈δ , 0un =  is assumed. Thus, there is no need to calculate the sensitivity 
coefficient. 

• Uncertainty of the indications m0 of the standard device (scale)  

o Measurement uncertainty of the weighing process 
The standard uncertainty is calculated from the data available for the expanded measure-
ment uncertainty U0 and for the coverage factor kp of the scale: 

g092.0
2

g184.0
k
Uu

p

0
0 ===  

The following applies to the sensitivity coefficient: 

1
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o Uncertainty due to limited repeatability of the measurement results (dispersion) 
It is assumed that the dispersion fraction which has to be considered as a property of the 
scale (inherent dispersion) is taken into account in the calibration uncertainty U0. It is further 
assumed that dispersion fractions going beyond this can be attributed to the dispersion of 
the injection masses in the EMI chamber, so that they are already taken into account in the 
dispersion of the EMI indications.  

 
Standard uncertainty of the output quantity: Corrected EMI indication for the injection mass m 
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Figure 25: Pareto chart of the uncertainty contributions (ci·ui)2 to the standard uncertainty of m 
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Expanded measurement uncertainty 

The expanded measurement uncertainty Um is calculated with 2kp = : 

g228.0g227578.0g113789.02ukU mpm ≈=⋅=⋅=   

NOTE: The expanded measurement uncertainty of the output quantity is based, among others, on an input 
quantity which is determined from nM = 5 measurement results only (ν = 4 degrees of freedom). According 
to appendix D.3, it should be checked in such cases whether the effective number of degrees of freedom νeff 
of the output quantity still reaches an order of magnitude of at least 15 … 20. Otherwise a higher coverage 
factor kp should be used which is properly adjusted to νeff. Assuming that the uncertainty data for the EMI 
chamber volume and the scale indication can be considered to be secured at a maximum of 80%, 27 
effective degrees of freedom result, i.e. kp = 2.097 at a confidence level of 95.45%. kp = 2 instead of 2.097 is 
usually considered to be acceptable. At a maximum of 75%, still 18 degrees of freedom result (kp = 2.149). 

Complete measurement result 

For the adjusted EMI measuring instrument, the measurement data of the present case result in the 
following complete measurement result (applicable for each 1000 individual injection operations): 

g228.0g412.200Um m ±=±  

This means that the conventional value of the measurement result can be expected in the range 
(200.412 ± 0.228) g with a confidence level of 95.45%, i.e. between 200.184 g and 200.640 g. 

 
J.7.2 Calibration of the EMI measuring instrument 

Measurement results 

Measurement 
no.   1 2 3 4 5 Mean 

value 
Standard 
deviation 

EMI injection 
mass m / g 200.47 200.47 200.46 200.51 200.53 200.488 0.030332 

Scale injection 
mass m0 / g 200.47 200.49 200.48 200.49 200.51 200.488 0.014832 

Difference Δm / g 0.00 – 0.02 – 0.02 0.02 0.02 0.0 0.02 

Table 15: Calibration of EMI, injection mass indicated by EMI and scale 
                  (Mass of 1000 individual injection operations added up in each case) 

 
Uncertainty of the deviation |m – m0| between the indications of EMI and scale 

The measuring process in the calibration laboratory does not reveal any deviation of the adjusted 
EMI from the standard device (scale) for a mean injection mass of 200.488 g, i.e. the mean deviation 
of 5 measurement series is zero (see Table 15).  

Measurement results are considered to be different at a specific confidence level (e.g. 95.45% in case 
of kp = 2) if their uncertainty ranges do not overlap (cf. chapter 2.2), i.e. if the condition 

00m UmUm −<+  is met in the case 0mm < , or m00 UmUm −<+  in the case mm0 < , or generally if 
the absolute value of the difference of the measurement results is greater than the sum of their 
uncertainties: 

1
UU
mm

0m

0 >
+

−
 

Because of 0mm 0 =− , this condition generally cannot be fulfilled in this case, i.e. the results for m 
and m0 must be considered to be identical (in terms of the above criterion).  
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The same applies to the individual measurement series. The maximum difference of the results in 
Table 15 is 

( )
1049.0

412.0
02.0

g184.0g228.0
g02.0

UU

mmMAX

UU
mm

0m

i0i

0m

0 <≈≈
+

≈
+

−
=

+

−
 

NOTE: The same applies to the application of the (more critical) criterion according to appendix G: 
( )

1068.0
293.0
02.0
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mm
22222

0
2
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i0i

2
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2
m

0 <≈≈
+

≈
+

−
=

+

−  

 
J.7.3 Transferability of the results 

The determined measurement uncertainty applies to the measuring process in the calibration 
laboratory. It can be transferred directly to measuring processes in other measuring laboratories only 
if these processes are performed under identical conditions. This always involves the sum of 

1000n =  injection operations to be determined and evaluated.  
NOTE: In case of regarding a single injection operation, instead of the mean value dispersion of nM = 5, 
measurement series each with 1000 injections, the individual value dispersion has to be used for the 
calculations which is larger by a factor of √ 1000. 

In case the EMI measuring device is utilized as part of a complex measuring process which differs 
significantly from the EMI usage in the calibration laboratory, the results for the measurement 
uncertainty cannot be transferred directly. In this case, the uncertainty data given in the EMI 
calibration certificate has to be seen as a contribution to the measurement uncertainty of the 
complex overall process which has to be determined by means of an uncertainty study specially 
tailored to this process. 
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Table 16: Uncertainty budget for the “EMI” example 
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J.8 Pressure sensor 
A commercially available pressure sensor is calibrated by means of a pressure balance for immediate 
practical use. The corresponding measurement uncertainty is determined. In contrast to the 
so-called “calibration uncertainty” which is usually specified on calibration certificates and which only 
takes account of the uncertainties of the calibration in the calibration laboratory, the additional 
uncertainties during subsequent practical use of the sensor are also taken into account in this 
example. So, no additional measurement uncertainty study is required. Furthermore, the effects on 
the measurement uncertainty are quantified if the sensor is used outside the calibrated temperature 
range and if corrections are waived. 
 
J.8.1 Calibration uncertainty of the pressure sensor 
 
Description of the measurement 
A Hottinger P3M pressure sensor is calibrated for the pressure range 0 bar < pN < 100 bar27. The 
cleaned pressure sensor (object of calibration, measuring object) is screwed onto the pressure 
balance (standard device). The nominal pressure pN is produced via the piston surface by placing a 
combination of reference masses (see page 82, footnote 26) on the pressure balance . 

 
Figure 26: Measuring principle of a pressure balance with medium oil 

Input quantities 

• Information about the standard device 28  Haenni ZP 36 pressure balance (JMM9Q003) 

Uncertainty of the reference masses kg0001.0Um = ; 2kp =  

Piston area at reference temperature 0ϑ  2
0 cm)000018.0040329.0(A ±= ; 2kp =  

Reference temperature C020 °=ϑ  

Influence of temperature on the piston area: 
Volumetric thermal coefficient of expansion -15 K103.2)( −⋅=β+α   

Influence of deformation on the piston area:  
Deformation factor -17 bar10)02.250.6( −⋅±=λ ; 2kp =  

Local gravitational acceleration at the place of use 29: 
(place where the pressure sensor is calibrated) -2ms80852.9g =  

                                                 
27  All pressures given are positive pressures with reference to atmospheric pressure 
28  See DAkkS calibration certificate for Haenni ZP 36 
29  According to data provided by Physikalisch-Technische Bundesanstalt (PTB) 

  Piston 

Reference masses 

Pressure sensor 
(Object of calibration) 

  Pump   
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The following reference masses are used for the calibration of the pressure sensor using the 
pressure balance: 

Mass 
no. 

Nominal pressure 
pN / bar 

Mass 
m / kg 

7 40 1.6448 
8 40 1.6449 
9 20 0.8222 

Piston (K) 20 0.8224 

Table 17: Pressure sensor calibration, reference masses used 
NOTE 1: The reference masses are marked with the nominal pressure pN which is created when placed 
on the pressure balance. The corresponding effective masses m, which already take account of 
influences resulting from buoyancy and oil surface tension, are taken from the calibration certificate.  

• Information about the calibration object (measuring object) 30 
The deviation of the pressure p′  indicated by the sensor due to temperature influence amounts 
to a maximum of 0.1% per 10 K within the range –10°C to +80°C. The digit increment is 0.01 bar. 

• Information about the procedure 
At different pressure settings, n = 3 repeated measurements are carried out in each case at 
ambient temperature ϑ = (23 ± 0.1) °C. The pressures required in each case are obtained by 
placing appropriate combinations of reference masses on the pressure balance.  

EXAMPLE: The piston with applied mass no. 8 creates the nominal pressure pN = (20 + 40) bar = 60 bar. 

 
Model 

( ) ( )
    

Sensorp

RptHyssRe
Standardp

AmCal
p

S00

pppppKpppppKpp
δ=

ϑ∆δϑ

δ=

λϑ

=

δ+δ+δ+δ+δ+δ+δ+δ+δ+δ+δ++′=  

with 
p  corrected indication of the pressure sensor (calibration object, measuring object), 
p′  uncorrected indication of the pressure sensor, 
K  correction of the indication of the pressure sensor, 

0p  pressure (conventional value) created by the pressure balance (standard device), 

0pδ  deviations of the pressure created by the pressure balance due to … 

Calpδ  … the limited accuracy of the calibration of the pressure balance, 

mpδ  … the limited accuracy of the calibration of the reference masses, 

Apδ  … the limited accuracy of the piston area, 

ϑδp  … temperature fluctuations during sensor calibration, 

λδp  … the limited accuracy of the piston deformation, 

Spδ  deviations of the pressure indicated by the pressure sensor due to … 
Kδ  … the limited accuracy of the correction of the indication, 

δϑδp  … temperature fluctuations during sensor calibration, 

ϑ∆δp  … deviating ambient temperature during sensor use, 

sRepδ  … limited resolution, 

Hyspδ  … hysteresis, 

Rptpδ  … the limited repeatability of a measurement result. 

ppp ∆≤δ≤∆−  applies to all above-mentioned deviations pδ . Here, pδ  describes the instantaneous 
value of the fluctuating deviation (expected value 0p =δ ), p∆  the associated maximum deviation. 

                                                 
30  See Hottinger P3M data sheet 
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Submodel for the pressure p0 actually produced by the pressure balance at nominal pressure pN  

When the pressure balance is used as the standard device, the environmental conditions at the place 
of use must be taken into account, i.e. the effect of local gravitational acceleration g  and ambient 
temperature ϑ  as well as the effect of the reference mass m on the surface area and deformation of 
the piston and thereby on the generated pressure.  
Pressure is defined as a force F per area A. The force F is defined as a mass m times acceleration. In 
case of weight forces the acceleration is given by the local gravitational acceleration g . Thus, the 
pressure generated by the pressure balance is calculated as 

A
gm 

A
Fp0

⋅
==  (J.14) 

According to the calibration certificate, the area A is calculated using the following formula (see 
[EURAMET]): 

( ) ( ){ }
  

ϑλ

∗

=

ϑ−ϑ⋅β+α+⋅

=

⋅λ+⋅=

f
1

f
)p1(AA 000  (J.15) 

with 

0A  piston area at reference temperature C200 °=ϑ  and reference pressure bar0p = , 

λf  correction factor: consideration of area changes due to piston deformation caused by 
applied reference masses, 

λ  deformation factor, 
∗

0p  generated pressure 0p  or approximated value [EURAMET], 

ϑf  correction factor: consideration of deviations of the ambient temperature ϑ  from the 
reference temperature 0ϑ , 

β+α  thermal coefficient of expansion, 
ϑ  ambient temperature at the place of use of the pressure balance, 

0ϑ  reference temperature: ambient temperature at the place of calibration of the 
pressure balance. 

Instead of 0p  the nominal value Np  is used as an approximated value for the pressure ∗
0p :  

N0 pp ≈∗  (J.16) 

The Eqs. (J.16) and (J.15) substituted in Eq. (J.14) yields 

( ) ( ) ( ){ }0N0
0 1p1A

 gmp
ϑ−ϑ⋅β+α+⋅⋅λ+

⋅
=  (J.17) 

NOTE 2: A prerequisite for meaningful results is that all parameters are included in the calculations with 
measurement units which are “compatible with each other”. If, for example, pressures given once in bar and 
once in N/m2 are used in the same formula, the result may deviate from the correct result by several orders of 
magnitude. Therefore all input parameters should be converted into SI units (e.g. mbar or bar into N/m2). In 
this example, areas are converted according to 1 cm2 = 10 –4 m2 and pressure is converted according to 
1 bar = 105 N/m2 at 1 N = 1 kg·m/s2. 
NOTE 3: If, instead of Eq. (J.16), the model is derived based on p0* = p0  with p0 according to Eq. (J.14), 
Eq. (J.15) changes into a quadratic equation for the area A. Corresponding to the more complex solution for A, 
the model equation for p0 becomes more complicated. The comparison of the calculated numerical values 
shows, however, that both variants of the model equation lead to the same results for all other calculations.  
NOTE 4: For all calculations and particularly for those performed for comparison purposes, the present example 
turns out that rounding of intermediate results must be avoided as far as possible, since the numerical values of 
intermediate results can have very different orders of magnitude. If intermediate results cannot be avoided (e.g. 
in case of manual calculations), it is essential to avoid falling below a specific minimum number of significant 
digits in order to ensure a final result with reproducible numerical values. Particularly in the present example, 
intermediate results must not be rounded to less than 7 significant digits, i.e. in case of a decimal power 
representation with a so-called normalized mantissa, 1 pre-decimal position and 6 decimal places are required 
(such as 1.234567·108).  
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Measurement results 

Repeated measurements at different nominal pressures pN of the standard device result in the 
following indications pS of pressure sensor: 

Applied 
masses 

Nominal 
pressure 

Sensor indications 
Mean 
value 

Standard 
deviation Measurement 

series 1 
Measurement 

series 2 
Measurement 

series 3 
No. pN / bar pS / bar pS / bar pS / bar p Sp  / bar sS / bar 

— 0 0.00 0.00 -0.02 -0.007 0.012 
Piston (K) 20 20.02 20.02 20.01 20.017 0.006 
K + 9 40 40.03 40.03 40.01 40.023 0.012 
K + 8 60 60.09 60.09 60.09 60.090 0.000 
K + 8 + 9 80 80.03 80.03 80.03 80.030 0.000 
K + 7 + 8 100 99.95 99.95 99.94 99.947 0.006 
K + 7 + 8 100 99.95 99.95 99.94 99.947 0.006 
K + 8 + 9 80 80.09 80.08 80.07 80.080 0.012 
K + 8 60 60.15 60.16 60.16 60.157 0.006 
K + 9 40 40.08 40.07 40.08 40.077 0.006 
Piston (K) 20 20.05 20.06 20.05 20.053 0.006 
— 0 0.00 -0.02 0.00 -0.007 0.012 

Table 18: Pressure sensor calibration, values indicated by the sensor 

The mean values Sp  are considered to be the uncorrected measurement results p′ :  Spp =′ . 
 
Correction 

• Pressure p0 of the pressure balance actually generated at nominal pressure pN 

According to Eq. (J.17) the following pressure is actually generated for a nominal pressure of e.g. 
bar100pN = : 

   bar99.9985
m
N1099.9985

K)2023(
K
1 103.21

m
N 10100

m
N10

1 1005.61m10 0.040329

s
m 80852.9kg1121.4

p

2
5

5
2

5

2
5

724

2
0

=⋅=







 −⋅⋅+⋅



















⋅⋅⋅+⋅⋅

⋅
=

−−−  

NOTE 5: The applied mass m = mK + m7 + m8 is calculated using the values according to Table 17.  

The same calculation carried out for all relevant mass combinations yields:  

Applied masses 
No.  

Nominal pressure 
pN / bar 

Generated pressure 
p0 / bar 

— 0 0.0000 
Piston (K) 20 20.0002 
K + 9 40 39.9950 
K + 8 60 60.0015 
K + 8 + 9 80 79.9954 
K + 7 + 8 100 99.9985 

Table 19: Pressure sensor calibration, pressure effective at the place of sensor calibration  
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• Determination of the corrections required for the indications of the pressure sensor  
During calibration, the difference 0S ppp −=∆  exists between the actually effective pressure of 
the pressure balance and the indication of the pressure sensor to be calibrated. 

Applied 
masses 

No. 

Nominal 
pressure 

Np  / bar 

Generated 
pressure 

0p / bar 

Indicated 
pressure 

Spp =′  / bar 

Deviation 
 

p∆  / bar 

Mean 
indication 

Sp  / bar 

Mean 
deviation 

p∆ / bar 
— 0 0.0000 -0.007 -0.007 -0.007 -0.007 
Piston (K) 20 20.0002 20.017 0.017 20.035 0.035 
K + 9 40 39.9950 40.023 0.028 40.050 0.055 
K + 8 60 60.0015 60.090 0.089 60.124 0.122 
K + 8 + 9 80 79.9954 80.030 0.035 80.055 0.060 
K + 7 + 8 100 99.9985 99.947 -0.052 99.947 -0.052 
K + 7 + 8 100 99.9985 99.947 -0.052 99.947 -0.052 
K + 8 + 9 80 79.9954 80.080 0.085 80.055 0.060 
K + 8 60 60.0015 60.157 0.155 60.124 0.122 
K + 9 40 39.9950 40.077 0.082 40.050 0.055 
Piston (K) 20 20.0002 20.053 0.053 20.035 0.035 
— 0 0.0000 -0.007 -0.007 -0.007 -0.007 

Table 20: Pressure sensor calibration, generated and indicated pressure 
The determined deviations 0S ppp −=∆  plotted versus the pressure values Sp  indicated by the 
pressure sensor yields a so-called deviation chart (Figure 27). 
In order to estimate the correction K, the mean values p∆  of the deviations p∆  which 
correspond to each other at increasing and decreasing pressure are calculated for each nominal 
pressure Np . The same approach is used for the mean values Sp  of the indications Sp  (see 
Figure 27, dashed line). 
Then, the correction chart is represented by a graphically approximated curve or a 
mathematically determined regression curve which is fitted to the mean values p∆  with 
opposite sign (Figure 28). In the present example, the correction curve is approximated by a 
regression using a third-order polynomial: 

( ) 3
S3

2
S2S10S papapaapK ⋅+⋅+⋅+=  (J.18) 

with 3
0 103973.5a −⋅= bar, 4

1 103202.5a −⋅−= , 5
2 107279.6a −⋅−= bar–1 , 7

3 107499.7a −⋅= bar–2. 

  
Figure 27: Deviation chart Figure 28: Correction chart 
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• Correction of the pressure sensor indications 

A pressure p′  indicated by the pressure sensor is corrected by the associated correction value 
( )pK ′  which is read from the correction chart or appropriately calculated and added to p′ : 

( )pKpp0 ′+′=  

EXAMPLE: The pressure read on the pressure sensor is p‘ = 72 bar. The correction chart Figure 28 provides 
the correction K = ‒0.09 bar. So the correct pressure value is: 
p0 = p‘ + K = 72 bar + (-0.09) bar = 71.91 bar. 

NOTE: The correction K includes an uncertainty δ K which is exclusively caused by the regression. 
This uncertainty must be taken into account as an input quantity of the measurement uncertainty model, 
i.e. in addition to the uncertainties resulting from hysteresis, repeatability, etc. 

 
Standard uncertainties of the input quantities 

The majority of the determined standard uncertainties depends on the current pressure, 
i.e. the applied reference masses. Therefore the contribution of a certain input quantity to the 
overall uncertainty is estimated by means of the maximum standard uncertainty resulting from 
various mass combinations. 

• Standard device: Standard uncertainty Calu  of the pressure balance resulting from the 
traceability to higher-level standards 

Using the formula specified on the calibration certificate, the expanded measurement 
uncertainty CalU  of the pressure balance is calculated for a certain pressure 0p  and converted to 
a standard uncertainty assuming a normal distribution according to  

4
0

2142
0

725

p

Cal
Cal pbar 101,4p106,1bar 109,4

2
1

k
Uu ⋅⋅+⋅⋅+⋅== −−−−  

The first summand of the radicand takes account of the uncertainty of the DAkkS reference 
standard 31. The second summand takes account of the measurement uncertainty of the DAkkS 
working standard compared to the DAkkS reference standard. The third summand takes account 
of the deformation of the piston of the DAkkS standard 32. The coverage factor is specified in the 
DAkkS calibration certificate as 2kp = . 

The pressure bar9985,99p0 = , for example, results in the standard uncertainty   

( ) ( ) bar0203,0bar9,99859bar101,4bar9,99859106,1bar109,4
2
1u 42142725

Cal ≈⋅⋅+⋅⋅+⋅= −−−−  

This calculation is repeated for each pressure 0p  shown in Table 19. Finally the maximum 
uncertainty resulting from these calculations is used: bar0203,0uCal = . 

In addition to uncertainties of higher-level standards that are “inherited” as a result of traceability, 
uncertainties of the calibration of the reference masses, the piston area and the piston deformation 
must be taken into account as well as differences in the in environmental conditions between the 
place of use and the place of calibration of the standard device. These include e.g. different 
gravitational acceleration, different temperature and temperature fluctuations at the place of use. 

The pressure 0p  which is actually effective at the place of use is described by Eq. (J.17). This equation 
represents a submodel which describes the pressure 0p  generated by the standard device at the 
place of use as a function of the applied mass m, the piston area 0A  in the calibration laboratory, the 
temperature ϑ at the place of use and the deformation coefficient λ. The uncertainties of these 
parameters are documented on the calibration certificate (except for ϑ). 

                                                 
31  The DAkkS reference standard is the PTB national standard 
32  See also DAkkS calibration certificate 
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The uncertainty contributions to 0p  are determined by converting the maximum deviation of an 
input quantity (m, 0A , ϑ, λ) by means of the model equation into the corresponding deviation of the 
output quantity ( 0p ). If the deviation of the input quantity is not immediately known, the expanded 
uncertainty U is used instead.  

NOTE 5: If it is assumed that the uncertainty U, specified on the calibration certificate at kp = 2, was determined 
from the limit values a+ and a– assuming a normal distribution and a confidence level of 95% (cf. chapter 4.4.2.2), 
U corresponds to the maximum deviation ∆ a from the mean value a of the two limit values: 
( ) ( ) ( ) a

2
aaaa

2
aa

∆=
∆−−∆+

=
− −+   

2
au ∆

=   a
2
a2u2U ∆=

∆
⋅=⋅=   

NOTE 6: For models which are described by means of a single analytical equation such as Eq. (J.17), the 
uncertainties preferably should be calculated using sensitivity coefficients (see [GUM] or chap. 4.3.4). 
However, in order to avoid the required differentiations, the above briefly outlined calculation method is 
often applied. This method leads to identical results if the model behaves sufficiently linearly within the 
range of the associated uncertainties (i.e. approximation by a straight line whereby the proof of which is 
mathematically more challenging and outside the scope of booklet 8). This requirement is met for all model 
variants which could be used in the present example.  

• Standard device: Standard uncertainty mu  due to the uncertainty mU  of the reference masses km  

The uncertainty of each individual mass km  is specified on the calibration certificate 
(independently of the value km ) with kg0001,0Um =  and coverage factor 2kp = . Thus, in case 
of mn  applied masses km  the following applies to the uncertainty: 

mm
2

mm

termsn

2
m

2
m

2
m

2
m UnUnU...UUU

m

⋅=⋅=++++
  

 

The limit values of 0p  in terms of the total mass m of the applied reference masses are determined 
by using the extreme values mm Unm ⋅+  and mm Unm ⋅−  instead of m  in Eq. (J.17): 

( ) ( )
( ) ( ) ( ){ }0N0

mm
0 1p1A

 gUnm
p

ϑ−ϑ⋅β+α+⋅⋅λ+
⋅⋅+

=+  ( ) ( )
( ) ( ) ( ){ }0N0

mm
0 1p1A

 gUnm
p

ϑ−ϑ⋅β+α+⋅⋅λ+
⋅⋅−

=−  

The limit values ( )+
0p  and ( )−

0p  are used to determine the standard uncertainty of the output 
quantity 0p  caused by the uncertainty of the reference masses m according to chap. 4.4.2.2 
assuming a normal distribution: 

( ) ( )

2

pp
p

00
0

−+ −
=∆

  

( ) ( )

4

pp
p

2
1u

00
0m

−+ −
=∆=

 
Example: The nominal pressure bar100pN = , i.e. 3nm =  applied masses with the total mass 

kg1121,4mmmm 87K =++=  (see Table 17), results in the limit values 

( )
( )

( )

bar002705.100
m
N10002705.100

K2023
K
11030.21

m
N10100

m
N10

11005.61m10040329.0

 
s
m 80852.9kg0001.031121.4

p

2
5

5
2

5

2
5

724

2
0

=⋅≈







 −⋅⋅+⋅



















⋅⋅⋅+⋅⋅

⋅⋅+
=

−−−

+

 

and 
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( )
( )

( )

bar994281.99
m
N10994281.99

K2023
K
11030.21

m
N10100

m
N10

11005.61m10040329.0

 
s
m 80852.9kg0001.03kg1121.4

p

2
5

5
2

5

2
5

724

2
0

=⋅≈







 −⋅⋅+⋅



















⋅⋅⋅+⋅⋅

⋅⋅−
=

−−−

−

 

and the standard uncertainty 

bar002106.0
4

bar994281.99bar002705.100um =
−

=  

This calculation is performed for all mass combinations used. 
Resulting maximum uncertainty: bar002106,0um = . 

• Standard: Standard uncertainty Au  due to the uncertainty AU  of the piston area 0A  

242
A m10000018,0cm000018,0U −⋅==  

The extreme values A0 UA +  and A0 UA +  are used instead of 0A  in Eq. (J.17): 

( )
( ) ( ) ( ) ( ){ }0NA0

0 1p1UA
 gmp

ϑ−ϑ⋅β+α+⋅⋅λ+⋅+
⋅

=+  ( )
( ) ( ) ( ) ( ){ }0NA0

0 1p1UA
 gmp

ϑ−ϑ⋅β+α+⋅⋅λ+⋅−
⋅

=−  

Resulting maximum uncertainty: bar022316,0uA = . 

• Standard device: Standard uncertainty ϑu  due to temperature fluctuations within the ϑ∆±  
range during the measurement 

C1,0 °=ϑ∆  

The extreme values ϑ∆+ϑ  and ϑ∆−ϑ  are used instead of ϑ  in Eq. (J.17): 

( )
( ) ( ) ( ){ }0N0

0 1p1A
 gmp

ϑ−ϑ∆+ϑ⋅β+α+⋅⋅λ+⋅
⋅

=+  ( )
( ) ( ) ( ){ }0N0

0 1p1A
 gmp

ϑ−ϑ∆−ϑ⋅β+α+⋅⋅λ+⋅
⋅

=−  

Resulting maximum uncertainty: bar000115,0u =ϑ . 

• Standard: Standard uncertainty λu  due to the uncertainty λU  of the deformation factor λ  

2
5

77

m
N10

11002,2
bar
11002,2U −−

λ ⋅=⋅=  

The extreme values λ+λ U  and λ−λ U  are used instead of λ  in Eq. (J.17): 

( )
( ){ } ( ) ( ){ }0N0

0 1pU1A
 gmp

ϑ−ϑ⋅β+α+⋅⋅+λ+⋅
⋅

=
λ

+  ( )
( ){ } ( ) ( ){ }0N0

0 1pU1A
 gmp

ϑ−ϑ⋅β+α+⋅⋅−λ+⋅
⋅

=
λ

−  

Resulting maximum uncertainty: bar001010,0u =λ . 
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• Object to be calibrated (measuring object): Standard uncertainty Ku  of the correction 

The uncertainty is estimated using the difference Kp −∆−  between the deviations p∆−  of 
the mean values of the pressure sensor indications for each pressure Sp  and the corresponding 
values ( )SpK  of the regression curve:  

Nominal pressure Deviation Regression Difference 
pN / bar p∆−  / bar K / bar Kp −∆−  / bar 

0 0.007 0.0054 0.0016 
20 -0.035 -0.0260 -0.0090 
40 -0.055 -0.0744 0.0194 
60 -0.122 -0.1020 -0.0210 
80 -0.060 -0.0713 0.0113 

100 0.052 0.0544 -0.0024 

Table 21: Difference between the established deviation and the calculated correction 
The causes of the differences are not analyzed and the differences are therefore directly 
regarded as uncertainties (i.e. used without change): KpuK −∆−= . 
Largest occurring uncertainty: bar0210.0uK = . 

NOTE 6: A more accurate estimate, which could lead to an even lower uncertainty contribution, 
requires to consider the residual dispersion sR in relation to the regression curve, the uncertainties of 
the regression coefficients and their correlations. This corresponds to a generalization of the approach 
according to appendix F.2 which is mathematically very challenging and outside the scope of booklet 8. 
In the present case, the greater value of uK ≤ 0.0223 bar results for the maximum uncertainty of the 
correction. This value particularly applies at the limits pN = 0 bar and pN = 100 bar whereas a minimum 
value of uK ≥ 0.0143 bar is reached in the intermediate range.  

• Object to be calibrated (measuring object): Standard uncertainty δϑu  due to temperature 
fluctuations  

According to the manufacturer's data sheet of the pressure sensor, a temperature-induced 
deviation δϑδp  has to expected in the C80C10 °+≤ϑ≤°−  temperature range. δϑδp  can amount 
up to 0.1% of the indicated pressure p′  for every 10 K deviation of the ambient temperature ϑ  
from the reference temperature Refϑ : 

p001.0
K10

p Ref ′⋅⋅
ϑ−ϑ

=δ δϑ  (J.19) 

During calibration, temperature fluctuations occur up to a maximum of  
K1.0=ϑ∆  

The reference temperature Refϑ  is the nominal temperature ϑ  during calibration of the 
pressure sensor ( ϑ=ϑRef ). The instantaneous ambient temperature can deviate by a maximum 
of ϑ∆±  ( ϑ∆±ϑ ). Therefore, the following applies to the maximum deviations of the pressure 
sensor indication p′ : 

( ) p001.0
K10

p ′⋅⋅
ϑ∆

=∆ +
δϑ   and  ( ) p001.0

K10
p ′⋅⋅

ϑ∆−
=∆ −

δϑ  

The standard uncertainty is calculated from these limit values assuming a normal distribution and 
a confidence level of 95% (cf. chapter 4.4.2.2): 

( ) ( )
p001.0

K102
1

2
pp

2
1u ′⋅⋅

ϑ∆
⋅=

∆−∆
⋅=

−
δϑ

+
δϑ

δϑ  (J.20) 

K1.0=ϑ∆  and bar100p =′  result in the maximum uncertainty contribution: 

bar0005.0bar100001.0
K10
K1.0

2
1u =⋅⋅⋅=δϑ  
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• Object to be calibrated (measuring object): Standard uncertainty ϑ∆u  due to temperature 
deviation  

The pressure sensor is intended to be calibrated for practical us within the ( ) C1020 °±  temperature 
range. At ambient temperatures of ϑ , which deviate from the reference temperature Refϑ , 
deviations of the pressure sensor indications p′  have be expected according to Eq. (J.19). 

If, during practical use, the actual ambient temperature ϑ  is not taken into account during the 
measurement (i.e. there is no temperature correction), the maximum deviation from the 
reference temperature C23Ref °=ϑ  (i.e. the temperature during sensor calibration) must be 
applied which is possible within the ( ) C1020 °±  temperature range: 

C23C10 °−°=ϑ∆  

The calculation is performed according to Eq. (J.20). bar100p =′  results in the maximum 
uncertainty contribution: 

bar065.0bar100001.0
K10

C23C10
2
1u =⋅⋅

°−°
⋅=ϑ∆  

NOTE 7: The uncertainty of the reference temperature ϑRef was considered in the previous section. 

• Object to be calibrated (measuring object): Standard uncertainty Resu  due to limited resolution 

The influence of the resolution is contained in the standard deviation Ss  of the pressure sensor 
indications p′  (see Table 18). So it must not be considered separately: 

bar 0uRes =  

• Object to be calibrated (measuring object): Standard uncertainty Hysu  due to pressure sensor 
hysteresis  

Usually no special procedure is prescribed when using the pressure sensor, so that the hysteresis 
is not balanced and must be taken into account as an uncertainty. The values according to 
Table 18 result in the following differences of indications (hysteresis): 

Nominal 
pressure 

Np  / bar 

Np  rising: 
indications 

( )↑ pS  / bar 

Np  falling: 
indications 

( )↓ pS  / bar 

Difference of 
indications 
( ) ( )↑−↓ SS p p  / bar 

0 -0.007 -0.007 0 
20 20.017 20.053 0.036 
40 40.023 40.077 0.054 
60 60.090 60.157 0.067 
80 80.030 80.080 0.050 

100 99.947 99.947 0 

Table 22: Pressure sensor calibration, hysteresis 

Table 22 shows a maximum hysteresis of  0.067 bar. The assumption of a U-shaped distribution 
with a span ( ) ( )↑−↓ SS p p  = 0.067 bar results in the maximum standard uncertainty: 

( ) ( ) bar024.0
2414.1

bar067.0
2

p p
2
1u SS

Hys =
⋅

≈⋅
↑−↓

=  

 
 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf


Booklet 8 – Measurement Uncertainty 
 

© Robert Bosch GmbH 2015 | Status 06.2015 116 

• Procedure: Standard uncertainty Rptu  of the repeatability of the measurement result  

The maximum standard deviation Ss  of the pressure sensor indications Sp  is bar012,0sS =  (see 
Table 18). With 3n =  measured values and assuming a normal distribution the standard 
uncertainty is  

bar007.0
3

bar012.0
n

su S
Rpt ≈==  

 

Combined standard uncertainty of the output quantity 

The standard uncertainty Cu  is calculated as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

bar079.0bar006207.0

bar0.007+bar0.024+bar0.000bar0.065bar0.0005+bar0.0210+

bar0.001010+bar0.000115+bar0.022316+bar0.002106+bar.02030

uuuuuuuuuuuu

222222

22222

2
Rpt

2
Hys

2
Res

222
K

222
A

2
m

2
CalC

≈≈

++
=

++++++++++= ϑ∆δϑλϑ

 

The Pareto chart (Figure 29) of the individual uncertainty contributions 2
iu  shows that deviations of 

the ambient temperature during sensor use from the temperature during sensor calibration provide 
the main contribution to overall uncertainty. This contribution could be reduced significantly by 
temperature correction.  

 
Figure 29: Pressure sensor; Pareto chart of the uncertainty contributions ui

2  
 
Expanded measurement uncertainty 
The coverage factor 2kp =  gives the expanded measurement uncertainty  

bar158.0bar079.02ukU Cp =⋅≈⋅=  
 
Complete measurement result 
The following complete measurement result applies for the pressure sensor in the pressure range 

bar100pbar0 N ≤≤  when used in the temperature range C30C10 °≤ϑ≤° : 

( ) bar158.0pKpbar158.0pp 0 ±′+′=±=  
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Table 23: Uncertainty budget for the “pressure sensor” example 
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The correction ( )pK ′  is taken from the chart in Figure 28 or calculated according to Eq. (J.18). 

This result means that during practical use of the pressure sensor and an indication of e.g. 
bar72p =′  the conventional value of the measurement result can be expected between 

bar71,75bar0,158- bar0,09- bar27 ≈  and bar72,07bar0,158 bar0,09- bar27 ≈+  with a confi-
dence level of 95%. 

 
J.8.2 Potential further uncertainties when working with the pressure sensor 

In practical use of the pressure sensor, 
• the pressure-dependent correction of the indication is often skipped and  
• the sensor is used within the temperature range specified by the manufacturer, but outside the 

calibrated temperature range. 
The corresponding impact on the uncertainty of the measuring results of the pressure sensor has to 
be taken into account in addition. 

NOTE: It is assumed that a negligible time drift of the sensor occurs (e.g. as a result of environmental 
impact or aging). Otherwise, either a corresponding consideration in the uncertainty budget or another 
appropriate measure is required (e.g. adjustment, replacement by a new sensor). 

Temperature range (20 ± 10) °C without correction of the pressure sensor indication p‘ 

If the pressure sensor is used in the ( ) C1020 °±  temperature range but no pressure-dependent 
correction ( )pK ′  is performed, the maximum possible correction K  within the pressure range 

bar100pbar0 N ≤≤  has to be added as an additional uncertainty component to the uncertainty 
budget (see appendix F.3): 

( )pKukU 22
Cp ′+⋅=  

The maximum required correction MAXK  within the pressure range bar100pbar0 N ≤≤  is provided 
as the extreme value of the correction curve ( )pK ′  which is either read from the chart in Figure 28 in 
or calculated using Eq. (J.18) (zero point of the 1st derivative): 

( ) bar1022.0bar632.61pKKMAX −=≈′=  

Expanded measurement uncertainty: 

( ) bar258.0bar129.02bar016655.02bar1022.0006207.02U 2 =⋅≈⋅=−+⋅=  

Complete measurement result: 

bar258.0pp ±′=  

Accordingly, a measurement uncertainty applies to the sensor that is enlarged by the factor 1.7 
unless the correction is performed. For an indication of e.g. bar72p =′  the conventional value of 
measurement result is now expected with a confidence interval of 95% between 

bar71.74bar0.258-bar27 ≈  and bar72.26bar0.258 bar27 ≈+ , i.e. in case of this particular 
indication the skipped correction primarily affects the upper limit of uncertainty.  

Temperature range –10°C ≤ ϑ ≤ +80°C without correction of the pressure sensor indication p‘ 

If the pressure sensor is used over the entire temperature range that is permitted according to 
manufacturer’s specification and no corrections are performed (deviation of the sensor indication 
from the standard, deviation of the ambient temperature from the reference temperature in the 
calibration laboratory), the maximum values that are possible within the provided pressure range 
and temperature range must be used for the uncertainty contributions ( )pK ′  and ( )pu ′ϑ∆ .  
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Within the C80C10 °≤ϑ≤°−  range, C80°=ϑ  is the temperature with the maximum possible 
deviation ϑ∆  from the ambient temperature C23Ref °=ϑ  during sensor calibration: 

C23C80 °−°=ϑ∆  

The calculation is performed according to Eq. (J.20). bar100p =′  results in the maximum uncertainty 
contribution 

bar285.0bar100001.0
K10

C23C80
2
1u =⋅⋅

°−°
⋅=ϑ∆  

This value replaces the uncertainty contribution ϑ∆u  included in Cu  which previously was taken into 
account for the temperature range C30C10 °≤ϑ≤° .  

The expanded measurement uncertainty is calculated accordingly: 

( ) ( ) ( )S
2222

Cp pKC80C10uC30C10uukU ′+°≤ϑ≤°−+°≤ϑ≤°−⋅= ϑ∆ϑ∆  

( ) ( ) ( ) bar612.0bar306.02bar093655.02bar1022.0285.0065.0006207.02U 222 =⋅≈⋅=−++−⋅=

Complete measurement result: 

bar612.0pp ±′=  

According to this, a measurement uncertainty must be applied to the sensor that is enlarged by the 
factor 4 if there is no correction and if it is not ensured that the sensor will be used only within the 
calibrated temperature range ( ) C1020 °± . For an indication of e.g. bar72p =′  the conventional 
value of the measurement result is now expected between bar71.39bar0.612-bar27 ≈  and 

bar72.61bar0.612 bar27 ≈+  with a confidence level of 95%. 

Conclusion 
The results show that missing correction and using the sensor outside of the calibrated temperature 
range causes additional uncertainties which account for almost 98% of all uncertainty contributions 

2
iu  to the overall uncertainty (Figure 30). Therefore, in the practical application of the pressure 

sensor, it must be decided depending on the measuring task and the specific requirements for the 
measurement results, whether additional effort for the correction is justifiable and the usage of the 
sensor can be confined to the calibrated temperature range, or whether another correction with 
regard to the temperature should be considered.  

 
Figure 30: Pressure sensor; Pareto chart of the uncertainty contributions ui

2 (no correction, ϑ ≤ 80°C)  
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Table of Symbols 
a  Half width of the interval between the limit values +a  and −a  

+a  Upper limit value (of a value distribution)  

−a  lower limit value (of a value distribution) 

Kα  Intercept (correction) of the correction curve (calibration curve) 

Kβ  Slope (correction factor) of the correction curve (calibration curve) 

ic  Sensitivity coefficient assigned to the standard uncertainty of input quantity no. i 

ixδ  Deviation of the value ix  from the conventional value of input quantity no. i 

EV  Equipment Variation, Repeatability  

f  Model function 

i  Index of (different) input quantities; 1 < i < n 

j  Index of data sets allocated to a (specific) input quantity; 1 < j < jP 

Pj  Number of pooled data sets 

k  Index of the values of a (specific) input quantity; 1 < k < m 

K  Correction (correction curve, calibration curve) 

pk  Coverage factor for the calculation of the expanded measurement uncertainty 

m  Number of values assigned to a (specific) input quantity 

n  Number of (different) input quantities 

jm  Number of values in data set no. j of a (specific) input quantitity  

( )ji x,xr  Correlation coefficient of two data sets of the input quantities no. i and no. j 

R  Resistance 

( )ixs  Standard deviation of the values ikx  of input quantity no. i 

( )ji x,xs  Covariance of two data sets of the input quantities no. i and no. j 

( )ij xs  Standard deviation of data set no. j of input quantity no. i 

ps  Pooled standard deviation 

ϑ  Temperature in °C (temperature differences in K) 

T  Tolerance of a measured characteristic 

( )ixu δ  Standard uncertainty of the deviation of value ix  from the conventional value of input 
quantity no. i 

( )ixu  Standard uncertainty of input quantity no. i 

( )ji x,xu  Covariance of the standard uncertainties of two data sets of the input quatities no. i 
and no. j 

( )ixu  Standard uncertainty of the mean value of the values ikx  of the input quantity no. i 

( )ji x,xu  Covariance of the standard uncertainties of the mean values of two data sets of the 
input quatities no. i and no. j 

( )yuC  Combined standard uncertainty of measurand y 

U  Expanded measurement uncertainty  

calU  Expanded uncertainty of calibration 

relU  Expanded measurement uncertainty related to a reference value 
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ix  Value of input quantity no. i 

ix  Mean value of the values ikx  of the input quantity no. i 

ikx  Value no. k of the input quantity no. i 

kjix  Value no. k in the data set no. j (e.g. measurement series) of input quantity no. i 

mx  Reference value of a reference / master (e.g. measuring standard, stability part) 
y  Value of a measurand (output quantity, result) 

y′  Uncorrected value of a measurand y (”raw value“) 

0y  Conventional value of a measurand y (no uncertainty) 
 
Further symbols which are used in individual chapters only are defined in the respective context.. 
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Definition of terms 
NOTE 1: The following definitions of terms were taken from the standards referenced in this document. 
Corresponding notes were only adopted in single cases if they were considered directly relevant and/or 
essential for understanding a standardized term. Otherwise, the respective standard should be referenced for 
notes and examples. 

NOTE 2: “Editorial notes” are not part of the respective standard. 

NOTE 3: The definitions of terms according to [VIM] were used preferably. If terms are not contained in [VIM],  
the most current definitions from [GUM] or the standards [ISO 3534-2], [ISO 3534-1], [ISO 9000], [ISO 14253], 
[DIN 1319-4] and [DIN 1319-1] were adopted (or listed additionally in some cases). Non-standardized defini-
tions are only used if the listed standards do not provide a definition. 

NOTE 4: Terms whose definitions are contained in the following summary are in bold if they are used in defini-
tions of other terms. 

 
calibration curve (Ger. Kalibrierkurve) 
expression of the relation between indication and corresponding measured quantity value 

NOTE: A calibration curve expresses a one-to-one relation that does not supply a measurement result as it 
bears no information about the measurement uncertainty. 

[VIM, 4.31] 
 
characteristic (Ger. Merkmal) 
distinguishing feature 

NOTE 1: A characteristic can be inherent or assigned. 
NOTE 2: A characteristic can be qualitative or quantitative. 
NOTE 3: There are various classes of characteristics such as the following: 
• physical (e.g. mechanical, electrical, chemical, biological); 
• sensory (e.g. relating to smell, touch, taste, sight, hearing); 
• behavioral (e.g. courtesy, honesty, veracity) 
• temporal (e.g. punctuality, reliability, availability); 
• ergonomic (e.g. physiological characteristic or related to human safety); 
• functional (e.g. maximum speed of an aircraft). 

[ISO 3534-2, 1.1.1] 
 
combined standard uncertainty (Ger. Kombinierte Standardunsicherheit) 
standard measurement uncertainty that is obtained using the individual standard measurement 
uncertainties associated with the input quantities in a measurement model [VIM, 2.31] 
 
confidence interval (Ger. Vertrauensbereich) 
interval estimator ( )10 T,T  for the parameter θ  with the statistics 0T  and 1T  as interval limits and 
for which it holds that [ ] α−≥<θ< 1TTP 10  

NOTE 2: Associated with this confidence interval is the attendant performance characteristic 100⋅(1–α) %, 
where α is generally a small number. The performance characteristic, which is called the confidence 
coefficient or confidence level, is often 95 % or 99 %. The inequality P [T0 < θ < T1] ≥ 1 – α holds for any 
specific but unknown population value of θ. 

[ISO 3534-1, 1.28] 
EDITORIAL NOTE: P denotes a probability. 

 
confidence level (Ger. Vertrauensniveau) 
see confidence interval, note 2 
 
conformity (Ger. Konformität) 
Fulfilment of a requirement [ISO 9000, 3.6.11] 
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conformity evaluation (Ger. Konformitätsbewertung) 
systematic examination of the extent to which an item/entity fulfils specified requirements 
[ISO 3534-2, 4.1.1] 
 
conformity zone (Ger. Konformitätsbereich) 
specification zone reduced by the expanded measurement uncertainty [ISO 14253-1, 3.20] 
 
conventional (quantity) value (Ger.vereinbarter Wert) 
quantity value attributed by agreement to a quantity for a given purpose 

NOTE 1: The term “conventional true quantity value” is sometimes used for this concept, but its use is 
discouraged. 
NOTE 2: Sometimes a conventional quantity value is an estimate of a true quantity value. 
NOTE 3: A conventional quantity value is generally accepted as being associated with a suitably small 
measurement uncertainty, which might be zero. 

[VIM, 2.12] 
EDITORIAL NOTE: The term “conventional value” obviously replaces the normative term “conventional true 
value” according to [ISO 3534-2] which is no longer contained in the current release of [VIM]. 

 
conventional true value (Ger. richtiger Wert) 
value of a quantity or quantitative characteristic which, for a given purpose, may be substituted for 
a true value 

NOTE 1: A conventional true value is, in general, regarded as sufficiently close to the true value for the 
difference to be insignificant for the given purpose. 

[ISO 3534-2, 3.2.6] 
 
correction (Ger. Korrektion) 
compensation for an estimated systematic effect 

NOTE 1: See ISO/IEC Guide 98-3:2008, 3.2.3, for an explanation of ‘systematic effect’. 
NOTE 2: The compensation can take different forms, such as an addend or a factor, or can be deduced from 
a table. 

[VIM, 2.53] 
 
coverage factor (Ger. Erweiterungsfaktor) 
number larger than one by which a combined standard measurement uncertainty is multiplied to 
obtain an expanded measurement uncertainty [VIM, 2.38] 
 
degrees of freedom (Ger. Freiheitsgrade) 
number of terms in a sum minus the number of constraints on the terms of the sum 
[ISO 3534-1, 2.54] 
 
entity (Ger. Einheit): see item [ISO 3534-2, 1.2.11] 
 
estimate (Ger. Schätzwert) 
observed value of an estimator [ISO 3534-1, 1.31] 
 
estimation (Ger. Schätzung) 
procedure that obtains a statistical representation of a population from a random sample drawn 
from this population 

NOTE 1: In particular, the procedure involved in progressing from an estimator to a specific estimate 
constitutes estimation. 

[ISO 3534-1, 1.36] 
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estimator (Ger. Schätzer) 
statistic used in estimation of the parameter Θ [ISO 3534-1, 1.12] 
 
expanded measurement uncertainty (Ger. Erweiterte Messunsicherheit) 
product of a combined standard measurement uncertainty and a factor larger than the number one 

NOTE 2: The term “factor” in this definition refers to a coverage factor. 

[VIM, 2.35] 
 
indicating measuring instrument (Ger. anzeigendes Messgerät) 
measuring instrument providing an output signal carrying information about the value of the 
quantity being measured 

NOTE 1: An indicating measuring instrument may provide a record of its indication. 
NOTE 2: An output signal may be presented in visual or acoustic form. It may also be transmitted to one or 
more other devices. 

[VIM, 3.3] 
 
indication (Ger. Anzeige) 
quantity value provided by a measuring instrument or a measuring system [VIM, 4.1] 
 
influence quantity (Ger. Einflussgröße) 
quantity that is not the measurand but that affects the result of the measurement [GUM, B.2.10; 
VIM(2), 2.7] 
 
influence quantity (Ger. Einflussgröße) 
quantity that, in a direct measurement, does not affect the quantity that is actually measured, but 
affects the relation between the indication and the measurement result 

NOTE 2: In the GUM, the concept ‘influence quantity’ is defined as in the second edition of the VIM, 
covering not only the quantities affecting the measuring system, as in the definition above, but also those 
quantities that affect the quantities actually measured. Also, in the GUM this concept is not restricted to 
direct measurements. 

[VIM, 2.52] 
 
input quantity (in a measurement model) (Ger. Eingangsgröße) 
quantity that must be measured, or a quantity, the value of which can be otherwise obtained, in 
order to calculate a measured quantity value of a measurand. [VIM, 2.50] 
 
inspection (Ger. Prüfung) 
conformity evaluation by observation and judgement accompanied as appropriate by measurement, 
testing or gauging [ISO 3534-2, 4.1.2] 
 
intermediate precision condition (of measurement) (Ger. Vergleichbedingung) 
condition of measurement, out of a set of conditions that includes the same measurement 
procedure, same location, and replicate measurements on the same or similar objects over an 
extended period of time, but may include other conditions involving changes 

NOTE 1: The changes can include new calibrations, calibrators, operators, and measuring systems. 

[VIM, 2.22] 
 
item (Ger. Einheit) 
anything that can be described and considered separately [ISO 3534-2, 1.2.11] 
 
kind of quantity (Ger. Art einer Größe, Größenart) 
aspect common to mutually comparable quantities [VIM, 1.2] 
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lower specification limit (Ger. Mindestwert) 
specification limit that defines the lower limiting value [ISO 3534-2, 3.1.5] 
 
material measure (Ger. Maßverkörperung) 
measuring instrument reproducing or supplying, in a permanent manner during its use, quantities of 
one or more given kinds, each with an assigned quantity value 

NOTE 1: The indication of a material measure is its assigned quantity value. 
NOTE 2: A material measure can be a measurement standard. 

[VIM, 3.6] 
 
measurand (Ger. Messgröße) 
quantity intended to be measured [VIM, 2.3] 
 
measured (quantity) value (Ger. Messwert) 
quantity value representing a measurement result [VIM, 2.10] 
 
measurement (Ger. Messung) 
process of experimentally obtaining one or more quantity values that can reasonably be attributed 
to a quantity 

NOTE 1: Measurement does not apply to nominal properties. 
NOTE 2: Measurement implies comparison of quantities and includes counting of entities. 
NOTE 3: Measurement presupposes a description of the quantity commensurate with the intended use of a 
measurement result, a measurement procedure, and a calibrated measuring system operating according 
to the specified measurement procedure, including the measurement conditions. 

[VIM, 2.1] 
 
measurement error (Ger. Messabweichung) 
measured quantity value minus a reference quantity value [VIM, 2.16] 
 
measurement method (Ger. Messmethode) 
generic description of a logical organization of operations used in a measurement [VIM, 2.5] 
 
measurement model (Ger. Modell der Messung) 
mathematical relation among all quantities known to be involved in a measurement [VIM, 2.48] 
 
measurement principle (Ger. Messprinzip) 
phenomenon serving as a basis of a measurement [VIM, 2.4] 
 
measurement procedure (Ger. Messverfahren) 
detailed description of a measurement according to one or more measurement principles and to a 
given measurement method based on a measurement model and including any calculation to obtain 
a measurement result [VIM, 2.6] 
 
measurement process (Ger. Messprozess) 
set of operations to determine the value of a quantity [ISO 9000, 3.11.5] 
 
measurement result (Ger. Messergebnis) 
set of quantity values being attributed to a measurand together with any other available relevant 
information [VIM, 2.9] 
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measurement standard (Ger. Normal) 
realization of the definition of a given quantity, with stated quantity value and associated 
measurement uncertainty, used as a reference 

NOTE 1: A “realization of the definition of a given quantity“ can be provided by a measuring system, a 
material measure, or a reference material.  

[VIM, 5.1] 
 
measurement uncertainty (Ger. Messunsicherheit) 
non-negative parameter characterizing the dispersion of the quantity values being attributed to a 
measurand, based on the information used [VIM, 2.26] 
 
measurement uncertainty (Ger. Messunsicherheit) 
parameter, associated with the result of a measurement, that characterizes the dispersion of the 
values that could reasonably be attributed to the measurand [GUM, 2.2.3; VIM(2), 3.9] 

EDITORIAL NOTE: [GUM] still utilizes this definition according to [VIM(2)] which was withdrawn. Here, the 
measurement uncertainty is assigned to the measurement result whereas it is assigned to the measurand 
according to its revised definition [VIM, 2.26]. 

 
measurement uncertainty (Ger. Messunsicherheit) 
Parameter obtained from measurements and which – together with the result of measurement – 
characterizes the range of values within which the true value of a measurand is estimated to lie 
[DIN 1319-1, 3.6] 

NOTE 2: The measurement uncertainty has to be distinguished clearly from the measurement error. A 
measurement error merely is the difference between a value which is assigned to a measurand, e.g. a 
measured value or a measurement result, and the true value of the measurand. The measurement error 
may be zero without being known. This lack of knowledge is expressed in a measurement uncertainty which 
is greater than zero.  

[DIN 1319-4, 3.5]; note 2 loosely translated from German, official English translation unavailable 
 
measurement unit (Ger. Maßeinheit) 
real scalar quantity, defined and adopted by convention, with which any other quantity of the same 
kind can be compared to express the ratio of the two quantities as a number 

NOTE 1: Measurement units are designated by conventionally assigned names and symbols. 

[VIM, 1.9] 
 
measuring equipment (Ger. Messmittel) 
measuring instrument, software, measurement standard, reference material or auxiliary apparatus 
or combination thereof necessary to realize a measurement process [ISO 9000, 3.11.16] 
 
measuring instrument (Ger. Messgerät) 
device used for making measurements, alone or in conjunction with one or more supplementary 
devices 

NOTE 1: A measuring instrument that can be used alone is a measuring system. 
NOTE 2: A measuring instrument may be an indicating measuring instrument or a material measure. 

[VIM, 3.1] 
 
measuring object  (Ger. Messobjekt) 
The object being measured in order to determine the value of the measurand [DIN 1319-1, 1.2] 
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measuring system (Ger. Messsystem) 
set of one or more measuring instruments and often other devices, including any reagent and 
supply, assembled and adapted to give information used to generate measured quantity values 
within specified intervals for quantities of specified kinds 

NOTE: A measuring system may consist of only one measuring instrument. 

[VIM, 3.2] 
 
metrological compatibility (Ger. metrologische Verträglichkeit) 
property of a set of measurement results for a specified measurand, such that the absolute value of 
the difference of any pair of measured quantity values from two different measurement results is 
smaller than some chosen multiple of the standard measurement uncertainty of that difference 
[VIM, 2.47] 
 
nominal property (Ger. Nominalmerkmal) 
property of a phenomenon, body, or substance, where the property has no magnitude [VIM, 1.30] 
 
nominal value  (Ger. Nominalwert): see target value 
 
observed value (Ger. Beobachteter Wert) 
obtained value of a property associated with one member of a sample [ISO 3534-1, 1.4] 
 
population (Ger. Grundgesamtheit) 
totality of items under consideration [ISO 3534-2, 1.2.1] 
 
quantity (Ger. Größe) 
property of a phenomenon, body, or substance, where the property has a magnitude that can be 
expressed as a number and a reference [VIM, 1.1] 
 
quantity value (Ger. Größenwert) 
number and reference together expressing magnitude of a quantity [VIM, 1.19] 
 
random (measurement) error (Ger. zufällige Messabweichung) 
component of measurement error that in replicate measurements varies in an unpredictable 
manner 

NOTE 1: A reference quantity value for a random measurement error is the average that would ensue from 
an infinite number of replicate measurements of the same measurand. 
NOTE 2: Random measurement errors of a set of replicate measurements form a distribution that can be 
summarized by its expectation, which is generally assumed to be zero, and its variance. 
NOTE 3: Random measurement error equals measurement error minus systematic measurement error. 

[VIM, 2.19] 
 
random sample (Ger. Zufallsstichprobe) 
sample which has been selected by a method of random selection [ISO 3534-1, 1.6] 
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reference (quantity) value (Ger. Referenzwert) 
quantity value used as a basis for comparison with values of quantities of the same kind  

NOTE 1: A reference quantity value can be a true quantity value of a measurand, in which case it is 
unknown, or a conventional quantity value, in which case it is known.  
NOTE 2: A reference quantity value with associated measurement uncertainty is usually provided with 
reference to  
a) a material, e.g. a certified reference material, 
b) a device, e.g. a stabilized laser, 
c) a reference measurement procedure, 
d) a comparison of measurement standards. 

[VIM, 5.18] 
 
relative standard (measurement) uncertainty (Ger. relative Standard(mess)unsicherheit) 
standard measurement uncertainty divided by the absolute value of the measured quantity value 
[VIM, 2.32] 
 
repeatability condition (of measurement) (Ger. Wiederholbedingung) 
condition of measurement, out of a set of conditions that includes the same measurement 
procedure, same operators, same measuring system, same operating conditions and same location, 
and replicate measurements on the same or similar objects over a short period of time [VIM, 2.20] 
 
reproducibility condition (Ger. Erweiterte Vergleichbedingung) 
condition of measurement, out of a set of conditions that includes different locations, operators, 
measuring systems, and replicate measurements on the same or similar objects [VIM, 2.24] 
 
requirement (Ger. Anforderung) 
need or expectation that is stated, generally implied or obligatory [ISO 9000, 3.6.4] 
 
resolution (Ger. Auflösung) 
smallest change in a quantity being measured that causes a perceptible change in the corresponding 
indication [VIM, 4.14] 
 
sample (Ger. Stichprobe) 
subset of a population made up of one or more sampling units [ISO 3534-2, 1.2.17] 
 
sampling unit (Ger. Auswahleinheit) 
one of the individual parts into which a population is divided 

NOTE 1: A sampling unit can contain one or more items, for example a box of matches, but one test result 
will obtained for it. 

[ISO 3534-2, 1.2.14] 
 
specification (Ger. Spezifikation) 
document stating requirements  

Note 1: A specification can be related to activities (e.g. procedure document, process specification and test  
specification), or products (e.g. product specification, performance specification and drawing).  

[ISO 9000, 3.8.7] 
EDITORIAL NOTE: In everyday language “to specify“ usually means determining (e.g. by measurements), 
stating (e.g. based on evluation results) and documenting requirements. 

specification interval (Ger. Spezifikationsintervall) 
interval between upper and lower specification limits [ISO 22514-1, 3.1.14] 
 
specification limit (Ger. Grenzwert)  
limiting value stated for a characteristic [ISO 3534-2, 3.1.3] 
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stability (of a measuring instrument) (Ger. Messbeständigkeit) 
property of a measuring instrument, whereby its metrological properties remain constant in time 
[VIM, 4.19] 
 
standard (measurement) uncertainty (Ger. Standard(mess)unsicherheit) 
measurement uncertainty expressed as a standard deviation [VIM, 2.30] 
 
statistic (Ger. Kenngröße) 
completely specified function of random variables [ISO 3534-1, 1.8] 
 
systematic (measurement) error (Ger. systematische Messabweichung) 
component of measurement error that in replicate measurements remains constant or varies in a 
predictable manner 

NOTE 1: A reference quantity value for a systematic measurement error is a true quantity value, or a 
measured quantity value of a measurement standard of negligible measurement uncertainty, or a 
conventional quantity value. 
NOTE 3: Systematic measurement error equals measurement error minus random measurement error. 

[VIM, 2.17] 
 
target value (Ger. Sollwert)  
preferred or reference value of a characteristic stated in a specification [ISO 3534-2, 3.1.2] 
 
(specified) tolerance (Ger. (festgelegte) Toleranz) 
difference between the upper specification limits and lower specification limits [ISO 3534-2, 3.1.6] 
 
tolerance interval (Ger. Toleranzintervall) 
see specification interval 
 
tolerance zone (Ger. Toleranzzone) 
see specification interval 
 
true (quantity) value (Ger. wahrer Wert einer Größe) 
quantity value consistent with the definition of a quantity [VIM, 2.11] 
 
true value (Ger. wahrer Wert) 
value which characterizes a quantity or quantitative characteristic perfectly defined in the conditions 
which exist when that quantity or quantitative characteristic is considered 

NOTE 1: The true value of a quantity or a quantitative characteristic is a theoretical concept and, in general, 
cannot be known exactly. 

[ISO 3534-2, 3.2.5] 
 
Type A evaluation (Ger. Ermittlungsmethode A) 
evaluation of a component of measurement uncertainty by a statistical analysis of measured 
quantity values obtained under defined measurement conditions 

NOTE 1: For various types of measurement conditions, see repeatability condition of measurement, 
intermediate precision condition of measurement, and reproducibility condition of measurement. 

[VIM, 2.28] 
 
Type B evaluation (Ger. Ermittlungsmethode B) 
evaluation of a component of measurement uncertainty determined by means other than a Type A 
evaluation of measurement uncertainty [VIM, 2.29] 
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uncertainty budget (Ger. Messunsicherheitsbilanz) 
statement of a measurement uncertainty, of the components of that measurement uncertainty, and 
of their calculation and combination 

NOTE: An uncertainty budget should include the measurement model, estimates, and measurement 
uncertainties associated with the quantities in the measurement model, covariances, type of applied 
probability density functions, degrees of freedom, type of evaluation of measurement uncertainty, and any 
coverage factor. 

[VIM, 2.33] 
 
upper specification limit (Ger. Höchstwert) 
specification limit that defines the upper limiting value [ISO 3534-2, 3.1.4] 
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I 
Indicating measuring instrument ................................ 124 
Indication .................................................................... 124 
Influence quantity ......................................... see quantity 
Input quantity ................................................ see quantity 
Inspection .................................................................... 124 

Intermediate precision condition ............................... 124 
Item ............................................................................. 124 

M 
Material measure ........................................................ 125 
Maximum permissible error (MPE) ............................... 38 
Mean value 

arithmetic .......................................................... 20, 51 
dispersion .......................................................... 21, 51 

Measurand ............................................. 8, 12, 17, 28, 125 
Measured value ................................................. see value 
Measurement ............................................................. 125 
Measurement condition ............................................ 8, 21 
Measurement error ............................... 8, 10, 18, 33, 125 

random ......................................................... 8, 51, 127 
systematic ....................... 8, 40, 51, 55, 56, 57, 95, 129 

Measurement method .......................................... 14, 125 
Measurement principle ............................................... 125 
Measurement procedure ................................. 14, 21, 125 
Measurement process ..................................... 31, 33, 125 
Measurement result ........................................ 17, 28, 125 

comparability ................................................... 59, 103 
complete .................................................................. 29 
corrected ................................................................. 57 
from former study ................................................... 22 
observed .................................................................. 57 
uncorrected ............................................................. 58 

Measurement standard ........................................ 14, 126 
Measurement uncertainty ....................... 7, 8, 12, 31, 126 

data from booklet 10 ............................................... 39 
examples .................................................................. 64 
expanded ........................................ 23, 28, 29, 51, 124 
measurement process ....................................... 37, 39 
measuring system .................................................... 35 

Measurement uncertainty budget see uncertainty budget 
Measurement unit ................................... 17, 18, 108, 126 
Measuring equipment......................................... 104, 126 
Measuring instrument .......................................... 21, 126 
Measuring object ............................................. 14, 21, 126 
Measuring system ................................ 14, 21, 31, 33, 127 
Metrological compatibility .................................... 10, 127 
Metrology, golden rule ................................ 42, 54, 56, 74 
Model 

additive model ................................................... 18, 33 
general approach .......................................... 19, 27, 97 
measurement model ....................................... 17, 125 
measurement process ............................................. 33 
measuring system .................................................... 33 
model equation ...................................... 17, 33, 60, 87 
Monte Carlo simulation ........................................... 60 
multiplicative model .......................................... 18, 26 
submodel ............................................................... 108 

Model equation ................................................ see model 

N 
Nominal property ........................................................ 127 
Nominal value .................................................... see value 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-008_BBL_N_EN_2015-06-01.pdf


Booklet 8 – Measurement Uncertainty 
 

© Robert Bosch GmbH 2015 | Status 06.2015 134 

P 
Pareto chart............................................................. 30, 80 
Population ................................................................... 127 

Q 
Quantity ...................................................................... 127 
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