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1. Introduction to the design of experiments 

The aim of this volume is to provide associates in research, development and production with an 
overview of the subject of DoE at Bosch. Within this context, the design of experiments (DoE) is 
understood to be the systematic procedure for designing, conducting and evaluating experiments 
while minimizing the necessary resources. The subject of “statistical experimental design”, often 
equated with “DoE” in the literature, is treated in this volume as just one aspect of DoE, and as such is 
dealt with here only insofar as is necessary for common technical concerns. Extensive literature is 
available for those desiring a more detailed study. This document also largely dispenses with the 
mathematical explanation of relationships.  

This volume covers all major aspects of the design of DoE as it pertains to engineering practice, e.g. 
the conducting of experiments and the role of modeling. Furthermore, it acts as a guide for the 
planning, preparation and evaluation of experiments. Those wishing to tackle these complex issues 
independently will also require adequate practical experience, however. 

Layout of this volume: 

Chapter 1:  Overview and important points for understanding the methods, their importance and, 
in particular, their application at Bosch. 

Chapters 2…7:  Detailed description of DoE, with the individual steps in chronological order. 

Chapter 8:  Advanced approaches (see Appendix for details on the relevant statistical bases). 

1.1. The importance of experiments 

The objective of a test or experiment is the - mostly empirical - examination of an assumption (from the 
Latin experimentum: attempt to demonstrate, test, trial). A real object is examined or measured to 
determine whether or not the assumption is correct. Finally, every test has the objective of furthering 
knowledge. Conducting an experiment before posing the question that the experiment is intended to 
answer is not a purposeful approach. 

An experiment is always an investigation of the causal relationship between cause and effect, based 
on the notion of a process with influences as the input and reactions as the output. Variables that 
describe these influences are referred to as predictor variables, those that denote the reactions, as 
response variables. 

An experiment is the empirical examination of the causal relationship between the predictor variables 
and response variables of a system, based on observation and measurement, with the aim of gaining 
knowledge. 

We distinguish between the following experiments, depending on whether or not the predictor variables 
can be controlled: 

a) Experiments under controlled conditions, e.g. laboratory tests, in which the predictor variables 
can be set in accordance with a defined plan. 

b) Experiments under uncontrolled conditions, often also referred to as field tests, in which the 
setting of variables is either physically impossible or is deemed unviable for economic, ethical or 
other reasons. 

Where possible, the first type of test is always preferable, as it permits targeted intervention to achieve 
a rapid, cost-effective acquisition of knowledge; with the second type this is significantly harder. 

Furthermore, we need to differentiate between the terms experiment and replications. If the test 
encompasses variables subject to variance, several replications are generally required. These are then 
referred to in their entirety as an experiment. 
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1.1.1. Acquiring knowledge through experiments 

In systems theory, the terms ‘system’ and ‘model’ play a key role. A ‘system’ is an initially very abstract 
concept denoting an extremely varied range of objects under observation, e.g. a fuel injection system, 
a production plant, a house or even an organism. ‘Models’, on the other hand, provide a simplified 
representation of real systems, in order to describe the major characteristics of those systems, such as 
structure and function. Experiments play a crucial role in the creation of models. 

1.1.1.1. The basic terms system and model 

Definition of system: 

BES-PE Glossary (issue 3-2009/11): A system is an entirety of elements that relate with each other 
and interact in such a way that they can be regarded as a unit with a specific task, sense or purpose, 
and in this way differentiate themselves from the environment that surrounds them. 

A system has a system structure and fulfils a particular function; see [13], p.35. EN ISO 9000:  
System = a set of elements that are interrelated or interact with one another. 

Since the aspects of differentiation from the environment and function are important for DoE,  
however, the first of these definitions is used in this document. 

Definition of model: 

BES-PE Glossary (issue 3-2009/11): A model is a representation of reality that is reduced to relevant 
characteristics. 

A model is the simplified representation of a system - with limited applicability - which is intended to 
convey valid information about the system for a particular model purpose, see [13], p.51. Here, it is 
important to understand that a model is not correct or incorrect, but fit for purpose or not, depending on 
the task that the model is intended to accomplish. Various models of the same system may be required 
for answering different questions. 

System analysis is one of the methods of systems theory that deals with the development of models. 
This process is often referred to as modeling. 

Reasons for modeling: 

 To reduce the complexity of the relationships in a system 

 To increase understanding of and explain the behavior of the system through simulation, including 
in situations where studies of the real system are impossible, uneconomical or unviable 

 To predict or optimize system behavior before the system physically exists. 

General procedure for modeling: 

1. Creating a model: Mostly an iterative, heuristic process whereby the model, beginning with the 
simplest possible notion of a model, is adapted on the basis of our knowledge of reality until it 
satisfies all important aspects in respect of the task to be accomplished. 

2. Validation of the model: Here, predicted system properties and behavior are compared with 
observed properties and behavior. 

3. Simulation: Acquiring knowledge of the system using the model. 

4. if necessary further development of the model, then continuing with Step 2. 

We refer to structural or behavioral models, depending on the structure and function of the system that 
the model is supposed to represent [13], p.61. 

Representation of the system structure is achieved by: 

 the system boundary (differentiation from the environment), 

 the system elements with their characteristics, whereby the elements may in themselves be 
systems (subsystems), 

 interactions incl. feedback between the elements and between the system and the environment 
through the flow of materials, energy and information. 
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The system structure depends to a great extent upon the depth of observation. On the one hand, it 
should be possible to record the major influences (e.g. interaction between the elements); on the other 
hand, the level of detail must not allow the model to become too complex. Thus, the basic principle is: 
as rough as possible, and as detailed as necessary. 

The function of a (sub)system does not describe “what something is like”, but rather “what it does”,  
i.e. it is patterns of behavior, not components, that are represented [14], p.55. 

Representation of function is achieved by: 

 Describing how the system interacts with its environment through inputs and outputs. 

REMARKS: Inputs describe the effect of the environment on the system, outputs the reaction of the system to 
the environment. These variables do not have to match the predictor variables and response variables of the 
experiment, but describe the system’s relationship with its environment. Predictor and response variables, on 
the other hand, describe the experiment within the framework of a process model. 

 Describing the functional relationship between inputs and outputs by means of a transfer function. 

REMARKS: This description can apply both to the highest (super) system level and any (sub)system level. 

The structure and function of a system can be illustrated in the form of a graph. 

System
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Figure 1.1: System structure and function 

1.1.1.2. Methods of modeling 

We distinguish between two methods of modeling, and mixed forms thereof [13], p. 52ff.: 
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Figure 1.2: Types of modeling 
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Physical modeling (white box) 

Physical modeling (also referred to as white-box or glass-box modeling) denotes a deductive process 
(from the general to the specific) on the basis of general natural laws and principles (e.g. laws of 
conservation, laws from chemistry, physics or thermodynamics), and structural knowledge of the 
system. Here, the function of the system elements at the chosen level of observation must be fully 
known, in order that the function of the system as a whole can be clearly deduced from the system 
structure. Model parameters must be defined on the basis of physical constants and the known 
characteristics of the system elements. The model is frequently represented as a set of complex, 
partial differential equations (PDEs). 

Here, the model approach is limited only by the applicability of the laws on which it is based, which 
means that it may be used over a wide spectrum - a significant advantage of this method. We refer to a 
structural model that explains system behavior. 

With physical modeling, too, the model must be validated by means of experiments. 

EXAMPLE: One example of physical modeling is structural-mechanical models of components, the deformation 
behavior under load of which is examined by means of the finite element method. Here, the component to be 
modeled is regarded as a system of “finite elements”. The system structure is defined by the division of the 
component’s volume, e.g. into tetrahedral elements, and their arrangement. The behavior (function) of the 
individual elements is described by a system of partial differential equations; interaction between the 
elements is produced by global equilibrium conditions. The known laws of elasticity theory and knowledge of 
the system (e.g. concerning its geometry and appearance) enable global system behavior to be deduced. 
The loads and other boundary conditions produce the inputs. The system reacts to these with a certain 
deformation (outputs). The model parameters are defined by the E modulus and Poisson’s ratio of the 
material, which must be known. The model is limited by the applicability of the fundamental laws of elasticity, 
but these no longer apply during plastic deformation under extreme load. For this reason, experimental 
validation is required, e.g. by measuring actual deformation with the aid of a strain gage and subsequently 
comparing this reading with the arithmetical value. 

In its purest form, white-box modeling is seldom encountered. Physical modeling may be employed for 
technical questions if the state of the art is adequate to the task and comprehensive knowledge of the 
system is available. This often does not apply to quantitative statements, because sufficient 
knowledge  about the structure, laws or element characteristics is either not available with the required 
level of detail, or cannot be obtained for cost or time reasons. Variance adds to the difficulty of 
modeling. Gray-box modeling may provide a remedy to this problem. However, qualitative analyses of 
dependencies and interactions can be achieved through the study of parameters. 

 
Empirical modeling (black box) 

Empirical modeling, also known as system identification or black-box modeling, is an inductive 
approach (from the specific to the general) whereby a model is created only by recording the system 
inputs and outputs by way of an experiment in a finite number of discrete cases (e.g. within a finite 
period of time), e.g. through measurement and observation. This model then describes the relationship 
between inputs and outputs in the best possible way, using a transfer function. This may also be 
referred to as an approach that describes behavior. The basis for the transfer function is a general 
mathematical approach, which must be set a priori as default, mostly as a simple algebraic equation, 
e.g. as a polynomial of the first or second degree. Subsequent system identification is achieved by 
determining the free model parameters (coefficients in the equation), so that the transfer function best 
describes the system behavior, within the framework of model accuracy. 

Advantage: 

 Those conducting the experiment do not have to have knowledge of the structure, physical laws or 
element characteristics of the system (knowledge is not actually available or cannot be obtained). 

Disadvantages: 

 Opportunities to gain a more in-depth understanding of system behavior may not be exploited. 

 The model can only be used within narrow confines, because complex, global system behavior 
cannot be approximated by the limited order of the model equation. Modeling is thus only suitable 
for interpolation. 
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REMARKS: Within these narrow limits however, it is possible to show, through Taylor expansion, that the 
model is capable of reflecting every steady system behavior up to a higher order error, even if it differs from 
the (unknown) actual physical relationships. This fact also answers the question as to why a general model 
approach should be at all capable of describing different system behavior, and is a significant advantage of 
this approach. 

The verification of a black-box model is already incorporated in the modeling process. Validation (i.e. 
whether the model construct that was chosen beforehand is suitable for the question at hand) must be 
carried out separately. 

Black-box modeling provides a basis for physical modeling when systems are completely unknown, by 
gathering facts and information from which the physical theories can be derived through hypothesis. 
This kind of modeling is also employed for technical questions without prior knowledge, and is the 
object of classic statistical experimental design, e.g. using factorial experimental designs. 

EXAMPLE: One example of empirical modeling is the corrosion behavior of stainless steel in gasoline 
containing ethanol, dependent upon the composition of the material and medium, the surface, temperature 
and time of exposure. More detailed relationships are not known here, so that black-box modeling has to be 
employed. In a series of experiments, the dimensions of the corrosive holes (system output) are measured to 
investigate the extent to which the intensity of the formation of corrosion depends upon the duration of 
exposure and all the other parameters mentioned above (system input). 

 
Mixed modeling (gray box) 

In addition to the two modeling approaches described above, various mixed forms exist, which come 
under the term ‘gray-box modeling’. 

If the system structure is known, but not the function of the system elements, the empirical modeling 
technique can be used at the element level to describe system behavior. Here, we refer to approaches 
that describe behavior in a model that explains behavior cover, [13], p.57. 

On the other hand, structural knowledge and known physical relationships, if any, can be utilized to 
establish the model approach. A polynomial can be replaced by an exponential or logarithmic function 
from a physical model, for example. In the classic design of experiments using factorial experimental 
designs (which are based on polynomial techniques), such approaches can be achieved through the 
transformation of variables. This corresponds to approaches that explain behavior in a model that 
describes behavior. 

Another type of gray-box modeling has its roots in the fact that physical modeling is mainly based on 
coupled systems of partial differential equations. Consequently, the characteristics of the relationship 
between predictor and response variables are not immediately obviously; rather, solutions only arise 
as the result of complex numerical calculations, such as the finite element method. Therefore, the 
model equation does not exist as an explicit analytical function, but implicitly as a “calculation scheme”, 
i.e. a computer-based calculating tool (solver) can deliver the corresponding response variable for 
discrete settings of predictor variables, on the basis of the complex physical model. In the context of 
DoE, this process is referred to as a computer experiment, as with physical tests. Here, rather than 
conducting experiments directly on a real system, simulations are carried out on an existing model. 
The resulting models are consequently referred to as meta-models, and can be designed as simply as 
possible (e.g. frequently as a polynomial of the first or second degree), with the aim of eliciting 
information about the nature of the relationship between predictor and response variables. 

When determining the free parameters of a physical-based model, we refer to experimental parameter 
identification, or sometimes of “calibrating” the model. In the case of complex models, this is not a 
trivial process, as the model equation can no longer be explicitly represented, leading to so-called 
inverse problems. Since it is no longer possible to determine every free parameter of the model 
equation directly from the results of one experiment, a solution can only be obtained through 
optimization. With this type of modeling approach, parameter identification is simultaneously the 
verification of the model. Validation (whether the model is suitable for the task at hand) must be carried 
out separately, however. 

This approach most closely approximates typical engineering procedure when dealing with complex 
technical questions, whereby a rough physical model is adapted through experiments on the basis of 
existing knowledge of the system. To a limited extent, the model can also be used for extrapolation. 

EXAMPLE: Examples of gray-box models are non-linear material models in structural mechanics, which were 
designed on the basis of rheological laws and possess several dozen free model parameters. These are 
determined by optimizing an adaptation of the model in line with complex test results. 
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Guideline: 

Wherever possible, white-box modeling is the ideal to which we should aspire. Here, experiments are 
only required for the purposes of verification and validation. 

However, it is necessary to bear in mind that 

 pure white-box modeling is only possible in exceptional cases, 

 in many cases, gray-box modeling that deviates from the white-box approach to a greater or lesser 
extent is necessary, 

 sometimes, pure black-box modeling may be required, depending on the task at hand. 

In the latter two cases, insufficient theoretical knowledge is available (e.g. with new products and 
technologies), or cannot be acquired in time so that, as well as validation, experiments are also 
required for parameter and system identification. 

1.1.2. Experiments and trials 

Tests are also necessary for validating the quality of products. Virtually all relevant standards, rules, 
directives, etc. e.g. [6,7,8,9] require products to be subject to trials during their development. 

Here, a trial is understood to be a test conducted on a technical product to verify and validate quality 
attributes.  

According to DIN EN ISO 9000, verification is confirmation, through the furnishing of objective proof, 
that set requirements have been met. 

Validation, on the other hand, is said by the above standard to be confirmation, through the furnishing 
of objective proof, that the requirements for a specific use or application have been met. 

Trials are intended to prove that the set requirements, i.e. the functionality, reliability, robustness and 
safety of the product, have been satisfied. Furthermore, trials should provide knowledge about various 
influences (e.g. environmental) on products and processes and should, in particular, increase 
statement certainty. 

The following principles illustrate the basics of trials: 

 Frontloading:  
this means that the trial has to be started as early as possible. 

 Field relevance:   
this means that the test specimens themselves and the trial conditions must correspond as far as 
possible to subsequent conditions of use. 

 Standardization:  
an important basic principle is working with standard test procedures, which are governed by 
specific sets of rules, e.g. DIN IEC 68 “Basic environmental test procedure” or VDI 4005 
“Influences of environmental conditions on reliability of technical products”. 

Two trial philosophies with their respective advantages and disadvantages apply to the above 
principles. 

1. “Test to pass”: The necessary product quality or reliability is demonstrated by a defined trial 
being passed without any adverse effect on the product. Such requirements are often based on 
higher-level sets of rules, so that the product can be regarded as “fit for standard”. 

Advantages: 

 Results are widely accepted 

 A degree of certainty, as one can always refer to the fact that a specified trial has been 
“passed”. 

Disadvantages: 

 The field relevance is often unclear 

 Possible field problems despite passing the trial.  
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2. “Test to failure”: In (mostly) aggravated test conditions, the limits of the product are ascertained 
in an end-of-life test (considerable adverse effects until failure). This type of trial is an important 
element of development, which is intended to flag risks and open the door for improvements. The 
product’s “rating” is not determined directly as a result of the trial, but in a separate step, which 
incorporates the results of the trial and field-relevant conditions of use. As field relevance has 
great importance in this approach, following a positive rating the product can be classed as “fit for 
use”. 

Advantage: 

When correctly applied, field problems cannot occur because the limits of the product and the 
field-relevant conditions of use are known, and the distance between the two has been classed as 
adequate. 

Difficulty: 

Determining the field-relevant conditions of use. 

1.1.3. Experiments and quality 

Today, companies face the challenge of introducing high-quality products (zero fault philosophy) of 
increasing complexity onto the market in the shortest possible time at competitive prices. 

Two universal approaches can be regarded as the answer to this challenge; see [21], p.5: 

 Six Sigma is an autonomous quality improvement process for reducing or eradicating existing 
faults/deviations on the basis of known quality and lean management principles (reactive 
approach) 

 Design For Six Sigma (DFSS) is a development methodology for engineering fault-free, robust 
and reliable products from the very beginning, based on a solid understanding of the product and 
using suitable development methods (preventive approach), while at the same time making the 
most efficient possible use of resources, [21] p. 14. 

Experiments have an important role to play in respect of both the classic Six Sigma quality philosophy 
and DFSS: 

 with Six Sigma they are used primarily in the analytical phase, when it is a matter of establishing, 
analyzing and statistically proving the cause-effect relationships between problems and causes. 

 with DFSS they are used as a tool for determining unknown cause-effect relationships and using 
them as the basis for designing, evaluating and optimizing robustness and reliability. 

1.2. The role of statistics in experiments 

A statistical approach is required when factors subject to variance occur during the testing of a 
technical system. Different strategies can be deployed for tackling this variance, or spread, in a 
sensible manner, depending on its cause. 

1.2.1. The sources of variance 

Generally speaking, three different sources of variance can be identified during a test: 

 the specimens under test themselves 

 the measurement of predictor and response variables 

 the test arrangement. 

Variance occurs with technical applications because the material properties, the manufacturing 
conditions and the conditions of use of products in quantities > 1 cannot be absolutely identical. 

A measurement reading is also subject to variance. The deviation of the (corrected) measurement 
reading from a basically unknown true value is described as measurement uncertainty (see [15] Vol. 
8). 

Since it is impossible to guarantee, even under laboratory conditions, that only the influences 
under investigation are affecting the test object, and unknown noise variables can therefore also 
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occur, this variance must also be taken into consideration (influence of the test arrangement itself, 
including ambient conditions). 

1.2.1.1. Specimen variance 

Two different strategies may be employed for specimen variance: 

a) Reducing variance: The first priority is a design solution, in which the observed effects are 
significantly greater than the variance, e.g. by a targeted reduction of variance. Solutions such as 
these are always preferable, as they are extremely robust. Variance still occurs, as before, but 
plays a lesser role for the application. In this case, good results can be achieved in the test even 
without the use of statistics. However, a statistical approach will be necessary for obtaining 
quantitative information about the quality of the results (e.g. confidence intervals and significance). 

b) Overcoming variance: If the technological limits are reached, with the result that any further 
reduction of variance is impossible or economically unviable, and it is comparable to the observed 
effects, steps must already be taken in the design phase to ensure that variance can be overcome 
(i.e. is known, stable and leads to the desired result). In this case, greater expenditure and an 
increased risk for the product concept can be expected. Here, the use of statistical methods is 
indispensable when conducting the experiment. 

Basically, the first strategy is always preferable. For even if a mean effect is demonstrated through a 
statistical approach, the question remains as to whether this effect suffices for subsequent use, and 
the occurring variance leads to the desired result. 

EXAMPLE 1: A component is to be employed in an injection component, which is to be manufactured using a 
cost-efficient but as yet unused shaping manufacturing process. The component’s design is based 
completely on the use of this production method. 

At the start of development, we have no further information about the variance of the material properties of 
this component. However, it soon becomes clear that they are subject to considerable variation, due to the 
high sensitivity of the manufacturing process in the face of diverse predictor variables. 

Since no other manufacturing process appears cost-efficient for the design in question, considerable efforts 
have been made to reduce variance in production. The idea of simply “living with variance”, e.g. through 
statistically well proven tests to determine the material properties, would have been extremely problematic, 
for the high level of variance was neither stable nor led to the desired results in terms of subsequent serial 
production. The aim must therefore be to find a stable manufacturing process before setting the design in 
stone, and to incorporate the cost risk of the less sturdy solution in the examination of costs. 

EXAMPLE 2: The fatigue strength of ultra-high-strength steel for use in high-pressure injection components is 
limited by fractures in non-metallic inclusions. 

The reduction in variance in the size of inclusions - and thus the variance in strength - has reached a high 
level and technology can currently achieve nothing further. A concept must therefore be elaborated for 
assessing the influence this variation in strength has on reliability. This concept includes tests with thorough 
statistical verification to determine the strength. 

This enables the high level of variance to be overcome, ensuring compliance with the demanding 
requirements for reliability to which components of this kind are subject. 

In the case of specimen variance that cannot be reduced any further but can be overcome, objective 
conclusions about a test can only be drawn when a statistical approach is employed. This is 
particularly the case when the variance is not much smaller than the effect under observation. What 
“much smaller” actually means and, in particular, whether the achieved effect and the variance are 
adequate for the technical solution, can only be decided in the light of the intended application. The 
following is recommended as a guide, as per [1], p.3: if the effects under observation are smaller than 
a fifth of the standard deviation, or the effect is to be determined quantitatively, a statistical approach 
must be taken. 

In all cases, the confidence intervals must be determined through the use of statistics, in order to 
estimate the uncertainty of the conclusion. 
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1.2.1.2. Variance in measurement results, noise variables 

Where variance in measurement results and noise variables are concerned, the experiment requires 
objectivity: the test setup and measurement must not have any major influence on the test results. 
Here, two types of error may occur, see [2], p.21: 

 Systematic errors: The measured mean values deviate from the actual mean value. These 
adversely affect the accuracy of the reading. Causes: loss of adjustment in measuring 
instruments, incorrectly calibrated test setups, systematic influence of the apparatus or 
experimenter, etc. Conclusions about accuracy can be drawn by means of comparisons with a 
different (reference) test method, or a standard sample. Systematic errors can be avoided by 
designing the experiment with care and conducting it as described in section 1.5. 

 Random errors: Individual measurements deviate from the measured mean. These adversely 
affect the precision of the reading. Causes: unsuitable test methods, effect of noise variables, 
random reading and calculating mistakes, etc. Conclusions about precision are supplied by pure 
experimental error. 

Proof of compliance with the above requirement is obtained by calibrating the test setup, analyses of 
measurement capability, etc. Details can be found in [15,16]. 

The use of a statistical approach when conducting an experiment is no remedy for inadequate 
measurement accuracy. Systematic errors, in particular, must be avoided. However, the use of 
statistics enables random noise variables to be controlled, increases the accuracy of the conclusions 
drawn and permits statements to be made about the significance of the results. 

Statistics may not be used as a substitute for care when conducting the experiment. In this connection, 
a known variable, for example, which can be presumed to influence the result (e.g. tool wear) must 
always be recorded as an experimental factor (e.g. by blocking), and not treated as a noise variable. 

1.2.2. The principles of statistical experimental design 

Definition: 

Experimental design is understood to mean the creation of a design (including planning how the 
experiment is to be conducted and evaluated), within the framework of DoE. 

Statistical experimental design refers to a particular kind of experimental design, which uses statistical 
tools to permit a rational conclusion to be drawn about the matter under investigation, even if test 
results are subject to variance. 

The following principles of statistical experimental design increase the reliability of conclusions drawn 
in the case of distributed variables [2]: 

 Replication to improve accuracy (mean variance is less than individual value variance) and 
conclusions about the significance of the results. 

 Covering the experimental space, e.g. by arranging the points under observation symmetrically, 
in order to increase effectiveness and to record interactions. The purposeful variation of several 
factors, which minimizes the number of tests but ensures the same data reliability, is an important 
approach in statistical experimental design. 

 Randomization to neutralize unknown noise variables. If an unknown trend, e.g. in the quality of 
the specimens, is present due to tool wear, this can be neutralized by taking specimens at random 
from production for the test. 

 Blocking for recording non-adjustable factors. For example, experiments that cannot be 
conducted within a narrow time frame can be divided into blocks, in order to cover any disturbing 
influences such as tool wear. If differences between the blocks occur, these can be recognized 
and eliminated. 

 Confounding to achieve a limited reduction in expenditure. This method comes with 
disadvantages, however; see section 8.1. 

 Sequential realization procedure, so that activities can either be continued or discontinued when 
enough results have been obtained. 
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The procedure described in section 4 takes most of these principles into consideration. Other 
approaches can be found in section 8; for basics, see [11]. 

1.3. Opportunities and risks in DoE 

1.3.1. Advantages, success factors and strengths 

Advantages: 

 Objective procedure: DoE enables objective, precise conclusions, including quantitative 
modeling and optimization on the basis of experimental data, and statements to be made about 
their significance, see [2], p.40. 

 Effective procedure: Users report a shortening of project runtimes and a noticeable reduction in 
test expenditure [1]. Overall expenditure can be estimated early on, instead of the unplanned tactic 
of “just one more test”. The sample size is adapted in line with the task to be resolved, which 
ensures that the model is sufficiently accurate. Both insufficient accuracy (missing technical 
opportunities) and over-exaggerated accuracy (uneconomical procedure) are avoided. In addition, 
a maximum of information is obtained from the tests, e.g. in respect of interactions and the 
significance of the results. 

 Systematic procedure: Users are frequently placed under the burden of extracting findings from 
a mass of data. DoE offers a clear, easily explained procedure for planning and evaluation. 
Compressing the data renders them easier to represent and communicate, enables them to be 
evaluated at a later point in time and to be incorporated in future tests. 

Success factors: 

 Expert know-how: The use of DoE requires sufficient knowledge and experience both in terms of 
the task to be resolved and the method itself, including adequate knowledge of statistics and the 
software used. As experience shows that one person alone can seldom satisfy all these criteria, 
the creation of a test team is recommended. 

 Suitable software: If modeling is to be carried out with several factors on the basis of 
experimental data, the formulation of designs and most evaluations simply cannot be 
accomplished without the help of software. The Appendix provides information about suitable 
software. 

 Experimental design at an early stage: If data (often of uncertain quality) are already available, 
subsequent evaluation is possible, but difficult, e.g. because of insufficient coverage of the 
experimental space. In this case, DoE experts face more exacting requirements, if they are to be 
able to estimate the significance of the results and draw conclusions. The comparability and up-to-
dateness of historic data must be assured before evaluation can commence. 

 Sufficient resources: Although DoE is a procedure that optimizes the use of resources, in certain 
circumstances tests may consume considerable resources. If there are insufficient resources for a 
DoE test, a different approach to testing is unlikely to lead to the desired goal either. The only 
remedy in this case is to adapt the objective aim of the experiment. 

The key strength of DoE is encountered in tasks that are examining the dependence of a wide range of 
response variables on several predictor variables. Here, a complex system behavior can be described 
quantitatively with a manageable number of tests, even if physical modeling is difficult. 

1.3.2. Limits and dangers 

What can we expect of DoE, what can we not? 

DoE offers solutions to typical questions, for example (also see 2.3): 

 Modeling: the purposeful acquisition of knowledge by means of cause-effect relationships in the 
system (product or process), in the event that physical modeling is difficult 

 Prediction and optimization of product and process characteristics, 

 Screening: determining what is important from a quantity of possible predictor variables. 

However, the method requires input from experts at certain important points, which greatly 
determines the quality of the results. 
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 Definition of factors and their ranges, and of response variables: The omission of significant 
predictor variables is apparent only from the increased residual variance which, in turn, is only 
noticeable if empirical values are known. As a rule, no single approach enables us to determine 
whether a significant factor has been forgotten. If the residual variance (RMS error or coefficient of 
determination) appears to be unacceptable, other factors must be taken into consideration. 

 Selection of the modeling approach: The modeling approach can only be validated to a limited 
extent by examining it with a higher-level approach, which means that the choice of modeling 
approach is extremely important. 

REMARKS: This aspect should not be overstated, however. Through Taylor expansion, it is possible to show 
that each continuous function can be adequately approximated to a higher-order remainder using a 
polynomial approach. Furthermore, alternative model approaches that are not based on polynomials can also 
offer some assistance, see section 8.3. 

 Care with experimental design, performance and evaluation: This determines the quality of 
the data that are employed for modeling, also see section 1.5. 

 Plausibilization and physical interpretation of the results: The results of modeling must be 
physically interpreted by experts. This physical interpretation is the point of the exercise, otherwise 
the tests are nothing but a collection of data and information.  

 Consequences and determination of further measures: DoE offers an objective basis for 
decisions on the basis of experimental results, but cannot be a substitute for the decisions 
themselves, or for a discussion of the consequences for the actual engineering task. 

Limits: 

 Excessive cost: Even when using DoE, it may happen that too many or too expensive 
experiments are required, e.g. 

o different versions of specimens require expensive production processes, 

o insufficient number of specimens can be produced by Prototype Construction, 

o the specimens cannot be directly manufactured with the combination of properties required by 
the design, 

o insufficient time to complete the design, etc. 

 Limited findings: DoE is an effective approach for extracting a maximum of information from test 
results. In certain cases, it may certainly make sense to attempt to reduce test expenditure to a 
limited extent, e.g. with screening tests; see section 8. However, this always entails a loss of 
information or the necessity of a priori assumptions, which lead to a risk of false interpretations, 
e.g. the mitigation, obliteration or even reversal of effects in low-resolution fractional 
factorial designs. Deciding where the limits of sensibility lie is always an important task for 
DoE experts. For example, designs with a resolution of at least V are recommended for response-
surface tests, which would involve, at most, a halving of expenditure for most field-relevant 
cases; see section 8.1. Consequently, every attempt to save costs leads to marked losses in the 
findings obtained. 

 Weaknesses of this approach: DoE is of limited suitability for experiments in which the emphasis 
is on the ability to extrapolate the results. Requirements of this kind can only be satisfied if at 
least a gray-box - or, better, still, a white-box - model exists. Here, physical approaches, e.g. using 
variable transformation, can be taken into consideration, see section 4.4. The same applies to 
systems with discontinuous or periodical behavior or a transient time response, due to the locality 
of the model approach. 

Dangers: 

 Experienced experimental experts may be tempted to undertake black-box modeling when 
physical relationships are known. These must, as far as possible, always be taken into 
consideration in modeling, see section 1.1. 

 The experimental tests may deliver solutions “in the wrong place”, even though desirable solutions 
are required at a completely different level, e.g. in the design of the product, see section 1.2. 

 DoE can encourage a false sense of safety. Where variables are subject to variation, there is 
always a small but finite and precisely defined residual risk that the conclusions drawn are 
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incorrect. Eradicating this residual risk would give rise to the need for infinitely large random 
samples, and cannot therefore be given serious consideration. 

 Users report a certain degree of uncertainty, as the path to the result is not always obvious, 
particularly when complex systems are being modeled. The results are sometimes perceived as 
“mysterious”, although they are the result of a clear, systematic approach. The remedy here is to 
ensure that users have sufficient knowledge of the methodology. 

1.4. DoE at Bosch 

The advantages of employing DoE was recognized at Bosch early on. Technical experiments have 
been conducted with the aid of DoE (QA Information 01/1990) ever since 1988. It soon became clear 
that “the advantages described in the literature (e.g. minimum cost, maximum information) can be 
confirmed unreservedly”. For this reason, even then the recommendation was given to make 
increasing use of the advantages of DoE, in both engineering and production. 

1.4.1. The use of DoE in the product creation process (PCP) 

Innovation
Project 

preparation

Product/
process

conception

Product/
process

development

Product/
process
creation

Production
ramp-up

SoD SOP

 

Figure 1.3: The product creation process 

DoE is a supportive activity in engineering, and can be utilized at any time during the PCP, in every 
Division and for every product (and every process), if so required by the task at hand. The question as 
to whether to use DoE depends on the task that needs to be dealt with. 

Typical application examples: 

Innovation phase: 

 Basic testing of novel physical effects, new technologies or product innovations by black-box 
modeling of the cause-effect relationships between relevant predictor and response variables, 
typically in research and development. 

Project preparation phase: 

 Determining important predictor variables with significant effects on response variables 
(screening). 

 Modeling unknown cause-effect relationships for selected aspects of development in alternative 
product concepts. 

 Testing different materials in terms of suitable properties (magnetic, electrical, strength, corrosion 
resistance, etc.) as part of platform engineering. 

Product and process design phase: 

 Experimental determination of complex functional relationships (characteristic maps) in the 
preferred design concept. 

 Parameter identification of physically-based models. 

 Model-based prediction of the behavior and robustness of products by means of computer 
experiments. 

Product and process engineering phase: 

 Predictions of behavior, robustness analyses and model-based optimizations of the design by 
means of computer experiments. 

 Physical tests for the verification and validation of product requirements during a trial (trial design). 

Product and process implementation phase: 
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 Systematic investigation of the influence of production parameters on product characteristics, with 
subsequent experiment or model-based optimization in terms of robustness and the minimization 
of variance. 

Production ramp-up and serial production phase: 

 Systematic revelation of disturbing influences in production. 

 Experiment-based optimization with the aim of exploiting cost potentials. 

1.4.2. Qualifications and points of contact 

In order to use DoE, sufficient knowledge and experience is necessary, both in the specialist area of 
the task to be accomplished and in terms of DoE itself, including adequate background knowledge of 
statistics and the software used. 

Necessary qualifications for DoE: 

1. Study of user-oriented literature, e.g. [1] and this volume. 

2. Seminars: 

o General: Seminar TQ009 “Design of Experiments” (3 days). Prerequisite: Knowledge of basic 
statistics, e.g. TQ002 “Basic Technical Statistics” and TQ003 “Evaluation of Series of 
Measurements”. 

o Aspects of trials: Seminar TQ023 “Testing Newly Developed Automotive Equipment Products” 
(3 days). 

o Special techniques for conducting experiments: Seminars TQ007 “The Basics of Reliability”, 
TQ008 “The Reliability of Control Units” and TF024 “Component Fatigue Strength”. The 
contents extend far beyond the subject of DoE, however. 

3. Those wishing to independently solve complex questions require sufficient practical experience. 
In this connection, we recommend involvement in DoE tests managed by an experienced 
colleague. 

4. Questions that arise during subsequent activities should be discussed with other experts. General 
points of contact are, first and foremost, experts from the DoE expertise network (up-to-date list is 
in BGN at http://rb-knw.bosch.com/). 

5. The study of more in-depth literature dealing with aspects of DoE that are of particular interest is 
worthwhile at any time, e.g. [4,5]. 

1.5. Elementary rules for designing and conducting experiments 

The elementary rules described below are based on many years of practical experience, and are 
therefore of particular importance. 

An experimental test generally consists of five vital steps (see Figure 1.4): 

1. Task analysis 

2. Systems analysis 

3. Experimental design 

4. Conducting the experiment, documentation 

5. Evaluation of the experiment 

General principle: Experiments should only be conducted for the purpose of achieving a quantitative 
determination of model parameters and for validating the model. 

Please note the following instructions (also see Figure 1.4): 

Step 1 (see section 2 for details): 

 The objective of the experiment is set such that the expected cause-effect relationship can be 
quantitatively determined in and beyond the operating range 

 The principal and the agent have clarified the achievability/feasibility of the experimental objective 
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Step 2 (see section 3 for details): 

 Predictor and response variables are known to the extent that the cause-effect relationships to be 
determined can be deduced from them qualitatively or quantitatively. 

 The necessary response variables for the objective of the experiment have been defined, including 
the measurement principle (proof of measurement capability), measurement uncertainty, 
resolution, sampling rate and discontinuation criterion: 

o Select direct measurement variables during the test, if possible 

o If this is not possible: look for measurement variables with a known correlation to the response 
variable 

o If this is not possible (in experiments that age/damage components):  
a) Conduct the experiment in stages with defined sampling times 
b) Intermediate sampling for inspection/measurement, under consideration of the influence 
on the test (caution: this interrupts effective parameters!) 

 Clarify and document additional active noise variables, e.g. through treatment, storage, 
intermediate sampling, analysis and renewed startup. 

Step 3 (see section 4 for details): 

 Make sure that only the selected factors (predictor variables that are deliberately varied in the 
experiment) act as expected and all other predictor variables are kept as defined constants or are 
eliminated 

 Define a suitable test apparatus, measurement procedure and measuring instrument for the 
requirements of the cause-effect relationship 

 Define and establish the nature of test specimens 

o Carefully set design parameters, manufacturing process in conformity with test requirements, 
document all relevant parameters 

o Clarify manufacturability and define procedures for analyzing specimens 

 Determine the number of specimens 

 Plan the archiving of specimens and reference samples 

 Design test run for each specimen, incl. a failure plan: event, actions to be taken (e.g. recording, 
deliberate power down to a safe state, and power up) 

 Prediction of expected test results and comparison with the test objective (cause-effect 
relationship, significance) 

 Plan evaluation and documentation  

Step 4 (see section 5 for details): 

 Set up and inspect test apparatus, check suitability of equipment (measurement accuracy, 
tolerances, etc.) 

 Define procedure for measuring established response variables 

 Check nature and identification of specimens 

 Conduct experiment in accordance with the design 

o Comply with and implement requirements for established factors, verify through suitable 
measurements and documentation (incl. test media) 

o Make sure that factors at the site of action conform to requirements 

o Record and log the test sequence for each specimen: all variables conform to design, incl. 
failure plan 

 Document and draw conclusions from unforeseen failures 
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Step 5 (see section 6 for details): 

 Visualize actual values from the experiment 

o Test apparatus, measuring equipment used 

o Nature of specimens 

o Tests performed 

o Peculiarities during the test sequence 

 Visualize the test results 

 Evaluate data 

 Compare with the expected result. In the event of deviations, look for other active predictor 
variables and assess the consequences 

 Assess whether the objective of the experiment has been achieved 

 Summary and final conclusions 

 Transfer of knowledge 
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Order, project management

Analysis of initial situation

Determination of the test strategy

Determination of predictor and response variables

Determination of response variables in the test

Determination of factors and their range

Selection of the model approach and determination of factor levels

Determination of treatments

Determination of number of replications

Determination of run order and grouping

Design of test run and evaluation

Design of test apparatus and specimens

Estimate of time and expenditure

Set-up of test apparatus and production of specimens

Conducting the experiments

Plausibility check of results

Determination of the model equation

Validation of the model equation

Graphic representation and interpretation of the results

Conclusion and further procedure; transfer of knowledge

Prediction

Optimization

Robustness and reliability analyses

1. Task analysis

3. Experimental design

2. Systems analysis

4. Conducting the experiment

5. Evaluation of the experiment

Applications

Objective of experiment satisfied?

yes

no

 

Figure 1.4: Sequence of events in an experimental test 
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2. Task analysis 

This and the subsequent sections describe the typical steps of DoE in chronological order. 

2.1. Order, project management 

First of all, the principal appoints a coordinator with responsibility for deadlines, costs and the quality of 
results. The coordinator must receive a clear and precise order for the test, stating 

 the task that is to be solved 

 the anticipated available resources, such as time, money, machine and personnel capacity. 

This is based on initial rough estimates. It will only rarely be possible to avoid the need for adjustments 
both to the task at hand and the approaches to a solution. 

As a rule, it is also necessary to appoint a test team comprising experts, specialists in DoE and test 
experts, as the use of DoE requires sufficient knowledge and experience both in the specialist area 
and in DoE itself, including statistics and the software used. Responsibility in the team must be 
regulated clearly and without ambiguity. 

The test team may also be convened later on, depending on the task at hand. In any case, however, 
the staff involved in the experiment must be clarified at an early stage. Their representatives must be 
involved in or at least informed of the solution. 

2.2. Analysis of the initial situation 

At the beginning, the test team must get to grips with the following questions: 

 What is the aim of the experiment, i.e. what question is this experiment intended to answer? The 
importance of this point must not be underestimated, because clarity regarding the task at hand is 
a prerequisite for a successful solution and the principal’s satisfaction. Here, detailed agreement is 
required. 

 What is already known, and how can this prior knowledge be incorporated in the experiments? 
Completely new problems, for which no prior knowledge exists, are confronted only rarely. 
Moreover, all known physical relationships must be used for subsequent modeling. 

 What might the results of the experiment look like, and what effect will the new findings have on 
the original question? Here, the team has to grapple seriously with the question as to whether the 
test is at all capable of delivering a desirable solution to the original task. It is seldom worthwhile to 
perform extensive tests in order to prove that a current concept is inadequate. 

 How does the test fit in the surrounding test landscape, or in long-term overall strategy? 
Sometimes, a limited amount of additional expenditure leads to a long-term minimization of 
expenditure, or is the only means of enabling the meaningful analysis of results. A typical practical 
example of this is prematurely discontinued tests that may have consumed “only” 80% of the 
budget, but only achieved a 20 % gain in knowledge. 

2.3. Determining the test strategy 

It is necessary to define a suitable test strategy, with which a satisfactory solution to the task can be 
found. DoE offers suitable approaches for an array of typical questions, which are explained in more 
detail in the sections that follow: 

 The purposeful acquisition of knowledge by means of cause-effect relationships in the system 
(product or process), if complete physical modeling is not possible. 

REMARKS: This task is frequently a central issue in product development. Designs for one or more factors may 
be employed, depending on the number of factors.  

 Prediction of product and process characteristics in early stages of development. 

REMARKS: DoE approaches can be utilized both for empirical modeling on the basis of physical tests and for 
the creation of meta-models with the aid of computer experiments, in the event that no physical prototypes 
exist. 
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 Optimization of product and process parameters. 

REMARKS: Here, a suitable approach is the creation of meta-models with the aid of computer experiments, 
followed by model-based optimization (e.g. using the gradient method), or alternatively using experimental 
parameter or system identification followed by model-based optimization, or the use of test-based 
optimization strategies such as the simplex algorithm. 

 Robustness analyses. 

REMARKS: If no explicit models exist, the preferred method here is the Monte Carlo approach in combination 
with computer experiments and stochastic sampling techniques. Alternatively, explicit meta-models can 
initially be derived from computer experiments, with subsequent robustness analyses. 

 Robustness optimization. 

REMARKS: The Taguchi or related methods constitute a suitable approach for reducing variance with the aim 
of achieving a robust product or process. 

 Determining what is important from a quantity of possible predictor variables and interactions. 

REMARKS: This is also referred to as screening or sensitivity tests. Fractional factorial designs are a suitable 
solution. 

 Rapid detection and elimination of significant noise variables in production. 

REMARKS: The D. Shainin method is suitable for this purpose. 

 Verification and validation of quality attributes of technical products, e.g. by demonstrating 
functionality, durability, robustness or safety. 

REMARKS: Here, special experimental techniques for trials of components are necessary. 

Once the test strategy has been selected, final agreement must be reached with all involved parties 
and the principal regarding the objective of the experiment and of the test strategy. 
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3. Systems analysis 

The first step towards conducting the experiment involves an analysis of the system with regard to its 
predictor and response variables, whereby both products and processes may be the subject of 
observation. 

The experiment is an empirical study of the causal relationship between the influences and behavior of 
a system. First of all, it is necessary to identify the variables that describe the system behavior 
(response variables), and the variables that exert an influence on it (predictor variables). Depending on 
the question being posed, this can be a time-consuming step, but one that is extremely important. If it 
is skipped, subsequent problems are inevitable, e.g. because significant predictor variables have not 
been taken into consideration. Which predictor variables are actually to be varied during a test 
depends to a great extent on the question being asked, and is therefore decided later on. 

The analysis of the system must, as far as possible, be based on physical modeling, see section 1.1.1. 
Existing knowledge of the system and physical laws must be used to identify response and predictor 
variables and to assess their relevance. At the same time, all known relationships provide valuable 
input for establishing the model approach to be used, see section 4.4. 

The first step in identifying response and predictor variables is to make use of a functional model of the 
system under observation. This relationship is multi-faceted, however, and general rules can scarcely 
apply. 

Here are two possible tasks: 

 If the objective of the experiment is the creation of the model itself, e.g. as the basis for 
subsequent simulation, the predictor variables of the experiment will typically be the system inputs, 
and the response variables the system outputs. 

EXAMPLE: An emission map of a combustion engine has to be defined for more in-depth analysis. To this aim, 
the engine is modeled as a system that “produces” emissions with a certain composition (system output) by 
means of a flow of fuel/air under a defined load (system input). The test enables us to determine the 
concentration of carbon monoxide and nitrous oxides in the exhaust gas (response variables) as a function of 
the defined load and the fuel/air mixture ratio (predictor variables). 

 Another relationship will typically arise when a system is being optimized. Here, predictor variables 
may be system parameters, which can be changed. Response variables may be both system 
inputs and outputs, e.g. if they must remain unchanged as an interface with the environment, or if 
they require optimization. 

EXAMPLE: In the above example of an engine, one could be asked, for example, to attempt to improve 
efficiency by optimizing combustion without increasing the concentration of nitrous oxides in the exhaust gas. 
For this purpose, pistons and injection nozzles in various forms (system parameters = predictor variables in 
the test) are drafted, so that their influence on efficiency and the concentration of nitrous oxides (system 
outputs = response variable in the test) can be examined. 

If not enough is known about the cause-effect relationships, and a detailed functional model is 
therefore not available, or must be produced on the basis of the test, the following two-stage process is 
recommended for determining the relevant predictor and response variables: 

 Firstly, a team of experts must determine the system variables and categorize them as predictor or 
response variables, depending on the matter at hand. Here, specialist knowledge and experience 
are indispensable. This first step serves as the basis for the subsequent assessment of the 
relevance of the variables in question, and can be backed up methodologically by various 
approaches (e.g. Ishikawa diagram). Variables that are ignored at this point cannot later be 
classed as relevant. 

 The second important step consists in assessing the importance of the predictor variables in terms 
of their possible influence on the response variables. This process must be based, first and 
foremost, on known physical relationships. In the event that such relationships are not known, the 
technique of pairwise comparison, or the cause & effect (C&E) matrix can be of assistance. 

In the C&E matrix, the intensity of the influence is typically rated with the values 0, 1, 3 and 9 for 
“non-existent, weak, some and strong”. Reasons must be stated for these ratings. The sum total of 
ratings of a particular predictor variable is referred to as its active total. Predictor variables can be 
ranked on the basis of their active totals. The sum total of ratings of a response variable is referred 
to as its passive total. This provides information about those response variables that may be 
relevant for the current study. Below is an example C&E matrix, which reveals that it is likely that 
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only the action of predictor variables 1 and 3 on response variable 1 has to be investigated in an 
experiment. 

 
Response 

variable 1 

Response 

variable 2 
Active total 

Predictor variable 1 9 1 10 

Predictor variable 2 1 0 1 

Predictor variable 3 3 1 4 

Passive total 13 2  

Table 3.1: Example cause & effect matrix 

The result is often also represented graphically in the form of a P (process) diagram, as a general 
description of the causal relationship between predictor and response variables. The representation 
also covers the (unknown) measurement errors that influence the response variables. An additional 
problem is generally posed by variance in response variables, because the causality between 
predictor and response variables cannot simply be maintained indefinitely. Here, help can be supplied 
by the introduction of additional, unknown predictor variables, referred to as noise variables, which 
also influence the response variable in a similar fashion to the unknown measurement errors. Thus, 
the variance in response variables can be explained by the occurrence of unknown noise variables 
and measurement errors, without losing the principle of causality and within the framework of a 
deterministic approach. 

System
y=f(x)+e

Noise variables

Measurement error

predictor
variables
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variables

xi yj

eS
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Figure 3.1: P-diagram of an experiment 
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4. Experimental design 

Experimental design forms the heart of DoE. It enables historic data to be analyzed as well (in this 
case, please turn to chapter 6). However, only systematically created designs adequately cover the 
experimental area and withstand misconstruction. The comparability and up-to-dateness of historic 
data must be assured before evaluation can commence. The steps below are described in this chapter 
in more detail: 

1. Determination of response variables 

2. Determination of factors 

3. Determination of the factor range 

4. Selection of the model approach 

5. Determination of factor levels 

6. Determination of treatments 

7. Determination of the number of replications 

8. Determination of run order and grouping 

9. Design of test run and evaluation 

10. Design of test equipment and specimens 

11. Estimate of time and expenditure 

4.1. Determination of response variables 

Firstly, from all response variables it is necessary to determine those that should be observed in the 
experiment. During this process, please note the following: 

 Their number must be kept as low as possible, to reduce expenditure. Redundant response 
variables unnecessarily complicate the evaluation. 

 All response variables that are relevant to the object under test must be recorded. The passive 
totals from the C&E matrix described in chapter 3 help to show which response variables may be 
relevant. 

 It is not just the variables that are currently “problematic” that should be taken into account, since 
during optimization other response variables may also change - an effect that must be limited by 
constraints. 

 The response variables under observation must be quantitative in nature, otherwise they cannot 
be evaluated in a meaningful way. Response variables of the “good-poor” type can be quantified, 
e.g. by the introduction of a rating scale. 

 The variables must be directly measurable, if at all possible. If a response variable is not directly 
measurable: 

o a correlated variable can be sought, which can be measured directly, or 

o the experiment can be interrupted by a non-destructive intermediate test. 

REMARKS: This is mostly not possible without repercussions, e.g. due to intermediate handling, storage, 
analysis or restarting the test apparatus. 

o The experiment may also be conducted in stages with a destructive intermediate test. In this 
case, the variance of different specimens must be noted. 

If several response variables exist, these can be evaluated separately. Difficulties occur here during 
optimization, because different (and possibly contradictory) response variables must be taken into 
consideration. So-called Pareto optimality may offer a fitting solution, see section 7.2. 

The time at which the response variable is recorded must be clearly defined. The response variable 
must often be recorded on completion of the respective treatment. In this case, it is necessary to 
establish when the individual treatment can be considered completed. This is important for tests in 
which the end of the test may depend on a parameter, e.g. when determining the criterion to abort 
endurance tests. If necessary, a periodic sampling rate must be established for the response variable. 
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Last but not least, for both response variables and factors we must determine the measurement 
procedure, the measurement equipment and the measurement resolution with which the individual 
response variables are to be recorded. We must also clarify whether the accuracy and precision of the 
measuring equipment and measurement procedure are also adequate for the objectives of the 
experiment (proof of measurement capability). 

4.2. Determination of factors 

Factors are predictor variables that are to be changed in a targeted manner during the course of the 
experiment. 

Factors must satisfy the following points: 

 they must have a suspected significant influence on the response variables 

REMARKS: Information to this effect is supplied by known physical relationships or the active totals from 
the C&E matrix presented in chapter 3. All factors that are suspected to exert an influence must be 
considered. The test itself provides clear proof later on as to whether or not a factor is actually relevant, but 
only if this factor was in fact taken into consideration in the test. Factors can be subsequently excluded from 
the model without difficulty (the tests in question are not “wasted”, but can be used for more thorough 
statistical verification), but this is not the case for the inclusion of additional predictor variables. In cases of 
doubt, therefore, it is best to decide in favor of including a predictor variable as a factor in the test. Omitted 
significant predictor variables are only apparent from the increased variance in residuals which, in turn, is 
only noticeable if empirical values are known. Thus, as a rule, no single approach enables us to determine 
whether a significant factor has been forgotten. If residual variance appears to be unacceptable, further 
factors must be taken into consideration.   
 
According to [1], 3-6 factors are typically considered in tests, and seldom more than 10. 

 they must be directly or indirectly measurable 

 they must be controllable 

REMARKS: Non-controllable predictor variables (e.g. outside temperature, air pressure, but also production 
dimensions, fits) must be mastered, i.e. either recorded or neutralized through either experimental or statistic 
measures. 

 it must be possible to set them to be as precise and reproducible as possible 

REMARKS: Otherwise, special approaches such as D-optimal designs are required, for which existing 
treatments in the experimental area can be preset as a boundary condition for producing the design. 

 expenditure for setting factors must be kept within reasonable limits 

 they must be mutually independent, and they can be independently set (orthogonality condition) 

 if possible, they should be quantitative in character  

REMARKS: Qualitative factors give rise to difficulties (the model equation is discontinuous, interpolation 
between levels is meaningless, evaluation is conducted by analyzing variance, instead of through 
regression), but may nevertheless be observed. 

All other predictor variables that are not factors must be observed, documented and, as far as 
possible, kept constant. 

4.3. Determination of the factor range 

The operating range of the factors that is of interest must be determined, and the range for the test 
decided on this basis. The range must at least cover the operating range. However, we must beware of 
the problem of a “small level - small effect”: the effect can sometimes be unclear, because the variation 
level is too small. The chosen level must therefore be sufficiently large to allow the effect to be visible. 
As a rule, the factor range extends noticeably beyond the operating range, particularly where 
increased variance is present. On the other hand, the factor range must not be excessively large 
either, for then local effects may influence the result. 

Possible restrictions in the experimental area must be noted, e.g. areas that are pointless, unfeasible, 
dangerous or otherwise inadmissible. If such areas arise, special experimental designs, such as D-
optimal designs, are required, see section 8. 
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Figure 4.1: Operating range and factor range (xmin, xmax) of a factor (schematic). Left: Factor range is 
too small (effect too unclear with this degree of variance). Center: Factor range is correct. Right: 
Factor range is too large (local effects at the right-hand margin are not of interest for the range under 
observation). 

4.4. Selection of the model approach 

The model approach selected must be such that it is capable of describing the cause-effect 
relationships with sufficient accuracy. This constitutes an important input in experimental design. The 
assertion of the model approach is an important step, which cannot be skipped for reasons of time, for 
example, because errors made during this phase cannot be remedied later when the experiment is 
conducted. A deficient model will result in a model error, in addition to the types of errors mentioned in 
section 1.2.1. 

To prevent misunderstandings: it is purely the model approach, i.e. the type of mathematical transfer 
function, that must be established here, not the transfer function itself. The complete function is 
determined only upon evaluation of the test. If a simple polynomial approach is selected as a transfer 
function, the only question that arises concerns the polynomial order. The free coefficients of the 
polynomial are determined by evaluating the subsequent tests, e.g. by means of regression. 

When establishing the model approach, a physical model must be created, as far as possible, see 
section 1.1.1. Existing knowledge about the system and physical laws must be utilized by classing all 
known relationships in the model approach. As a minimum requirement, the model must not contradict 
empirical knowledge. If, for example, an exponential dependence, such as in population growth, is to 
be expected, a logarithmic approach would be inappropriate. The following example is intended to 
clarify the relationship between physical and empirical modeling. 

EXAMPLE: The power loss of a furnace is to be determined as a function of the furnace temperature at a given 
ambient temperature. Figure 4.2 shows a schematic diagram of the furnace wall and adjacent areas, together 
with the temperature profile from the interior of the furnace (Ti) to the outside environment (Ta). 

1
Boundary

layer

2
Wall

(width )

3
Boundary

layer

Ti

T12

T23

Ta

q konvq
strq

 

Figure 4.2: Temperature profile in the furnace wall 

The power loss of the furnace takes place through convection and radiation. These physical effects can  
be described by means of heat flow densities on the basis of thermodynamic relationships, as follows:  

)();( 44
23str233konv aa TTσεqTTαq   . (4.1) 

 denotes the heat transfer coefficient in the boundary layer 3,  is a known natural constant  
(Stefan-Boltzmann constant),  refers to the emissivity of the wall. An observation of heat flow on the  
outer surface 2-3 of the furnace wall is expressed as:  
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)()( 44
23233strkonv aa TTσεTTαqqq   , (4.2) 

whereby q  denotes the heat flow density from the interior of the furnace. This must be conveyed via  

the furnace wall through heat conduction and via the boundary layer 1 in the interior via convection:  

)( 2312 TT
δ

λ
q  , (4.3) 

)( 121 TTαq i  . (4.4) 

 describes the heat conductivity of the wall (a material constant). Applying equation 4.4 in equation 4.3 
results in 
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which allows the heat flow density to be expressed thus:  
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When solving this problem on the basis of the above equation, we now encounter the following difficulties: 

- The heat flow density we are looking for is both on the left and right-hand sides of the equation (and in 
the 4th power in this case), which renders symbolic resolution impossible. Therefore, the desired relationship 
can only be stated implicitly: 

0),,(  iTqF  (4.7) 

- The equation contains unknown constants such as 1, 3 and , which must be determined through 
experiments. The first two are dependent on the convection flow ratios in the boundary layer, the third on the 
nature (e.g. roughness and color) of the wall’s surface.  

At this point, empirical modeling is employed, under consideration of the known physical relationships. The 
following model approach would be suitable, because in equation 4.6 the inside temperature is contained in 
the 4th power: 

4
4

3
3

2
210 iiii TaTaTaTaaq 

 (4.8) 
The coefficients ai are determined by measuring the heat flow at different inside temperatures in stationary 
condition. They are implicitly dependent on the above-mentioned constants and on the ambient temperature. 

If white-box modeling is not possible, a polynomial of the nth degree can be used as a general 
approach to empirical modeling. This is due to the fact that thanks to Taylor expansion, in the area 
under observation it is possible to show that every constant behavior can be approximated locally by a 
polynomial, with the exception of a higher-order remainder.  

A multilinear approach takes account of linear effects, but also of interactions due to the mixed terms 
of the factors. For 1, 2 or 3 factors, a multilinear approach would look like this: 

1101)( xaaxfy   (4.9) 

21122211021 ),( xxaxaxaaxxfy   (4.10) 

2211233223311333211222110321 ),,( xxxaxxaxxaxaxxaxaxaaxxxfy   (4.11) 

Higher-order approaches additionally take into consideration quadratic, cubic and other effects of the 
factors. One example here is a 2nd-degree polynomial: 

2
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It may be necessary to further simplify the approach. This is achieved, for example, by linearization, or 
by variable transformation if the model is non-linear in variables, but linear in coefficients. Physical 
considerations may have led to the deduction that the response variable is exponentially dependent 
upon a predictor variable, for example. The simplest procedure now consists in building a linear model 
with the predictor variable and the logarithm of the response variable, or to introduce a new predictor 
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variable through substitution, which is exponentially dependent upon the original predictor variable. 
See [2], p.34 for further details. 

It is essential to check whether the model can meet expectations as regards conclusions and 
accuracy. Thus, a linear model would generally be disadvantageous in an optimization process, 
because curvature cannot be ignored in the optimum environment, see illustration below. The model 
approach must therefore reflect the environment of the area under examination (e.g. in the 
environment of extreme values of the response variables) as well and in as detailed a manner as 
possible. On the other hand, the model approach is generally related to the scope of the experiment, 
since the calculation of model parameters must be possible with the planned tests. A high-order 
approach can increase the scope of the experiment such that practical implementation is no longer 
possible. The aim is therefore to select the simplest model from all possible variants. 
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Figure 4.3: Schematic profile of a response variable in the area of the optimum (continuous line). 
A linear approach (dashed line) would not be able to find the optimum. A quadratic approach (dashed 
and dotted line) is more suitable. 

4.5. Determination of factor levels 

The quantity and value of the factor levels now have to be determined on the basis of the model 
approach. Here, most of the work has already been done in determining the model approach (see 
section 4.4), for every approach requires a certain minimum number of factor levels. A linear approach, 
for example, requires at least 2 factor levels, a quadratic approach 3 factor levels, etc. This is because 
it must be possible to determine the number of free parameters in the model with the available number 
of experiments. 

So, although the problem cannot be resolved independently from the model approach, a certain 
degree of freedom exists in the selection of factor levels. First of all, we can go beyond the required 
minimum number of levels in order to check the expediency of the chosen approach: with a linear 
approach, for example, a treatment can additionally be placed at the center of the factor range, in order 
to monitor the deviation of actual behavior from linearity. In the case of quadratic approaches, for 
example, we can decide whether to employ central composite or face-centered designs, see 
section 8.2. 

Furthermore, it is necessary to bear in mind that qualitative factors can only take on certain of the 
values defined by the task at hand. With the factor “material”, for example, they cannot assume any 
intermediate values between metal and plastic. The same applies to the factors supplier, operator or 
inspector. 
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4.6. Determination of treatments 

This section discusses just 3 basic procedures; further approaches can be found in chapter 8. 

4.6.1. Trial-and-error method 

This frequently describes the simplest possible procedure, whereby testers do not proceed in a 
targeted manner, but simply “try things out” until a satisfactory solution is found. Tempting though this 
method may seem, we have to bear in mind that experimental research is generally very expensive, 
and the waste of resources has to be avoided. 

I would also like to make it clear, at this point, that the argument that this method enables us to learn a 
lot about the problem at hand does not really hold water. The amount of knowledge gained is limited if 
no systematic approach is employed during the test. One can never be sure, for example, whether an 
optimum has been found, even if this is hit on by chance during an experiment (which is extremely 
improbable). In contrast, with model-based optimization, the optimum can also be predicted with some 
certainty even if it did not form part of the experiment. 

It therefore does not make sense to pursue a non-targeted approach. Due to the disadvantages 
described here, this approach cannot really be regarded as an element of DoE, and is therefore not 
dealt with any further in this volume. 

4.6.2. One-factor-at-a-time (OFAT) method 

OFAT is used to describe experiments whereby the factors all initially have a basic setting, and then 
just one factor at a time is adjusted while all others retain this basic setting. When the next factor is 
adjusted, the preceding one is returned to its basic setting, and so on. In this way, all factors are 
adjusted in succession. The argument often deployed in favor of this method asserts that it enables the 
effect of a single cause to be assigned to precisely the factor that has currently been adjusted. 

Firstly, it is true that if only a single factor occurs, this is certainly the most natural method. 

Furthermore, this procedure can also be employed if several factors occur, but the effects and 
interactions of all factors except one can be predicted on the basis of physical considerations. A test 
using the remaining factor would be, in effect, an OFAT test. 

EXAMPLE: We will take a look at the “catapult” system, which can hurl balls over a certain distance. 

BodyThrowing arm

Stopper arm

Elastic
band

Ball

Stopping pin
x

y


v0

xmax

g
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Figure 4.4: The catapult system 

The catapult consists of a frame, a swiveling throwing arm, a fixed stopper arm and an elastic band, which 
connects the throwing arm to the front of the catapult frame via the stopper arm. The top end of the throwing 
arm contains a hollow that can hold a ball. Its function is extremely simple: the swiveling throwing arm is 
moved out of its resting position by tensioning the elastic band. When released, the throwing arm is pulled 
back to its resting position by the elastic band, causing the ball to accelerate. The throwing arm hits a pin 
when it reaches the resting position, which brings it to a stop. At this moment, the ball is projected forwards. 
The following settings influence the range: 

- Deflection angle  

- Stop position (resting position) of the throwing arm, denoted by the angle  

- Tensioning point on the throwing arm 

- Tensioning point on the stopper arm 
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Our task is to create a model of the catapult to enable us to ascertain the settings required for a certain range 
in the future. 

First of all, known physical relationships must be determined and taken into consideration in the modeling 
process. In the example here, this is possible without further ado: the tension of the elastic band upon the 
deflection of the throwing arm can be modeled by a spring, which is tensioned and generates a retractive 
force and thus also the accelerated movement of the ball until the moment it is fired. The trajectory of the ball 
once it is fired can be described by the laws of projectile motion: 

tαvtx  cos)( 0  (4.15) 

tαv
t

gty  sin
2

)( 0

2

 (4.16) 

The range xmax can be deduced from the fact that y(tmax) = 0 at the moment tmax the ball hits the ground. 
Consequently, equation 4.16 shows that 
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t sin2 0

max   (4.17) 

and, when included in equation 4.15 
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However, some information is still missing for complete white-box modeling. Characteristics of system 
elements are not known. e.g. the elasticity constant of the elastic band, which means that v0 is also unknown. 
However, the known physical relationships can be incorporated in a gray-box model and added to during 
tests to identify parameters.  

The question now arises as to which of the four predictor variables mentioned above must be adjusted as a 
factor in a test. Firstly, it is clear that if the deflection angle  is zero, the range will also be zero, irrespective 
of all other settings. With maximum deflection = 90°-, the range is maximized also, but the achievable 
range depends upon the other settings. Physical considerations tell us, for example, that both tensioning 
points significantly influence the retractive force of the “elastic band” spring, and thus the acceleration and 
hurling speed of the ball. Maximum pre-tension means maximum hurling speed v0 and according to 
equation 4.18 this also means maximum range xmax. All that is left is the stop position of the throwing arm. 
Here, we can deduce from the above equation that the range is maximized when the stop position is set to 
= 45°, whereby sin(2) = 1.   
 
In summary therefore, we can conclude — without having conducted a test — that with the tensioning points 
set to maximum pre-tension and a stop position of  = 45° 

- the maximum achievable range is produced with a deflection of  = 45°,  

- a range of 0 is achieved with a deflection of = 0°, and 

- any range in between can be achieved only by adjusting the deflection angle . 

Consequently, the task now consists of examining xmax solely as a function of the deflection angle  factor. 
However, we can only establish which deflection angle would be required for which range through 
experiments, since important knowledge about the properties of the catapult system is lacking, as mentioned 
above. This can, of course, take the form of an OFAT test. 

The test may be conducted such that the deflection angle  is adjusted between 0 and 45° in several stages, 
and the associated range xmax is recorded. The use of 2 stages would be preferable, namely the maximum 
setting and half the maximum, for in concrete cases  results trivially in xmax = 0. An examination of the 
maximum setting alone would not suffice, because this would entail a linear dependence between the 
range and the deflection angle. It would be reckless to make such an assumption on the basis of 
existing knowledge. However, if the tests would be very expensive, it may be worthwhile to consider whether 
such an assumption might fit. 

With the treatments set at half and at maximum deflection (and with knowledge about zero deflection), 
we would be in a position to create a quadratic model of the relationship between deflection and range: 

2
210max βaβaax   (4.19) 

Higher-level approaches would be unlikely to reach the desired goal, for this would necessitate interest in a 
point of inflection, which in the present monotonous relationship (greater deflection results in greater ranges) 
can probably not be determined due to the limited accuracy of the tests. The number of replications in both 
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treatments must also be considered, however, depending on the variance of the range; this is described in 
more detail in section 4.7. 

Although OFAT tests constitute the most obvious method in the presence of just one (or quasi just 
one) factor, this type of test suffers major disadvantages when several factors are present: 

1) Interactions between the factors are not registered. Here, ‘interactions’ signify that the effect of a 
factor on the response variable can depend to a great extent on the setting of the remaining 
factors. For example, if the remaining factors are set in a certain way, an increased factor may 
cause the response variable to increase also. When set in a different way, however, this effect 
may be intensified, weakened or even reversed, so that as the factor increases the response 
variable now suddenly drops. Therefore, to record this effect it does not suffice to examine the 
factor only with the remaining factors at one basic setting, as in an OFAT test. 

2) If treatments have to be replicated several times in order to achieve the required accuracy in the 
face of variance in response variables, OFAT tests entail unnecessarily high expenditure. 

To illustrate both of the above, we will take a look at a problem that examines the effect of two 
factors A and B – each between a minimum and a maximum value – on a response variable. 
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Figure 4.5: OFAT tests compared with a full factorial design 

Experience tells us that the response variable is subject to variance, and for this reason each test 
variant requires 8 replications in order to record the effects correctly (details will be discussed at a 
later point). In an OFAT test with the basic setting (Amin, Bmin), first the factor A and then the factor B 
must each be set to their maximum. Consequently, together with the basic variant, 3 treatments with 
8 replications each - i.e. 24 individual tests - would be required. With each additional factor, 8 more 
tests would be needed. 

Despite the relatively high test expenditure, however, important questions remain unanswered. The 
effect of factor B on the response variable in the overall area of interest is known if factor A is set 
to Amin, but with setting Amax we only have information on a boundary point of the experimental area, 
that is, Bmin. It therefore becomes clear that in an OFAT test, on the one hand, the basic combination is 
lent exceptional importance. On the other hand, the choice of this combination often appears 
so random that it has no objective basis. Why should (Amin, Bmin) be more suitable than (Amin, Bmax) or  
(Amax, Bmin)? 

An optimized approach is presented in the following section. 
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4.6.3. Factorial designs 

In order to record interactions, an additional point is required at Amax and Bmax. This enables the effect of 
B to be described in its entirety, both at Amin and Amax. This method also has further advantages, 
particularly in respect of the required test expenditure. If this variant undergoes 4 replications, the 
same statistical certainty is achieved for each factor level as with the OFAT test. At Amin a total of 8 test 
runs exist, namely 4 at (Amin,Bmin) and 4 at (Amin,Bmax). The same also applies to Amax. Nevertheless, 
significantly fewer runs are required: 16 (4 treatments times 4 replications) instead of 24. The 
additional treatment at (Amax,Bmax) is used several times in a certain respect. As the number of 
factors grows, so does this effect. Thus, while (4+1)*8 = 40 runs would be required for an OFAT test 
with 4 factors, with the method described above 24 = 16 runs would still suffice, with one run in each 
treatment. Asymmetric treatments hamper the comparability of results. Symmetrical coverage of the 
experimental area, on the other hands, brings nothing but advantages. 

Conclusion: 

The method described here requires significantly fewer tests, while simultaneously enabling the 
recognition of interactions between factors. Designs in which all factor combinations are varied are 
known as full factorial designs. These form the basis of statistical experimental design. 
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Table 4.1: Full factorial design with 4 factors on two levels 

In the case of a full factorial design with k factors on two levels, m = 2k combinations arise. These 
designs are therefore referred to as 2k designs. Table 4.1 shows the combinations for 2 to 4 factors on 
two levels. The designations “+/-” that are usually used indicate the upper or lower level of the factor in 
question. This plan can easily be expanded to any desired number of factors, by repeating the design 
for the lower and upper levels of the next factor. 

As is evident from the above formula, the test expenditure increases sharply as the number of factors 
grows. Even with 6 factors, 64 treatments are required, which may also have to undergo several runs. 
At the same time, we have only 2 levels on which each factor must be varied, and have therefore 
selected only one linear model approach to describe its effect on the response variable. If we wish to 
take quadratic effects into account, for example, in a full factorial design 3 levels would be required for 
each factor, with expenditure rising to 3k treatments. The most sensible way of tackling these issues 
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is illustrated by further approaches in chapter 8. These can, to a limited extent, reduce test 
expenditure. 

4.7. Determination of the number of replications 

The total number N of test runs must now be established on the basis of the expected variance of the 
experiment and the required accuracy with which the effect under investigation must be determined. 

According to [1], p. 78  

2

60 









σ

N , (4.20) 

whereby the standard deviation  is a measure of experimental variance and  denotes the effect that 
is to be demonstrated with certainty. The probability of an effect that is actually present not being 
recognized is assumed to be 10% (type II error). The probability of an effect being recognized that is 
not actually present is 1% (type I error). The problem to be solved has two sides, as the aim is to 
recognize both positive and negative effects, see section 9.1.4. 

If the test covers m treatments, n = N / m replications can be performed on each treatment. Here, the 
advantage of using factorial designs is that several factors can be examined simultaneously, almost 
without increasing the scope of the experiment.  

This is further illustrated by Table 4.2. If an effect to the magnitude of 1 is to be detected, N = 60 test 
runs will be required. Depending on the number of factors, this will give us 

No. of  
factors 

Treatments 
Replications per 

treatment n 

1 21 = 2 30 

2 22 = 4 15 

3 23 = 8 8 

4 24 = 16 4 

Table 4.2: Possible replications with a constant number of runs 

If the number of factors does not permit multiple replications (n=1), difficulties will arise during the 
subsequent analysis of significance. The following possibilities exist: 

 The scope of the experiment is increased beyond what is strictly necessary. This is the ideal 
solution, as additional degrees of freedom are “always good for the statistics”. 

 Variance is known or is ascertained separately through multiple replications of a single treatment, 
e.g. at the centre point. This alternative is also perfectly feasible. 

 Fractional factorial designs are used, in which not all 2k treatments are examined. This approach 
only makes sense if the resolution of the fractional factorial design is sufficient for the task at hand, 
see section 8.1. 

 Variance is estimated by pooling during evaluation. This describes a procedure whereby 
insignificant, mostly higher order interactions in the normal distribution plot of the effects are 
recognized, eliminated from the model and therefore employed as additional degrees of freedom 
to provide additional statistical certainty. This tactic must always be the last resort, and must be 
deployed with the utmost caution, as the risk of subjective influence and the possibility of 
misinterpretation cannot be excluded, see section 6.3.1. 

Conclusion: 

The most sensible procedure is to cover just as many factors as necessary for conducting the required 
number of test runs, with further degrees of freedom retained in order to determine significance. 
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4.8. Determination of run order and grouping 

At this point, the aim is to overcome the noise variables. This can be achieved by: 

 Neutralization, either experimentally by keeping them constant, or statistically by means of a 
random sequence, or 

 Recording them as well, either experimentally by blocking, or statistically by an analysis of 
covariance. 

Experiments can be divided into blocks, within which treatments occur with the same frequency, as far 
as possible, and random fluctuations are as small as possible. If differences between the blocks occur, 
these can be recognized and eliminated. For example, experiments that cannot be conducted within a 
narrow time frame can be divided into blocks, in order to record any disturbing influences. 

In order to prevent an unknown trend (e.g. systematically changing specimen dimensions due to tool 
wear) from falsifying the results, the treatments are performed in a block in random order. This process 
is known as randomization. 

However, in certain cases changing the level of a factor can be extremely time-consuming, e.g. when a 
system is converted or in the event of long waiting times. Then, it may be necessary to sort the tests 
according to this level. Here, we have to reflect on how trends can be recognized and avoided. 

4.9. Design of test run and evaluation 

Expensive tests sometimes founder purely because a requirement that is not obvious to the operator of 
the test equipment is not explicitly defined or is not communicated with sufficient clarity. For example, 
the order of runs in a DoE design (incl. blocking and random sequence) can sometimes be 
complicated to put into practice. All those involved must clearly be made to understand that the correct 
order must be observed. 

With this step, therefore, it is important to: 

 design the course of the experiment for each specimen, 

REMARKS: This includes the creation of a failure plan, which specifies each event and suitable action for its 
elimination. Such action may include recording, deliberately powering down the test equipment to a safe state 
and then powering up again, as far as possible in such a way so as not to impair the conclusiveness of the 
test. 

 determine the necessary documentation for conducting the tests, 

REMARKS: This step includes recording (possibly through simultaneous documentation) and logging  

o the test sequence incl. any special events that have occurred, 

o the respective setting of factors, e.g. through the designation of specimens and other boundary 
conditions of the test, and 

o the results. 

 plan the archiving of specimens and reference samples, which will entail a certain amount of 
logistics in the case of extensive tests, 

 document everything and communicate it to those entrusted with conducting the tests. 

Now, at the latest, it is time to answer the question as to how the results of the experiment are to be 
evaluated, and whether the design is compatible with the planned evaluation. Statistical experimental 
design has a major advantage at this point, because a standardized procedure can be utilized for 
evaluation. The planned evaluation must be documented, particularly if a different person in the 
company is assigned this task, or if evaluation is to take place much later. In these cases, it must be 
assumed that at the time of evaluation, background information will already be lost, which can result in 
errors. 

The expediency of the design in terms of achieving the intended objective must also be checked. For 
this purpose, the expected test results, incl. conclusions about their significance, must be compared 
with the objective of the experiment. 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf


Design of Experiments (DoE) 

© Robert Bosch GmbH | Date 10.2010 34

4.10. Design of test equipment and specimens 

This step concerns the selection of suitable test equipment or, if this is not available, designing and 
drafting said equipment. During this process, the main focus must be on the aptitude of such 
equipment for the test, which must be assured (e.g. by selecting suitable tolerances). 

In addition, the specimens must be designed. The attributes and number of specimens are initially 
based on the experimental design. 

The following must be taken into consideration: 

 A sufficient number of specimens must be available for the design and for reference samples, as 
well as a certain reserve. If future tests are likely, pre-emptive manufacture from the same material 
and production batch may make sense, to prevent noise variables from falsifying the result. 

 Manufacturability must be clarified, especially the question as to whether all combinations of 
attributes specified in the design can be manufactured. This is often difficult, because in a certain 
sense we are dealing with boundary samples, which may be either physically impossible, 
irrelevant or unfeasible. 

 Specimen characteristics that are not being examined as factors must also be established and 
documented. It may become clear later that these characteristics exert a noticeable influence and 
must therefore be considered as factors. For example, it may happen that, contrary to original 
assumptions, the surface roughness of a product plays a role in the experiment. 

 The repercussions of the manufacturing process, e.g. on surface or residual stress, must be taken 
into consideration. 

 Specimens must be labeled, to ensure correct documentation of results. Small components can be 
stored in labeled containers, for example. 

4.11. Estimate of time and expenditure 

The necessary resources such as time, money, machine and personnel capacity for the planned 
experiment must be estimated and compared with existing resources and requirements. It will often be 
necessary to adapt the experimental design and seek a healthy compromise between expenditure and 
the acquisition of knowledge. 

However, we must constantly make sure that the conclusiveness of the test conforms to requirements. 
Sometimes, a critical minimum number of runs is required first, before any kind of conclusive result can 
be obtained. 
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5. Conducting the experiment, documentation 

In conducting and documenting experiments, two different methods are employed, depending on 
whether real physical tests or computer experiments are planned to ascertain the results. The latter of 
these is increasingly gaining in importance when a validated model of the system under test is 
available that fully describes the behavior of that system on a deeper level, but in which the effect of 
various influences is not obvious due to the model’s complexity, and must first be determined through 
simulation. 

5.1. Physical tests 

With real physical tests, firstly the test equipment must be designed, built and then prepared for 
conducting the tests, as described in section 4.10. This process has often turned out to be particularly 
time-consuming in practice, and must therefore be started as early as possible. 

Preparation covers, above all, a check of the aptitude of the equipment for the test, and its calibration. 
Here, calibration entails comparing the results of a test conducted using the equipment with a known 
reference. In this step, it is necessary to make sure that the deviation from the reference lies within 
acceptable limits in respect of the test objective. 

Checks must also be carried out to ensure that settings function correctly, particularly in the case of 
factors that are set directly on the test equipment. This is especially critical if the setting cannot be 
monitored later on in the test by online measurement of the actual values. If a measurement of this 
kind is conducted, the aptitude of the measurement process must be checked and/or verified. The 
same applies to measuring instruments that are used to determine the response variables. More on 
this subject can be found e.g. in [15,16]. 

The production of specimens can commence parallel to the preparation of the test equipment. Most 
treatments of the design are realized by appropriate specimen attributes, which is why particular care 
is essential in their production. This must also be discussed with the manufacturer of the specimens. 
Attributes such as dimensions, surface and mechanical properties must be examined judiciously after 
production. This will prevent tests being conducted with specimens that subsequently reveal 
themselves to be unsuitable for the test. 

After the equipment and specimens have been produced and checked, the tests, designed as 
described in section 4, can be conducted. Specific procedure, incl. a failure plan and the necessary 
documentation, has already been established, as described in section 4.9. 

Conclusions must be drawn for future tests in respect of any unforeseen events such as failures. 

5.2. Computer experiments 

As an alternative to the above procedure, if a validated model of the system under test is available 
(e.g. a structural-mechanical FE model of a complex product), “experiments” may also be conducted 
on the model. These are commonly referred to as computer experiments. In this case, the individual 
treatments are simulations, the findings from which can be transferred to the real system. 

The advantage of computer experiments lies in the fact that, generally speaking, more simulations can 
be carried out than would be the case with real tests. However, simulations on especially complex 
models are also costly and time-consuming. It therefore makes sense to save resources using the 
approaches of DoE for these experiments, too. 

The general procedure does not differ from that of a real physical experiment: the designs are drawn 
up as explained in section 4 and evaluated as described in section 6. The results do not supply a 
physical experiment but a simulation tool, known as a solver. 

One important difference from a real physical test is that computer experiments do not produce any 
statistical error; this must be taken into consideration when selecting the type of experimental design. 
However, we can employ not just deterministic but also stochastic models, in which the occurrence of 
confounders can be simulated by superimposed random values, meaning that the use of statistical 
approaches does indeed make sense. Furthermore, distributed factors in analyses of robustness and 
reliability can be taken into account by stochastic designs such as the plain Monte Carlo. 
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Typical applications comprise three steps: 

1. The relevant predictor variables are singled out from many through sensitivity tests. 

2. The response variables undergo model-based optimization, taking into account the relevant 
predictor variables and other constraints. 

3. The optimum design is subject to a robustness analysis. This answers the question as to what 
effect small, mostly random and unavoidable deviations from the optimum values of the factors 
have on the response variables, and what proportion of all possible combinations of attributes still 
satisfies the requirements of the design. In addition, a reliability analysis can be carried out, in 
which the proportion of reliable combinations of attributes can be determined from all the possible 
combinations. The two analyses differ solely in that the states being examined are very probable in 
the case of the robustness analysis, and very improbable in the case of the reliability analysis. 

These methods enable us to investigate problems that cannot be overcome by real experiments. 
As one example, users report the weight optimization of an entire ship with 30,000 variables [18]. 
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6. Evaluation 

The aim of evaluation is to quantitatively determine the model equation, which describes the 
relationship between factors and response variables, and to validate it. 

6.1. Plausibility check 

For an initial plausibility check, it is a good idea to draw up a simple presentation of the important test 
results, i.e. response variables as a function of factors. This presentation should include the test 
equipment used, the measuring technology and any peculiarities arising during the course of the test. 
In this way, discrepancies will quickly become apparent when the results are discussed by the team, 
which must perhaps be examined more closely. This is difficult, however, when more than 2 factors are 
involved. In this case, a parametric representation or a representation solely of the treatments in the 
experimental area (without response variables) may be of assistance. 

At any rate, this initial visualization must reveal the coverage of the experimental area. This is 
important because only systematically created designs cover the experimental area adequately and 
are robust against misconstruction, as opposed to designs that are simply wedged into place in 
existing data of dubious quality. Moreover, the comparability and up-to-dateness of historic data must 
be assured before evaluation can commence. 

An analysis of plausibility must determine whether anything unusual, e.g. response variable with 
implausible values, are evident. The cause of any such unusual occurrences must be sought in order 
that the result can be corrected if necessary. In the simplest of cases, the cause is transmission or 
typing errors. Simple reading errors can also sometimes be corrected. If the cause remains unclear or 
a factor was incorrectly set, the run in question must be repeated. If this is not possible, this run is 
excluded from further analysis, for outliers can significantly distort the result of the test, and must not 
be used. The utmost caution must be exercised when proceeding thus, however, especially if there is 
only one run. In this case, a suspected outlier may signify an unsuspected effect. Statistical outlier 
tests can help with this decision. 

6.2. Determining the model equation 

Firstly, two simple examples provide an introduction to the subject. Next, the general procedure is 
explained through regression. The mathematical bases are contained in the Appendix. 

6.2.1. Example of single-factor test on 2 levels 

Task: The thermal expansion of an alloy is to be determined through experiments. Several replications 
are conducted at 2 temperatures. Table 6.1 shows the mean values of the results of the replications. 

Test T, °C L, cm 

1 25 100.04 

2 100 100.16 

Table 6.1: Thermal expansion of an alloy 

We are assuming that a linear relationship exists between the change in length and the temperature, 
and wish to determine the linear equation that will enable us to calculate any intermediate values. 
This equation is: 

TAAL 10   (6.1) 

Through the process of coordinate transformation, the pair of variates (T1,T2) is formally translated as  
(-1, +1). The transformation equation is: 

1)(
2

2
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x . (6.2) 
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Figure 6.1: Linear expansion of an alloy 

Here, it is easy to check that x(T=T1)=-1 and x(T=T2)=+1. In the transformed coordinate system, 
the linear equation is: 

xaaL 10  .  (6.3) 

The equation (6.3) and the two test results give rise to the following: 

for 1x :    1016100 aa . , (6.4) 

for 1x :    1004100 aa . . (6.5) 

At this point, the reason for the coordinate transformation becomes obvious; namely, the coefficients a0 
and a1 can be calculated with great ease by adding or subtracting the equations (6.4) and (6.5): 
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a . (6.6) 

In general, therefore the coefficient a0 is the mean of the two lengths, while coefficient a1 is the half 
difference between the lengths.  

The difference in length at the lower and upper temperature is referred to as the effect of the 
temperature factor. Thus, we can also calculate the coefficient a1 from the half effect of the 
temperature. This constitutes a vital relationship between the effect of the factor and the coefficients of 
the model equation; thus by calculating the effects, the coefficients of the model equation are also 
automatically determined, and vice versa. 

In the transformed system, the linear equation (6.3) is: 

xL 0601100 ..  . (6.7) 

The linear equation (6.1) in the original system can be obtained through inverse transformation (6.2) 

T
T

L 


 00160100
537

562
0601100 .

.

.
.. . (6.8) 

6.2.2. Example of dual-factor test on 2 levels 

This example is intended to elucidate the procedure for evaluating experiments on the basis of Ohm’s 
Law. We will therefore put ourselves in the shoes of an experimenter who wishes to determine the 
relationship between voltage, current and resistance with the aid of a simple experiment. He is looking 
for 

),( IRfU  . (6.9) 

Let us assume that he has conducted test runs with several replications, and has measured the 
following mean voltage: 
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Test R, ohm I, A U, V 

1 20 4 80 

2 60 4 240 

3 20 12 240 

4 60 12 720 

Table 6.2: Ohm’s Law 
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Figure 6.2: Ohm’s Law 

In order to determine the relationship, first of all a multilinear approach is employed for two factors: 

211222110 xxaxaxaaU  . (6.10) 

The following transformation can further simplify the evaluation: 
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The result is a system of equations from which the free coefficients of the approach can easily be 
determined (the voltages U arising during the individual test combinations are on the right): 

11 x , 12 x , 8012210  aaaa , 

11 x , 12 x , 24012210  aaaa , 

11 x , 12 x , 24012210  aaaa , (6.12) 

11 x , 12 x , 72012210  aaaa . 

Consequently: 

320
4

72024024080
0 


a , 

160
4

80240

4

240720
1 


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
a , 
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160
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80240

4

240720
2 





a , (6.13) 

80
4

24080

4

240720
12 





a . 

Applying (6.13) in the approach (6.10) gives rise to:  

2121 80160160320 xxxxU  . (6.14) 

Through inverse transformation of (6.14) on the basis of equation (6.11), we obtain the model equation 
in the untransformed coordinates: 

RI
IRIR
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 
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
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4
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40
80

4

8
160

20

40
160320 . (6.15) 

In this structured example, the correct solution necessarily arises (Ohm’s Law) because, with the 
multilinear form, exactly the right approach was selected. A more complicated functional relationship 
involving quotients or powers of the predictor variables could only roughly be described with this 
approach. 

6.2.3. Tests with k factors on 2 levels 

If a full factorial test with k factors each on 2 levels with a total of N runs and m=2k treatments was 
conducted, the effects and interactions and the coefficients of the model equation can easily be 
calculated using the evaluation matrix of the experimental design. 

In this connection, take a look at the design below: 

Test no. A B … Results ijy  Mean iy  

1 - - … nyyy 11211 ,,,   1y  

2 + -  nyyy 22221 ,,,   2y  

…      

m + +  mnmm yyy ,,, 21   my  

Table 6.3: Full factorial experimental design with k factors each on 2 levels 

When each treatment is examined several times, first of all the evaluation can help us to determine the 
mean of the runs on each treatment; the respective column has been added to in the above matrix. 

In this case, the multilinear model equation is: 

)...(... 21...12

1

1 11

0 kk

k

i

j

k

ij

iij

k

i

ii xxxaxxaxaay  


 

. (6.16) 

In total, this contains 2k coefficients and just as many terms: one free term, k terms with the factors and 
mixed terms with 2, 3, etc. factors, up to a mixed term with all k factors. All mixed terms represent dual, 
triple etc. interactions. 

The effect of factor j can simply be calculated as 





m

i

iijj y
m 1

sgn
2

, (6.17) 

whereby “sgn” denotes the corresponding factor in the evaluation matrix. Interactions can be handled 
in the same way; their +/- column is calculated as a product of the corresponding columns of the 
involved factors. For example, with a dual interaction x1x2 an additional column is formed, in which 
columns A and B are multiplied together. Next, this +/- column is used to calculate the interaction as 
described above. 
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The coefficients in the multilinear form are then revealed as: 





m

i

iy
m

a
1

0

1
, 

2
j

ja


 , 12...1  kj . (6.18) 

6.2.4. Regression analysis 

In the calculation of the model equation as described above, as many treatments were present as 
there were unknown coefficients. In this way, we were able to produce a system of equations with 
m equations (from the test results of the m treatments) and m unknowns (coefficients), from which 
these coefficients could then be determined. If an experiment incorporates more treatments (but not 
necessarily replications) than coefficients, more equations than unknowns would exist, with the result 
that the system of equations would be over-determined and the above procedure would no longer be 
possible. In this general case, a regression analysis is necessary. Performing more tests than is strictly 
necessary for determining the unknown coefficients of the model equation has considerable 
advantages. For one, it enables us to check whether or not the chosen model approach was suitable 
for the task at hand. 

In a regression, the parameters of an already defined mathematical approach are adapted so as to 
permit the best possible description of the experimental data using the chosen model. This is achieved 
by means of the least-squares method, whereby the coefficients of the model are determined in such a 
way as to minimize the sum of deviations of treatments from the model curve. We do not go into the 
formal mathematical basis at this point; more information on this subject can be found in the Appendix. 

y = 0.03x + 0.8095
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2
+ 0.0079x + 0.9944

 

Figure 6.3: Linear and quadratic regression of a single-factor test at 3 levels with 5 replications per 
level 

In the event of a non-linear relationship between response and predictor variables, in most cases the 
attempt can be made to remedy the problem through quasi-linear regression, by the suitable 
transformation of variables. If, for example, we are expecting a power dependence of the type 

2
10 taay  , (6.19) 

the initial non-linear problem can be translated as a linear relationship through substitution x = t2: 

xaay 10  , (6.20) 

which can be tackled with linear regression. 

If an approach is to be adapted in line with test results through regression, whereby the response 
variable depends upon more than one predictor variable, this is referred to as multiple regression. 
Evaluation takes place according to the same principles as with simple regression. 
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Conducting a regression analysis is a complex proposition, especially when there is more than one 
predictor variable. At this point I would therefore like to recommend the use of suitable software tools. 
More information on this subject can be found in the Appendix. 

6.3. Validation of the model equation 

Generally speaking, when a test is replicated (repeated), the response variables will vary to a greater 
or lesser extent as the result of disturbing influences. The effects and coefficients of the model 
equation calculated on the basis of the test results are also subject to certain fluctuations, and 
generally always differ from zero, even if the true but unknown effect is equal to zero. The question 
therefore arises as to whether the calculated effects differ from zero purely by chance, or not. If they 
differ by chance, this would be insignificant; if however, this is not the case, they must be regarded as 
significant. 

The aim of this section is to show how an effect (or coefficient of the model equation) can be classed 
as significant or not. 

6.3.1. Simple significance rating with 2k designs 

If a full factorial test with k factors each on 2 levels with a total of N test runs and m = 2k treatments is 
conducted, the process of mean comparison can be utilized to investigate the significance of effects 
and interactions, see [1], p.99. This method is based on the fact that the effects can be calculated as 
the difference between two means of a factor. 

In this connection, we examine the following evaluation matrix of a design: 

Test no. A B … Results ijy  Mean iy  Variance 2
is  

1 - -  nyyy 11211 ,,,   1y  2
1s  

2 + -  nyyy 22221 ,,,   2y  2
2s  

…       

m + +  mnmm yyy ,,, 21   my  2
ms  

Table 6.4: Evaluation matrix of a design 

When each treatment is examined several times, the evaluation can help us to determine the mean 
and the variance of the individual runs on each treatment; the respective columns were added to in the 
above matrix. 

The effect of factor j can be calculated as 





m

i

iijj y
m 1

sgn
2

, (6.21) 

whereby “sgn” denotes the corresponding factor in the evaluation matrix, see section 6.2.3. 
The variance 





m

i

iy s
m

s
1

22 1
, (6.22) 

which can be calculated as a mean of the individual variances, constitutes an estimate of experimental 
variance. This is sometimes also referred to as pure error. 

Since each effect forms the difference between two means each of N/2 individual values, its standard 
deviation can be estimated by means of 

22 4
ys

N
s  . (6.23) 
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The significance of each effect can now be stated through the process of mean comparison based on 
the t-test, as described in section 9.1.3. The associated test statistic can be calculated thus 






s
t j

j . (6.24) 

If tj > t(f, 99%), the null hypothesis must be rejected, and the associated effect regarded as significant 
(the statistic t(f, 99%) is set out in a table in the Appendix). The degree of freedom is f = N - 2k (k - 
number of factors, N – total number of runs). A graduated rating of the significance of the effect can be 
carried out with the aid of Table 6.5: 

Lower limit Parameter Upper limit Assessment 

 t  %99;ft  not significant 

%99;ft   t  %9.99;ft  significant 

%9.99;ft  t   highly significant 

Table 6.5: Significance assessment using the t-test 

Significance in tests with one run 

If a test with a single run n=1 has been carried out, difficulties will arise when estimating the variance 
of the individual values and therefore the variance of the effects and their significance. This situation is 
best overcome if the variation of other tests is already known, or can be determined separately by 
performing several replications of a single traetment (often at the centre point). 

If the above strategies are not possible, variance can be estimated by a process known as pooling, 
whereby random effects and interactions are removed from the model. Background: If the actual 
effects and interactions are zero, the calculated random effects and interactions are normally 
distributed with the mean value zero. Here, all outliers have a high probability of being actually 
occurring effects or interactions. All random effects can now be eliminated from the model and used for 
greater statistical certainty. “Randomness” is recognized in that these effects and interactions are 
positioned on a straight line in the probability plot. 

This tactic must always be the last resort, and must be deployed with the utmost caution, as the risk of 
subjective influence and the possibility of misinterpretation cannot be excluded. We recommend 
employing this method only with more than 5 factors, and even then only for higher order interactions, 
see [1], p.107. 

6.3.2. Validation of regression 

It is generally necessary to ascertain the coefficients of the model equation by means of regression 
analysis. Certain evaluations and characteristic values can be used to analyze the quality of the 
regression analysis, and these are explained below. 

6.3.2.1. Assessing the goodness of fit 

First of all, a visual inspection needs to be carried out to determine how well the calculated model 
equation concurs with the test results. To achieve this, more treatments (not more replications) must 
be available than there are free coefficients in the model equation. For example, in a single-factor test 
on two levels, the middle of the interval can also be recorded as an additional treatment. This enables 
us to check the “deviation” of the test result from the assumption of a linear relationship. If only two 
treatments are present a check of this kind is not possible, because 2 points always define one straight 
line. 

The advantage of this additional treatment is also evident in that when there are 3 points, evaluation is 
possible through linear regression, whereby the goodness of the linear fit can also be quantified with 
the aid of the characteristic values described below. This would not be possible with only 2 treatments, 
see section 9.1.6. 
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Furthermore, it makes sense to state and quantitatively assess the quality of the regression using 
the following characteristic values: 

 One common figure is RMS error SR (root mean square error), also known as standard error or 
standard deviation of the regression. This is calculated as the root of the mean of the residual 
squares. Residuals are deviations of the response variable in the experiment from the prediction of 
the model equation 

iii yyr ˆ , (6.25) 

whereby )(ˆ ii xfy   denotes the value of the function calculated through regression at the point xi, 

in contrast to the test value yi at this point. The RMS error is therefore a scalar variable, which 
characterizes the totality of all residuals and can be regarded as the mean deviation of the 
response variable readings from the regression function. A low value indicates that the regression 
function is very capable of describing the experimental data. The standard error of regression is an 
absolute variable, which cannot be interpreted directly, particularly if no earlier comparable tests 
exist. In that case, another important characteristic - the so-called coefficient of determination - can 
provide a remedy. 

 The coefficient of determination R2 can be interpreted as the proportion of the variance in 
response variables that is “explained” by the regression, see section 9.1.6 in the Appendix. This is 
due to the fact that relationships that are not present in the model (e.g. unknown predictor 
variables) cannot be explained by the model either. The coefficient of determination assumes 
values between 0.0 and +1.0. Thus, an R2 of or close to 1.0 is a sign that the regression approach 
was suitable for explaining the experimental data. 

 Alternatively, the correlation coefficient R can be used. R assumes values between -1.0 and 
+1.0, whereby both limit values only occur if the data can be completely explained by the 
regression approach. In a linear regression, for example, all treatments would have to be 
positioned on a straight line. If deviations from this occur, we have to assess how great these are 
and what causes they might have. For a correlation coefficient of or close to 0.0 does not 
automatically mean that high variation is present, but rather that the regression approach was not 
able to explain the data with sufficient accuracy. This may be due to high variation, or to the 
approach itself. Thus, the attempt to bring a parabola positioned symmetrically in the 
experimental area (i.e. a 2nd order approach) closer to a straight line through linear regression is 
confirmed with an R of 0.0, even when no variation is present, see section 9.1.6 in the Appendix. 

6.3.2.2. Residual analysis 

The residuals supply important information about the goodness of fit of the model equation in relation 
to the test results. They characterize the deviation between the results measured in the test and those 
predicted on the basis of the model equation. If the model approach is suitable for describing the test 
results, this deviation may only be random. This must be checked after every regression analysis, 
whereby a graphic representation is always advantageous, because it provides direct, incisive 
information about the relationships under discussion. Such representation can be generated 
automatically by good software, see section 9.2. The following evaluations are recommended: 

 Residuals in the normal distribution plot: The purpose of this representation is to ensure that 
the residuals are normally distributed, in this case they will lie approximately on a straight line in 
the probability plot. If definite curves are observed, a transformation of variables may be 
necessary. Normal distribution can also be backed up by suitable statistical tests. 

 Residuals as a function of the test number: The aim of this evaluation is to answer the question 
as to whether the test results feature a trend or jump. Here, too, no systematic relationship is 
required; the residuals must be randomly distributed within a band. If a trend does exist, the 
residuals may systematically increase or decrease, for example. This would indicate the existence 
of unrecorded noise variables (e.g. tool wear), which are influencing the result. What is important 
at this stage is understanding that a trend of this kind is only visible in the residuals if a random 
sequence (randomization) was used when conducting the experiment. Otherwise, the trend is 
ascribed to the dependence of the response variable on the factors, and is no longer visible in the 
residuals. 
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Figure 6.4: Top: Residuals in the normal distribution plot with normally distributed data with outlier 
(left), and with equally distributed data in zone [-1,+1] (right). Bottom: Residuals as a function of the 
test number without trend (left), and with trend (right). 

 Residuals as a function of factors: This evaluation is used to examine whether the model 
approach used is consistent with the test results. This analysis can basically also be conducted by 
representing the response variable as a function of the factors; for example, a linear model 
approach can be validated by comparing it with test results at the center of the zone. However, the 
residuals are normally smaller than the response variable, so that representation of residuals as a 
function of the factors is more suited to this task. At the same time, care must be taken to ensure 
that no systematic relationship exists, but rather the residuals are randomly distributed in a band 
around the calculated response variable.   
The distribution of residuals on the x axis, on the other hand, is irrelevant. In the case of 
systematically designed tests, the residuals will only be present on the factor levels used in the 
test; in the case of tests that have not been designed (or the evaluation of historic data), any factor 
values may be present. 

 Residuals as a function of the calculated response variable: For many statistical analyses, it is 
a prerequisite that the standard deviation is not dependent upon the response variable. 
Compliance with this condition can be checked by monitoring whether the residuals are spread 
opposite the calculated response variable. If they are not lying at random in a band, but rather a 
trend is visible (often a funnel-shaped increase or decrease, for example), variable transformation 
(e.g. logarithmic) must be risked. 
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Figure 6.5: Top: Residuals as the function of a factor in a linear model. The data on the left confirm 
the linear profile. The data on the right indicate a non-linear profile. Bottom: Residuals (absolute value) 
as a function of an exponential response variable, without log transformation (left), with log 
transformation (right). 

6.3.2.3. Confidence interval and significance of regression coefficients 

The coefficients of the regression model were determined on the basis of the experimental data, which 
were subject to random variation. It can thus be assumed that the coefficients themselves are random 
variables. It is possible to show that under certain conditions (see section 9.1.6 in the Appendix), the 
values determined using the least-squares method provide a good estimate of the true values. 

With the standard error of the ith regression coefficient Si, a two-sided confidence interval on the 
confidence level (1 - ) can be stated using the technique of mean comparison. The mathematical 
foundations are not dealt with here, instead see section 9.1.6 in the Appendix. The results are normally 
represented together with the values of the coefficients, see Table 6.6. 

The confidence intervals for the mean of the response variable y(x) are dependent upon x and are 
graphically represented as a “trumpet-shaped” enveloping of the regression curve. The significance of 
the calculated gradient can be evaluated in the same procedure as with the t-test, by calculating a test 
statistic and comparing it with values in the table. 
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Variable Coefficient Std. error t-value p-value 

x1 b1 S1 t1 p1 

…     

Table 6.6: Coefficient table of a regression 

Both the representation of the confidence interval of the mean and the definition of a confidence 
interval for the gradient illustrate that the calculated straight line is only an estimate of the true, but 
unknown, straight line. In a certain sense, the confidence intervals constitute the abundance of 
possible positions of the true straight line. During interpretation we must bear in mind that a significant 
gradient is not proof that the dependence is also linear, but simply that a linear proportion exists. This 
matter is illustrated further in diagram 6.6 below. Further details can be found in [1]. 
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Figure 6.6: Confidence interval of the mean in a linear regression (schematic) 

6.3.2.4. Step-by-step regression 

In step-by-step regression, the regression analysis is repeated iteratively in several steps, whereby 
with each step, effects and interactions that are not classed as significant are removed from the model, 
and the remaining degrees of freedom are employed for the purpose of improving statistical certainty. 
This process is repeated until only significant effects and interactions remain in the model, which then 
has the simplest possible form. 

The following procedure is recommended, see [19], p.74: 

 First, the significance of higher (e.g. quadratic) effects must be checked, if any are contained in the 
model. These may be removed first, if necessary. 

 Higher order interactions are dealt with next. 

 Finally, the significance of twofold interactions and effects is checked, taking into consideration the 
hierarchical structure of the model. Because of the latter, an effect must only be removed if all 
higher order terms and all its interactions have been removed first. This ensures the invariance of 
the model in the event that predictor variables are rescaled. 

With each step of regression, the changes in the coefficient of determination R2 must be tracked;  
R2 must increase during the course of regression. 

6.3.3. Validation through analysis of variance 

In the preceding sections, we explained how the significance of effects can be evaluated using a mean 
value procedure based on the t-test for designs of k factors on 2 levels. Where factors with several 
levels are concerned, statements in respect of significance could also be made on the basis of the t-
test during a regression analysis, but only in the case of quantitative factors and quasi-linear 
dependencies. The analysis of variance now provides a tool for enabling conclusions about 
significance to be drawn in cases where the mean comparison technique is not equal to the task, 
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typically involving a qualitative factor with several levels. As this procedure is generally applicable and 
widely used in statistical software, we will deal with this subject briefly here. Further information about 
variance analyses can be found in the Appendix and in [27]. 

6.3.3.1. Simple analysis of variance (ANOVA) 

Simple in this context means that several levels of a single factor are under observation. This 
procedure can be employed for analyzing a single-factor test on several levels. As the first step in a 
multifactorial tests, we must check whether the variance of the results in the test lines differs 
significantly from the experimental variance, i.e. whether any factor is exerting an influence on the 
response variable. 

Let’s take a look at the design below with n replications on m levels: 

Level no. Results ijy  Mean iy  Variance 2
is  

1 nyyy 11211 ,,,   1y  2
1s  

2 nyyy 22221 ,,,   2y  2
2s  

…    

m mnmm yyy ,,, 21   my  2
ms  

Table 6.7: Experimental design with n replications on m levels. 

Simple analysis of variance can be performed in three stages: 

1. Calculation of the mean variation of the individual values (this figure is a measure of experimental 
variance)  
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2. Calculation of the variance of the means 
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3. F-test with the test statistic 
2

2

y

y

s

sn
F  . (6.28) 

If F is greater than the threshold value F(f1,f2,99%) of the F-distribution in the table in the Appendix 
with degrees of freedom f1=m-1, f2=(n-1)m, the test results are subject to a significant difference 
(n = number of replications per level, m = number of levels). 

As with the mean comparison, statements about significance can be made dependent upon the 
interval in which the calculated test statistic is located: 

Lower limit Test statistic Upper limit Rating 

 F  %)99,,( 21 ffF  not significant 

%)99,,( 21 ffF   F  %)9.99,,( 21 ffF  significant 

%)9.99,,( 21 ffF  F   highly significant 

Table 6.8: Significance rating using the F-test 
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6.3.3.2. Factorial analysis of variance 

Factorial analysis of variance enables us to decide whether each factor of a multifactorial experimental 
design has a significant influence on the test result. The following procedure is recommended: 

1. Calculation of the level means of the factor iy , mi ...1 . All test values with which the factor being 

evaluated has the level in question are subject to averaging. In this way, all other factors are 
included in the averaging process with values over all levels. 

2. Calculation of experimental variance 2
ys . This is the mean variance of treatments with multiple 

realization. 

3. Calculation of the variance 2
ys  of the means of the factor calculated in item 1. 

4. F-test with the test statistic 
2

2

y

y

s

ns
F  . (6.29) 

If the test statistic F is greater than the threshold value F(f1,f2,99%) of the F-distribution in the table 
in the Appendix with degrees of freedom f1=m-1, f2, the factor has a significant influence on the test 
result, with n = number of test values per level, m = number of levels. 

Statements about significance can be made dependent upon the interval in which the calculated test 
statistic is located, as shown in Table 6.8. 

6.3.3.3. Variance table, multiple analysis of variance 

The analysis of variance can be comprehended as the partition of the sum of squares (SS) of the 
individual values from the overall mean in a proportion QA and a remainder QR, whereby the first 
proportion is explained by the factor levels and the remaining proportion can be used to estimate 
random variation. An explanation of this partition can be found in section 9.1.5 of the Appendix, and is 
not discussed further at this point. The result of the partition is usually summarized in a table, which 
looks like this: 

 Degree of freedom SS Variance F p-value 

Factor A fA = m-1 = f1 QA 
22
y

A

A
A sn

f

Q
s   

2
Rest

2

s

s
F A

A   pA 

… … … … … … 

Remainder fR = f2 QR 
22

Rest y
R

R s
f

Q
s     

Total f= fA + … + fR  Q = QA + … + QR    

Table 6.9: MANOVA table (n = number of test values per level, m = number of levels) 

Statements about significance can be made dependent upon the interval in which the calculated test 
statistic FA is located, as illustrated in Table 6.8. With some statistical tools, a variable pA is stated in 
addition to the test statistic FA for assessing significance, for which the following applies 

),,1( 21 ffpFF AA  . (6.30) 

This statistic is interpreted as the “probability of error” (type I error): the smaller this probability, 
the more significant is the factor’s influence. Assessment is the same as for the test statistic FA: 
a significant result is present if pA ≤ 1%, a highly significant result if pA ≤ 0.1%. 

As already mentioned in Table 6.9, this partition can also be carried out for several predictor variables 
and interactions; this is referred to as the multiple analysis of variance. Here, the mathematical 
procedure is considerably more time-consuming, but is easy to formalize, with the result that this 
analysis is included in the majority of statistical software packages. 
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6.4. Graphic representation 

The calculated model equation and hence the results of the test evaluation are usually graphically 
presented for greater clarity. Response variables that are dependent upon two or more factors are 
mostly displayed in the form of level curves, characteristic maps and families of curves. The diagrams 
below illustrate this relationship. 

The left-hand side of Figure 6.7 shows the 3D representation of a “mountain”. The right-hand side of 
Figure 6.7 shows the level curves of this “mountain” in a “view from above”, as you would see on a 
topographical map. In this example, the jump from one curve to a neighboring one corresponds to a 
defined difference in height of 20 units. Curves situated very close together signify a steep climb in 
one direction, perpendicular to the level curves. If we remain on one continuous level curve, we are 
moving - in terms of this map - around the mountain at a constant height. 
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Figure 6.7: Function profile in a 3D (left) and 2D (right) presentation 

Let’s leave this image of a “mountain” behind us for a while, and instead of its height observe a 
function y, which is dependent upon the variables A and B: y = f(A,B). This equation can act as a model 
for a response variabley, the value of which is determined by setting the factors A and B. Then, each 
setting (A, B) corresponds to a value y. 
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Figure 6.8: Parametric representation of the function profile shown in Figure 6.7 

Figure 6.8 shows another possible representation for these results. The response variable y is applied 
as a function of A with B as a fixed parameter, which is referred to as a “parametric representation”. 
The dotted curves in the left-hand graph of Figure 6.8 each represent the function y with fixed B. They 
are, so to speak, the cutting lines of a vertical cut through the surface of the mountain with fixed B. 
In the same way, the dotted lines in the right-hand graph of Figure 6.8 each represent the function y 
with fixed A. 

These methods are basically often employed to illustrate test results. Typical representations are 
shown in Figure 6.9. We distinguish between the following three representations: 
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 The Adjusted Response Graph represents the mean effect of a factor. In other words, the effects 
of all other factors have been eliminated by averaging. If the represented factor displays significant 
interactions with other factors, this representation may be misleading, because the profile shown 
can depend to a great extent on how the other factors are currently set. 

 The Predicted Response Graph is a parametric representation of the response variable as a 
function of a factor with predefined, fixed settings for all other factors. 

 In the Interaction Graph, each factor is displayed at every level of all other factors. Here, 
significant interactions can be recognized in that the families of curves do not run in parallel. 
A non-parallel profile signifies that the effect of a factor depends significantly upon the setting of 
another factor, which is characterized as an interaction. 
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Figure 6.9: Typical representation of test results of the function y = A2 + B + AB 

For the communication with customers the predicted response graph is recommended. Here some 
effects can be discussed without going too deeply into specific DoE-details. 

This type of representation can also be used when one (or more) of the factors under investigation is 
not a quantitative, adjustable variable but a qualitative variable with fixed levels (e.g. material 1 - 
material 2). In this case, of course, it would not make sense to interpolate the intermediate values. 
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Where three factors exist, the experimental area can be graphically represented in the form of a cube. 
In this cube, each corner corresponds to a combination of levels of the factors A, B and C. When the 
factors number more than three, only two or three-dimensional projections of the multidimensional 
experimental area are possible. 

6.5. Interpretation of results 

Working together with experts, the results must be discussed, physically interpreted and plausibilized 
by means of a comparison with the expected result. Unexpected results always provide grounds for 
further research and a furthering of knowledge, with the aim, for example, of finding unknown factors or 
interactions. As a general rule, we should not trust any result that we do not understand.  

First of all, we have to examine which factors have the greatest significant influence on the response 
variable. These are the factors with the greatest effects. If a change (e.g. optimization) of the response 
variable is desirable, precisely these factors must be used for this purpose. If, however, the response 
variable is to be kept as constant as possible or within narrow limits, particular effort must be made to 
keep precisely these factors constant or to limit their variation. However, it is important to note that the 
effects depend considerably upon the choice of factor ranges. Consequently, a small effect may be 
due to the selection of an overly small factor range. 

When a linear approach is taken, larger effects are expressed by the steeper gradient of the effect 
straight lines. If the factors behave additively, the curves of a factor will run parallel at all other settings 
of the other factors. If, on the other hand, the effect of a factor depends upon the setting (level) of 
another, this signifies an interaction between these two factors, i.e. they are not behaving additively. 
The effect straight line of the factor is subject to different (and even contrary) gradients, depending on 
the setting of the other factors. 

If significant interactions have been established, this means that all factors involved in the interaction 
must be examined together. The influence of the interaction may cause the effect of a factor to 
increase, diminish or even have the reverse effect. Therefore, we should know intuitively that 
neglecting the interaction can lead to completely false results or conclusions. Furthermore, when a 
strong interaction AB is present, the mean effect of the two factors A and B can become zero, even 
though each factor can certainly exert a major influence. Higher order interactions may also occur in 
designs with more than 2 factors. Threefold interactions mean, for example, that a combination of 
2 factors has an influence on a third factor, etc. Higher order interactions seldom have a major 
influence and are generally difficult to interpret. They may find expression, for instance, in the response 
curvature of factor A, changing with the settings of factor B. This behaviour will not be covered unless 
an interaction term A2B is included into the model. 

EXAMPLE: In this example, we will look at a design with 2 factors on two levels and results as follows: 

No. A B AB y  

1 - - + 1y  

2 + - - 2y  

3 - + - 3y  

4 + + + 4y  

Table 6.10: Experimental design with 2 factors on two levels 

The effects of the factors can be calculated thus (also see section 6.2.3):   
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The graphic representation of the effects is shown in Figure 6.10 for the example of a two-factor experiment.  

Factor AAmin Amax Factor BBmin Bmax

Bmin

Bmax

Amin

Amax

Effect (B)Effect (A)

y1

y2

y3

y4

y

y1

y2

y3

y4

y

 

 
Figure 6.10: Graphic representation of the effects in this example 

In the above illustration, we can see (assuming the y-scale is the same in both graphs) that factor B has a 
greater effect on the response variable than factor A. Moreover, a clear interaction between the two factors is 
evident, as the gradient of the straight lines of a factor are obviously dependent upon the setting of the other 
factor in each case. 

6.6. Conclusions and further procedure 

After the model has been calculated and validated and the results represented and interpreted, 
conclusions must be drawn from the tests. Whether or not the objective of the experiment was 
achieved can also be evaluated at this point. 

If results are implausible or unsatisfactory, further tests may be conducted, e.g. experiments with 
different factors, factor levels, treatments or response variables. If necessary, an extended model may 
also be examined. 

Last but not least, summary documentation must be compiled and knowledge transferred.  
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7. Applications 

The aim of the evaluation described in Chapter 6 is to adapt the model approach to the test results. In 
this chapter, we take a brief look at the most important applications for the model, i.e. those that permit 
us to gain knowledge about the real system by means of simulation. 

7.1. Prediction 

Once a validated model is available, the simplest task is to calculate the value of the response variable 
when the factors have predefined values, in other words, to predict the behavior of the real system as 
a function of the predictor variables. 

Here, please note that in the case of black-box models, such a prediction can only meaningfully be 
carried out as interpolation. Extrapolations can lead to entirely false statements, as no experimental 
information whatsoever is available about the behavior of the response variable outside the 
experimental area under investigation. 

7.2. Optimization 

Another important task a model has is to enable the response variable to be optimized. This task 
complements that of prediction: it involves finding those factor settings at which the response variables 
assume predefined values. These are frequently maxima or minima. If necessary, we may also define 
constraints that must not be violated. Here, the factors are usually referred to as design variables. 

Various strategies can be used for optimization: 

a) If treatments are generated according to a particular plan, deterministic methods can be used. If 
they are selected at random, stochastic methods are employed. Typical examples of deterministic 
methods are the simplex algorithm and the gradient-based approach. Stochastic methods are the 
genetic algorithm (GA), the evolutionary strategy (EV) and the artificial neural network (ANN). 

b) Methods differ in that either only the function to be optimized is required for calculation, or this 
function and also its 1st derivative, or even its 2nd derivative as well. This is due to the fact that the 
calculation of derivatives can be time-consuming and even impossible. Typical examples of the 
first category are all stochastic methods and the simplex method. An initial derivative of the 
function in the form of a gradient, on the other hand, requires the classic gradient method. The 
quasi-Newton method even requires the second derivative of the function, although variants exist 
that manage without it. 

c) Some methods are suitable for model-based optimization, others for test-based optimization, and 
some can be employed in both cases. Test-based methods require us to determine only the true 
response of the system with discrete settings of the predictor variable. This system response can 
be ascertained directly through tests. Model-based methods, on the other hand, require the 
calculation of a model equation first of all, i.e. the true response of the system ascertained in the 
test is approximated by means of an approach known as the response surface. Next, this 
approximation is optimized. These processes are frequently referred to as response surface 
methods. In the case of test-based optimization, all approaches, e.g. the simplex method, can be 
considered if they require function values only at discrete points of the experimental area. If, on 
the other hand, derivatives are needed as with gradient-based techniques, first of all we must 
produce a model equation, which can then be used to calculate the necessary gradients. 
Alternatively, however, gradients can also be approximated through differential quotients; then, 
only the function values would need to be determined. 

d) So, we differentiate between response surface and adaptive response surface methods, 
depending on whether a global or local (possibly requiring iterative improvement) model equation 
is used for model-based optimization. In this context, global means that the model equation covers 
the entire experimental area. Local models, on the other hand, only cover certain areas of the 
experimental area. 
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e) Sometimes not just one but several target functions require optimization. This can be simply due 
to the fact that all target functions are to be weighted, superposed and combined in a new target 
function. A disadvantage of this technique is that arbitrary weighting factors are required, which 
clearly define the “compromise” between the individual response variables. Sometimes, however, 
it is necessary to find all combinations of predictor variables in the experimental area that are of 
“equal value”, i.e. no response variable can be improved without worsening another. From this 
quantity we can then use further criteria to establish a suitable optimum. Pareto optimality makes 
use of this approach. 

We will now go on to explain some of the typical processes mentioned above in more detail. Reference 
is made to literature containing more in-depth information. After an optimum has been found using a 
suitable approach, it is generally also necessary to conduct a validation test, which confirms the results 
of optimization. 

7.2.1. Gradient-based methods 

The most commonly used procedure is model-based optimization, e.g. using a gradient method. Here, 
quadratic approaches must be used, at least, because the extremum of a linear approach always lies 
at the boundary of the experimental area and is not suitable for reasonably approximating a response 
surface with an extremum that is within the experimental area. With linear scenarios, much simpler 
approaches can be taken using so-called linear programming. 

The classic gradient method is basically a method of non-linear optimization which, like most 
techniques, is based on a local search. A non-linear function can possess several local extrema, and 
the optimization process will identify one of these. However, this local extremum does not necessarily 
also constitute the global optimum. This, too, is one of the greatest disadvantages of gradient-based 
methods. A way out of this situation is offered by repeating the process several times with different 
starting values. 

The gradient method is based on the fact that the gradient of a scalar function is a vector, which 
dictates the direction of the steepest ascent in the current position, and the length of which is a 
measure of the gradient at this point. This direction, which is always perpendicular to the level curves 
of the function, must be taken if we wish to get to the function maximum as rapidly as possible. (The 
considerations herein also apply to the search for a minimum - here, the same method can be 
employed.) Since the gradient is a local variable and varies from one location to another, an iterative 
procedure is applied, whereby the gradient is calculated in the current position and the direction of the 
ascent thus ascertained. Next, a step is taken in this direction, after which the gradient is determined 
once again in this new position, and the procedure is repeated. Several approaches exist for 
determining the increment; one effective method is to choose an increment in inverse proportion to the 
amount of the gradient, so that the smaller the increment, the steeper the ascent. The search is over 
when, within the confines of the predefined level of accuracy, no neighboring location is found that is 
higher than the momentary position. At this point, the maximum has been found. 
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Figure 7.1: Gradient method 
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This method is one of the mostly widely used optimization algorithms, for it very quickly converges 
against a local extremum. A disadvantage of this method is that difficulties with convergence arise as 
soon as the response surface is affected by noise on the occurrence of confounders. Another limitation 
is that only smooth functions with a well defined gradient, that is, only continuous (quantitative) design 
variables can be treated in this way. This method is therefore typically used in the model-based 
optimization of response variables, which are determined through computer experiments, often using 
an FEM program as a solver. 

A similar technique, which is also suitable for experimental optimization, is the steepest ascent 
method. The basic principle here is to approximately determine the gradient of the function from the 
difference quotients of the response variable in respect of the design variables, so that no global 
response surface is required. The procedure consists in applying, typically, a full factorial design on 
two levels, and approximately determining the direction of the steepest ascent (or descent) on this 
basis. If necessary, fractional factorial designs can also be used when more than 5 factors are present. 
In this direction, runs are now performed at certain increments until the moment of descent is reached. 
A new design is set up at this point and the procedure repeated until a local maximum (or minimum) 
has been found, within the constraints of the required accuracy. Experimental designs for non-linear 
relationships must be employed in the vicinity of the optimum, in order that its position can be 
determined with sufficient accuracy. 
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Figure 7.2: Steepest ascent method 

The Evolutionary Operations (EVOP) method is a variant of the steepest ascent method that is 
adapted to suit the requirements of production. This method is employed during ongoing production, so 
the factor ranges are therefore smaller and the overall procedure more cautious. The idea at the heart 
of EVOP is that production and optimization can take place simultaneously within the framework of the 
continuous improvement of production. This method is explained in greater detail in [1]. 

7.2.2. Simplex method 

The basic principle of the simplex method is to determine the direction for an improvement in the 
current position directly on the basis of the experiment, without calculating the gradient and with as few 
treatments as possible. It proposes the use of a structure for k factors - the so-called simplex, from k+1 
combinations. Where there are 2 factors, this is a triangle. 

The procedure consists of the following steps, see [2], p.308: 

 First, the test results are determined in the corners of simplex 1 in the current operating point. 

 The point with the poorest result is reflected on the hyperplane (straight line in the case of 
2 factors) determined by the remaining points, producing a new treatment. Together with the 
remaining points from the old simplex 1, this forms a new simplex 2, etc. 

 The result is thus improved, step by step. The process is repeated until the desired optimum has 
been found. 

The advantages of this simple method are that no time-consuming evaluation is required (and no 
determination of the gradient, in particular), and that each further operating point is better than the 
current one, with the result that an improvement can always be expected, regardless of how far we are 
from the actual optimum. These advantages mean that this technique is especially popular in the field 
of experimental optimization. 
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On the other hand, certain disadvantages also exist: 

 The method only functions as described if the effects are considerably greater than the variation. 
If response surfaces suffer from noise, one remedial measure is to conduct several replications; 
then, however, the method quickly becomes time-consuming, as the experiments cannot be used 
more than once. 

 The method converges poorly in the vicinity of the optimum, which is not what one would initially 
expect for an optimization process. However, an analysis shows that here, behavior is non-linear, 
so that the simplex cannot provide any major improvement to the response variable. 

 The simplex algorithm cannot be used for optimization with several response variables. 

x1

x2

Start

 

Figure 7.3: Simplex method 

7.2.3. Evolutionary algorithms 

This stochastic optimization technique was developed for those cases in which gradient-based 
optimization methods suffer to a greater or lesser extent from convergence difficulties. Consequently, 
it is able to handle both response surfaces suffering a large amount of noise, and qualitative and 
quantitative design variables. In addition, the method in question employs global search techniques, 
which are actually capable of determining the global optima among numerous local extrema. 
No calculation of the response surface is required; this is ascertained solely at discrete points through 
individual runs. 

These approaches are based to a great extent on the natural principle of “survival of the fittest”, 
for nature must also counter the problem of maximum variance without time-consuming calculations. 
The price paid is the convergence speed, i.e. these methods generally require considerably more time 
to find an extremum. 

Details about putting this method into practice can be found in [20]. 

7.3. Robustness and reliability analyses 

BES-PE Glossary (issue 3-2009/11): Robustness is the ability of a system to preserve its function 
even under changing boundary conditions. 

Typically, these boundary conditions are randomly varying geometric variables such as shape and 
position tolerances, material parameters such as the E modulus, ambient conditions such as 
temperature and, last but not least, varying loads. The effect of this parameter variance on design-
relevant response variables is generally assessed by means of a robustness analysis. This is an 
integral part of the design process in the concept and drafting phase. 

The central question posed by a robustness analysis is the extent to which variance in predictor 
variables can influence the response variable. A process is deemed robust if its response variables 
depend as little as possible on unavoidable fluctuations in predictor variables and any noise variables. 
Our understanding of robust products is the same, i.e. their characteristics should depend as little as 
possible on production and operating conditions. Here, different parameters can clearly influence 
robustness, so that certain settings can be advantageous for the variance in response variables, others 
are disadvantageous. Finally, robust optimization is a matter of finding favorable values for those 
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influence parameters that have a major influence on variance, without changing the mean of the 
process. 

The fundamental relationships behind this approach are illustrated in Figure 7.4. The left-hand diagram 
portrays a non-linear dependence of the response variable on a factor A. Higher factor values visible 
reduce the variance of the response variable and are therefore advantageous for robustness. 
However, we can see that the response variable mean also moves considerably as A rises, which may 
run counter to the requirements of the design. The right-hand section of Figure 7.4 shows the response 
variable as dependent upon two factors A and B, indicating a clear interaction. By favorably setting 
factor B on level B(-), the response variable can now be rendered much more resilient to the influence 
of factor A than with the setting B(+), without changing the response mean. Interactions therefore play 
a very important role in robust optimization. 
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Figure 7.4: Robust processes (thick line) compared with insufficiently robust processes (thin line) 

A robustness analysis typically takes place in three stages: 

 First, we determine those parameters that exert a particularly high influence on design-relevant 
response variables and must therefore be kept within narrow tolerances in order to limit variance in 
response variables. These parameters can either be deduced from known cause-effect 
relationships between predictor and response variables, or determined through sensitivity tests 
(see chapter 8). 

 At the heart of this analysis is the quantitative assessment of the design’s robustness, achieved by 
calculating the distribution of the response variable as a function of the known distributions of 
relevant predictor variables. The proportion of permitted states among all possible states is 
commonly employed as the measure of robustness. This figure can be deduced from the 
distribution of the response variable within the tolerances stipulated by the requirements. A design 
is designated as robust, e.g. as shown in [20], if the interval of the response variable y±2y lies 
inside the required tolerance, see [20], p. 236. 

 Next, it may be necessary to optimize the robustness of the design, until the set requirements are 
satisfied. 

The procedures for analyzing robustness and reliability are similar in that both methods evaluate the 
proportion of permitted states from all possible states. A difference is encountered during calculation, 
for in the robustness analysis, relatively frequent events occur when implicitly defined dependencies 
exist between response and predictor variables. These events can be dealt with using classic 
stochastic sampling methods (e.g. Monte Carlo or Latin hypercube, see chapter 8). In the reliability 
analysis, on the other hand, events are very rarely observed. These require the use of special 
techniques and are not discussed any further at this point. Further details can be found in [22], 
Chapters 7 and 8. 
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8. Advanced approaches 

8.1. Fractional factorial designs 

Fractional factorial designs are primarily used to determine those factors with the greatest effect on the 
response variable from a quantity of potentially relevant factors, in situations in which relatively little is 
known about the cause-effect relationships. We also refer to “screening” tests in this connection. 
Secondly, designs of this kind are also suitable for slightly reducing test expenditure in the case of 
tests with several factors. 

8.1.1. Motivation 

First of all, let’s take a look at problems with 3, 5 and 8 factors each on 2 levels, and analyze how 
many of the terms of a complete multilinear approach describe the primary effects as well as the two-
fold, threefold and higher order interactions (IA). The terms also include a free constant, which is not 
explicitly detailed. 

No. of terms 

Factors 
Total 

Primary  
effects 

Twofold  
IA 

Threefold and 
greater IA 

3 8 3 3 1 

5 32 5 10 16 

8 256 8 28 219 

Table 8.1: Number of effects and interactions as a function of the number of factors 

As can be seen in Table 8.1, the proportion of higher order interactions increases sharply as the 
number of factors rises. In a design with 8 factors on 2 levels with m=28=256 terms, the majority of 
these - 219 - are higher order interactions, of which it can be presumed that only a fraction will actually 
play a part as effects of a higher order. It is clear that just as many tests of a full factorial design would 
be required to determine these, with the result that as the number of factors increases, the test 
expenditure is increasingly used to determine higher order interactions. 

The idea behind fractional factorial designs is to investigate further factors instead of some of these 
higher order interactions, so that the number of tests is not augmented. 

8.1.2. Effects and confounding 

We will now take a look at an example with 2 factors on 2 levels. The multilinear approach incorporates 
a total of 4 terms, including a twofold IA: 

211222110 xxbxbxbby  . (8.1) 

4 tests are therefore necessary in order to clearly determine the unknown coefficients. These can be 
conducted in a full factorial design. The idea of a fractional factorial design is now to examine a third 
factor instead of the twofold IA, using the following approach: 

3322110 xbxbxbby  . (8.2) 

Above all, only 4 tests should be employed to determine the 4 unknown coefficients of the approach. 
This fractional factorial design is usually referred to as 23-1, and signifies that 3 factors are to be 
investigated using the experiments of a double factorial design. 

However, the complete multilinear approach with three factors looks like this: 

3211233223311321123322110 xxxaxxaxxaxxaxaxaxaay  . (8.3) 

This contains 8 coefficients, the determination of which requires 8 tests. The example of the fractional 
factorial design 23-1 illustrates the consequences of using fewer than 8 tests. 
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The design matrix of the full factorial design 23 is displayed below. Since only 4 tests are available for 
our fractional factorial design 23-1, only the first 4 tests should be used for this purpose. 

 A B C AB AC BC ABC 

1 - - + + - - + 

2 + - - - - + + 

3 - + - - + - + 

4 + + + + + + + 
 

5 - - - + + + - 

6 + - + - + - - 

7 - + + - - + - 

8 + + - + - - - 

Table 8.2: Design matrix of a full factorial design 23 

The columns of the associated interactions AB, AC, BC and ABC can be calculated as a product of the 
corresponding columns for A, B and C. If we compare these columns, we can see that AB matches C, 
AC matches B and BC matches A. In the full factorial design, the difference would only become clear if 
we incorporated the results from tests 5 to 8, which are not performed here. Consequently, columns A 
and BC, B and AC, C and AB of the evaluation matrix are indistinguishable. We would say that factor A 
is confounded or aliased with interaction BC;  the same applies to factor B and interaction AC, as well 
as to factor C and interaction AB. Furthermore, another column must be added to the evaluation matrix 
to clarify the confounding between the polynomial and the threefold interaction ABC, but this is not 
dealt with any further here for the sake of simplicity. 

It is therefore not possible to calculate the effect of factor A separately from the effect of interaction BC, 
for example, which constitutes a considerable disadvantage. An inadequate number of tests therefore 
leads to confounding, with the risk of misinterpretation. In particular, contradictory effects and/or IA can 
be eliminated, spurious effects feigned or actually present primary effects compensated. If higher level 
considerations (e.g. based on physics) allow us to decide which of the confounded effects determine 
the result, we will arrive at the desired result while economizing on the number of tests. If these 
deliberations are incorrect or if we ignore the alias, the result will be false! 

The risk of misinterpretation greatly depends upon which effects are being confounded. If twofold IAs 
are confounded with the effects of the factors, this must be regarded as critical, because effects and 
twofold interactions play a major role in most applications. Designs of this kind have resolution III. 
Mutual confounding between twofold IAs in designs with resolution IV are less critical, and the aliasing 
of twofold IAs with threefold IAs in designs with resolution V are mostly uncritical. Table 8.3 provides a 
summary of this. 

The use of Plackett-Burman screening designs is frequently recommended in the literature, as it 
enables important factors to be screened from a large number of possibilities. These designs are 
special, fractional factorial designs with resolution III and IV, in which the disadvantages mentioned 
above have partially been eradicated. In contrast to factorial designs, here the number of tests 
(number of lines) is an integral multiple of four, that is ,24,20,16,12,8,4N . These screening designs 

are also structured according to different rules from factorial designs. 

Nevertheless, Plackett-Burman designs are highly confounded arrangements, that incur the problems 
already discussed above. We would like to expressly point out that due to this aliasing structure, 
Plackett-Burman designs can only be used successfully if no interactions are present. Otherwise, they 
can lead to completely incorrect conclusions. 
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No. of tests 

Factors Full  
factorial 
design 

Fractional  
factorial 
design 

Confounding 
occurring with 
fractional factorial 
design 

Resolution Rating 

3 

5 

8 

32 

4 = 23-1 

8 = 25-2 
Factor with 2fIA III critical 

4 

6 

16 

64 

8 = 24-1 

16 = 26-2 

Factor with 3fIA 
2fIA with 2fIA 

IV less critical 

5 

8 

32 

256 

16 = 25-1 

64 = 28-2 

Factor with 4fIA 

2fIA with 3fIA 
V 

largely  
uncritical 

6 

9 

64 

512 

32 = 26-1 

128 = 29-2 

Factor with 5fIA 
2fIA with 4fIA 
3fIA with 3fIA 

VI uncritical 

Table 8.3: Resolution of fractional factorial designs 

8.1.3. Recommended procedure 

The following general recommendations apply to screening tests (see [1], p.145): 

 It suffices to test each factor on 2 levels. 

 Resolution III designs should not be used unless the alias pattern can be dispelled on the basis of 
physical considerations. 

 Resolution IV designs offer the best compromise between expenditure and confounding. They 
have a clear alias pattern with no confounding of factors or twofold interactions, and are therefore 
especially suitable for screening tests. 

 Designs with resolution V and higher can be employed to determine cause-effect relationships, as 
they are subject neither to confounding of factors and twofold interactions nor mutual confounding 
between twofold interactions. 

If no more than 32 treatments can be examined (which is thoroughly realistic when we consider that 
these may also have to be conducted several times), the following is possible:  

 Examinations of cause-effect relationships are possible with 6 parameters and 32 tests  
(or 5 parameters with 16 tests), 

 Screening tests, on the other hand, can be conducted with up to 12 parameters and 32 tests  
(or 8 parameters with 16 tests). 

8.2. Designs for non-linear relationships 

In the preceding paragraphs we showed that factorial type 2k designs always require a linear model. In 
this case, extreme values (maxima or minima) are situated at the boundary of the experimental area. 
The correctness of the model can only be checked by additional tests. If, for example, a local 
maximum lies inside the experimental area, proof of its existence can only be obtained by at least one 
test within this area. 

Generally speaking, non-linearities can only be recognized when more than two levels are selected for 
each factor. In practical use, since the number of tests grows exponentially, the upper limit is mostly 
three levels, which means that quadratic approaches should be of the greatest interest to users. In this 
case, the complete model approach is: 
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Curved surfaces can also be represented with this polynomial of the second degree. 

One of the most common designs for non-linear relationships is presented in the sections below. 
These designs should only be used with few significant factors. If significance is unclear, screening 
tests must first be carried out using linear methods. 

8.2.1. Type 3k designs 

The most obvious strategy for determining the quadratic model approach is to employ 3 levels per 
factor. Then, 3 factors automatically give rise to the 33 design, whereby the three factor levels are 
usually referred to as -1, 0, +1 in the transformed coordinate system. 

 

Figure 8.1: Full factorial 33 design 

The treatments of the 33 design can be represented schematically by a cube in a three-dimensional 
experimental area in which, in addition to the corners of the cube of the 23 design, the centers of the 
faces, the centers of the edges and the midpoint are to be examined. 

The evaluation matrix of the 33 design contains the fractions -2/3 and +1/3, as well as the integers -1, 
0 and +1. Thus, the coefficients of the regression polynomial are not all calculated in the same way, 
see [2], p.209. In any case, a computer program must be used for evaluating a design of this kind. 

An experimental design for three-level factors is mostly feasible if a test can be limited to few factors 
and an individual experiment is possible with comparatively low expenditure. In practice, it is 
conceivable that improved factor settings should be sought, for example, in the “vicinity” of the 
midpoint, which could represent serial production status. 

Occasionally, one or more of the factors being examined are discrete predictor variables, e.g. material 
or machine. If so, the application of a regression polynomial and the calculation of theoretical 
intermediate values is completely meaningless. In this case, it is sufficient to limit oneself to evaluation 
based on variance analysis, and to ascertain the factor settings with the best test result according to 
the principle of “pick the winner”. 

8.2.2. Central composite designs 

A major disadvantage of full factorial designs on 3 levels is that the number of treatments very quickly 
grows with the number of factors. Moreover, there is high redundancy in testing, for considerably more 
experiments are conducted than there are unknown coefficients in the model equation, see Table 8.4. 

No. of tests Redundancy factor No. of 
factors 

No. of coefficients in 
the quadratic model 3k 2k+2k+1 3k 2k+2k+1 

2 6 9 9 1.5 1.5 

3 10 27 15 2.7 1.5 

4 15 81 25 5.4 1.7 

Table 8.4: Number of tests with central composite designs 

A suitable alternative is offered by so-called type 2k+2k+1 central composite designs. The illustration 
below shows the structure of a central composite experimental design for three factors. In addition to 
the tests at the “points of the cube”, as prescribed by a complete 23 design, experiments are conducted 
at the so-called star points and the center for k factors of the star, the midpoint. This kind of design is 
known as central composite if the midpoint of the star coincides with the midpoint of the cube, as 
illustrated in Figure 8.2. 
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  
 

Figure 8.2: Central composite design with 3 factors 

As we can see, each of the three factors is varied on five levels. Selecting the levels -2, -1, 0, +1, +2 
for each level would be conceivable. However, the design would then lose its orthogonality, i.e. the 
coefficients of the regression polynomial could no longer be determined uncorrelated and with the 
same variance (see [2], p. 228). In order to retain this property, we must select the factor levels -, -1, 
0, +1, +, whereby  is dependent upon the number of experiments conducted at the points of the 
cube, the star points and the midpoint: 

kk
orth Nα 225.02  , (8.5) 

here, N signifies the overall number of tests (2k+2k+n0) in this case, k the number of factors and n0 the 
number of replications of the midpoint.  

Another important feature of an experimental design is its rotatability. A design is considered rotatable 
if the width of the calculated confidence interval depends only upon the distance from the center of the 
cube, not on the direction, see [1], p.191. The existence of this property can be shown if 

k
drehα 22  . (8.6) 

It is possible to render both properties achievable by adapting the number of replications in the 
midpoint n0. 

Sometimes, a design can only be performed on three levels for technical reasons; in this case, =1 
can be used. This must remain the exception to the rule, however, as a “face-centered” design of this 
kind is not orthogonal. 

Where more than 3 factors exist, type 2k-p fractional factorial designs of at least resolution V can also 
be employed as the basis for the cube. In this case, the conditions for orthogonality and rotatability 
must be adapted (the 2k terms must be changed to 2k-p). 

In practice, a central composite design is the preferred choice if an initial type 2k design is to be 
reinforced by additional tests. In this case, only 2k+n0 further treatments must be investigated. 

8.2.3. D–optimal designs 

D-optimal designs offer some major advantages: 

 They provide a great deal of freedom as far as adapting the design to a predefined number of tests 
(e.g. for cost reasons) is concerned. 

 They can be adapted to a predefined model and are therefore capable of registering non-linear 
behavior. 

 Any number of levels that must be present in the design can be defined in advance. This permits 
the use of historic data. 

 Areas of the experimental area that are not of interest can be excluded. 

 Multi-level, quantitative and qualitative factors can be combined. 
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These designs have a certain disadvantage in that they are not orthogonal, although the difference is 
not very large in most cases. In addition, the procedure can only be carried out with software; however, 
most specialist DoE software tools now also offer D-optimal designs. 

To determine the designs, those runs that enable the coefficients in the regression model to be 
ascertained as accurately as possible (with the smallest possible confidence intervals) are iteratively 
selected. A detailed description of this procedure would go beyond the scope of this volume, and is 
therefore dispensed with. Further details can be found in [4], for example. 

D-optimal designs provide an interesting alternative to central composite designs. Their use is 
recommended where central composite designs cannot be employed. Typical applications are 
qualitative (categorical) factors with more than 2 levels, limitations in the experimental area, freely 
selectable block sizes, a different number of variants from the preset value, level values, etc. 

8.2.4. Recommended procedure 

Designs for non-linear relationships should only be employed where there are few significant factors, in 
order that the cause-effect relationships with the response variable can be established in detail and 
optimization achieved if necessary. For most applications, the number of significant factors should lie 
between 3 and 5. If these are not known, initial screening tests with linear approaches must be 
conducted. 

The following recommendations should be noted, also see [1], p. 208: 

 As a rule, a central composite design is the most suitable. With up to 4 factors, a full factorial 
design for the cube can be employed; for 5 factors, a resolution V fractional factorial design will 
suffice. 

 As far as possible, the level values of the design must be set such that an orthogonal design is 
generated. Rotatability of the design must also be achieved by selecting a suitable number of 
replications in the midpoint. 

 If, in exceptional cases, only 3 levels are feasible for technical reasons, a face-centered design 
with =1 can be used. 

 If the use of central composite designs is contraindicated by categorical factors with more than 
2 levels, impossible combinations in the experimental area, level values that deviate from the 
presetting, or similar, D-optimal designs must be employed. 

8.3. Alternative model approaches 

If physical modeling was not possible, section 4.4 mostly assumed a linear or quadratic polynomial a 
priori as a general model approach. This is due to the fact that every continuous function in the 
environment of a point can be approximated by a power series with a higher order error. This process 
is also referred to as Taylor series expansion. 

However, this approximation is only valid in the environment of the expansion point, that is locally. 
Problems can arise if different behavior occurs in sections of the experimental area, such that the 
global relationships cannot be registered by simple polynomials of the first or second degree. Such 
difficulties are commonly overcome by incorporating higher order terms in the model. The example 
below illustrates that this strategy is not always successful. 

EXAMPLE 1:  We wish to approximate the following function once in the interval I1 = (-0.6; +0.6) and once in 
the interval I2 = (-3.0; +3.0) by polynomials of different degrees. The function is shown in the table in 7 evenly 
distributed points of the interval in question: 

          

x y=f(x) 

-3,0 0,1 

-2,0 0,2 

-1,0 0,5 

0,0 1,0 

1,0 0,5 

2,0 0,2 

3,0 0,1 

x y=f(x) 

-0,6 0,735 

-0,4 0,862 

-0,2 0,962 

0,0 1,000 

0,2 0,962 

0,4 0,862 

0,6 0,735 
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Table 8.5: Data points of the example 

The calculated compensating curves are shown in Figure 8.3. As we can see, a quadratic polynomial is 
completely adequate for a local approximation in the interval I1. However, this is not the case for a global view 
in the interval I2; furthermore, increasing the polynomial approach from degree 1 (linear) to degree 6 only 
partially improves the quality of interpolation. Higher polynomials, in particular, tend towards “oscillation” at 
the interval limits, and are hardly suitable for reasonably reflecting the global behavior of the function. This 
phenomenon is also known as “overfitting”. 
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Figure 8.3: Calculated compensating curves 

The problem obviously lies in the polynomial’s fundamental inability to approximate a complex global 
function profile. This situation has led to the development of alternative model approaches, some of 
which are briefly summarized below. Further information can be found in [26,27]. 

 Trigonometric functions: Sine and cosine functions can be used as basis functions. This is 
similar to an approach using Fourier series development of the function. Here, as with traditional 
procedures, the approach is global in the sense that each of the basis functions makes a 
contribution in the overall experimental area. 

 Splines: A spline of the order k is a smooth curve, which is defined piece by piece from different 
polynomials of the same order. It is intended to ensure that locally different behavior can 
reasonably be reflected. The problem here is guaranteeing the smooth course of the spline at the 
“seams” - that is, the grid points where the different polynomials adjoin. Cubic splines (k=3) are 
frequently used, which employ additional conditions to ensure that the curve can be continuously 
differentiated twice at the grid points, with the result that the function profile does not suffer from 
any jumps or “kinks”. We do not provide an explicit illustration of the spline basis function at this 
point, see [26]. We wish only to mention that the functions in question are the result of (k+1) 
polynomial pieces of the order k, which are composed such that they can be continuously 
differentiated (k−1) times and differ from zero only in a section of the experimental area formed by 
k+2 neighboring knots. The status whereby a function differs from zero only in a limited section is 
referred to as a “function with compact support”. 

 Radial functions: Here, the functions used as the basis can have a global character but rapidly 
decrease to a local point in the experimental area as the radial distance increases (hence their 
name), and are normalized to 1. These functions are also referred to as “kernels”. A typical 
example is functions shaped by the probability density of Gaussian distribution (Gaussian bell 
curve), which possess the important characteristic of having a very smooth profile, so that they 
naturally resolve the problem of the continuous course of the model equation. This supports the 
advantages of a local model approach, without having to put up with the disadvantages of an 
insufficiently smooth model curve. 

 Sigmoid functions: Functions of this kind typically emerge within the framework of the artificial 
neural network (ANN) concept. An ANN is a network composed of artificial structures, which are 
modeled on natural neurons (nerve cells). Each neuron can be mathematically described by its 
activation function, which defines its task dependent on the inputs. A sigmoid function is frequently 
used as an activation function. 
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The example below demonstrates the suitability of the above-mentioned alternative model 
approaches: 

EXAMPLE 2:  For the function from Example 1 above, a regression is to take place in zone I2 on the basis of 
the 7 grid points contained therein. Instead of polynomials, trigonometric functions, spline bases, radials and 
sigmoid functions are to be employed as basis functions for the model. 
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Figure 8.4: Compensating curves with alternative model approaches 

The results of the 4 approaches are illustrated in Figure 8.4. The thickest curve represents the actual 
function, the curve with the large squares the respective approximation. These diagrams show that all 
approaches are perfectly capable of reflecting the function’s global behavior.   
 
Further, the thinner curves represent the weighted functions used (or part polynomials in the case of the 
spline). 3 cosine terms and one constant were used as trigonometric functions (Figure 8.4, top left). The cubic 
spline in the top right diagram of Figure 8.4 was defined as 6 polynomials of the 3rd degree S[a,b]; each of 
these is valid in the interval [a,b]. For the radial basis functions, 7 Gaussian functions were used (Figure 8.4, 
bottom left). Finally, in the diagram at the bottom right of Figure 8.4, an ANN with sigmoid functions was 
employed as the activation function for the approximation. The weight coefficients (with the exception of the 
spline) were calculated by minimizing the sum of the residual squares using the MS Excel optimizer (solver). 
The spline was calculated using the Java applet (http://www.arndt-bruenner.de/mathe/scripts/kubspline.htm). 
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The above univariate examples flag up alternative methods for selecting which model approach to 
deploy. The most important difference from classic polynomial approaches consists in employing 
functions that differ locally, instead of adapting a global, complex polynomial to the test results through 
parameter identification. Within this context, such approaches are often also referred to as “non-
parametric models”. In the case of multi-factorial tasks with extensive experimental data, the process is 
complicated, so that the use of suitable software is indispensable. A suitable solution based on the 
Gaussian basis function approach is contained in the Appendix. 

8.4. Stochastic experimental designs 

In the preceding chapters, we have presented a great variety of methods with which the relationship 
between predictor and response variables can be determined. All these techniques can be referred to 
as sampling methods, because they attempt to discretize a continuous experimental area through the 
generation of isolated grid points (treatments). Next, these grid points assist with the calculation of a 
response surface (the model equation), which is intended to approximately describe the true but 
unknown cause-effect relationships between predictor and response variables. These are thoroughly 
deterministic approaches, which generate the grid points according to a certain, predefined plan. In a 
full factorial design, for example, these are the corners of the experimental area. Consequently, all the 
approaches presented thus far can be termed deterministic sampling methods. 

However, a whole group of applications, such as the analysis of robustness and reliability, require not 
just the functional relationship between predictor and response variables, but also the distribution of 
the response variable as a function of the predictor distributions. The distribution of the response 
variable answers the key question of the robustness and reliability analysis - namely, what proportion 
of all possible states is permitted within the context of the design requirements. 

If no explicit models are available, the distribution of a response variable is typically determined by 
means of a Monte Carlo simulation, in which a random sample of values is generated for each 
predictor variable, in accordance with a distribution defined at the outset. In this way, each combination 
of values of the different predictor variables forms a possible “design”, which already occurs with the 
“correct” frequency in the random sample of all designs. The distribution of the response variable can 
therefore be calculated by statistically evaluating the random sample of all designs. 

A key task in Monte Carlo simulation is the generation of permitted combinations of predictor variables 
in the design space, whereby the random sample of each variable must originate from the distribution 
determined in advance. This task is very similar to the creation of an experimental design, on the other 
hand, it also differs from classic DoE approaches in that the combinations of predictors have to be 
formed not according to a fixed plan, but as the random sample of a distribution. Consequently, these 
techniques are referred to as stochastic sampling methods and the generated designs as stochastic 
experimental designs. We now go on to present the two most important approaches. Further details on 
this subject can be found in [20,22]. 

8.4.1. Plain Monte Carlo (PMC) 

The PMC approach is the most obvious strategy in which, firstly, a random number generator 
generates N pseudo-random numbers ui, which are evenly distributed in the interval [0,1]. Next, these 
numbers are interpreted as probabilities of the associated attribute values xi of a certain distribution 
function F(x). The attribute values can thus be calculated by the application of the inverse cumulative 
distribution function. 

)(1
ixi uFx  . (8.7) 

With this approach, pseudo-random numbers can be calculated for every distribution for which an 
inverse of its cumulative distribution function is defined [22]. 

The chief advantage of this method is evident in its robustness and simplicity. It betrays a certain 
disadvantage in that, due to the random nature of the samples, random deviations from the ideal 
distribution can also occur which, because of the law of large numbers, are only eradicated when very 
large numbers of samples are used. As a result, the Monte Carlo simulation converges only relatively 
slowly. An enhancement of the PMC method provides assistance here, and is described in the next 
section. 
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8.4.2. Latin hypercube (LHC) 

When the PMC method is used, random deviations from the ideal form of distribution can occur, as 
mentioned above, as predefined by the density function F(x). For example, with the random sample of 
a normal distribution, the values F(x) in a normal distribution plot would not be positioned on an ideal 
straight line, but random minor deviations would occur. 

These deviations can be described as follows: If the scope of a random sample is N, and N 
equiprobable (but generally not necessarily equidistant) classes are formed, ideally each class may 
only have one member during classification. However, random deviations from the ideal state can 
result in not all of these classes being occupied, or certain classes having several members. This is 
where the LHC method comes in. If the volume of the random sample is N, the probability interval is 
initially subdivided into N equiprobable subintervals 

),( 1 iii xxD ; NxFxF ii /1)()( 1  ; Ni ...1   (8.8) 

Next, in each of these intervals, one random number is generated, as with the PMC method, whereby 
either the actual distribution is taken into consideration or, for the sake of simplicity (with greater 
quantities of random samples), the midpoint of the interval is used. The LHC method therefore 
endeavors, figuratively speaking, to give chance a helping hand. 

The LHC technique boasts clear advantages over the PMC method in terms of convergence speed, so 
that smaller quantities of random samples can be used with the same accuracy, see [20]. Since the 
scope of random samples also determines the required number of simulations (calls of external 
solvers) in the Monte Carlo approach, the advantages are obvious. 

8.5. Special experimental designs 

Components are subjected to trials for verifying and validating quality attributes such as functionality, 
durability, robustness and safety. For this purpose, special experimental techniques are employed, a 
description of which would exceed the boundaries of this volume. Such methods are therefore not 
dealt with any further at this point, for details, see e.g. [17]. 

However, we would like to mention at this point that nothing would generally contraindicate the use of 
DoE approaches for such trials, so that the maximum of information about the cause-effect 
relationships could be obtained without wasting resources. In some cases, to gain new knowledge of 
the product it would suffice to systematically record the predictor variables that take effect during a 
typical endurance run and to take these into account in the evaluation. Alternatively, a DoE scheme 
would enable influences on the service life of components to be examined, with the endurance test 
constituting a complete series of runs. 

This gives rise to a hierarchical procedure, in which the structure of the tests is predefined by a DoE 
scheme at meta-level, and any number of tests can be performed at the operative level, enabling us to 
determine the response variables under examination. These do not have to be simple tests, but may 
themselves incorporate complex tests with long runs, backed up by simulations. 
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8.6. Taguchi experimental designs 

The approach presented here was developed by the Japanese quality engineer and statistician G. 
Taguchi (born in 1924) after the 2nd World War, with the aim of rendering production more robust 
against disturbing influences and avoiding losses in quality, a key feature in the Japanese quality 
philosophy. In combination with the Six Sigma quality philosophy, this procedure quickly became very 
popular, and in some circles is virtually synonymous with experimental design. 

Without wishing to call into question Taguchi’s undisputed contribution to the development and 
popularization of the design of experiments and, in particular, his understanding of the relationship 
between quality and robustness, some of the approaches he proposed are regarded more critically 
today. Despite this, within the framework of his basic idea, knowledge of classic experimental design 
can undoubtedly be put to good use, as described in the preceding chapters. This gives rise to a 
method that reflects the spirit but not the disputed disadvantages of the original approach, so that even 
today, this strategy is still contemporary. A brief introduction is provided below; further details can be 
found in [3,24], and numerous applications in [25]. 

8.6.1. Motivation: robust products and processes 

The origin of many experimental tests is a quality problem whereby a high proportion of rejects is 
produced because of high variance in quality attributes. We then ask not only “why” this is happening, 
but “how” this variance can be reduced. For example, the product of a manufacturing process must be 
as insensitive (or robust) as possible to fluctuating ambient conditions, such as temperature and air 
humidity. 

A robust process is one with a result that deviates as little as possible from a predefined target value, 
i.e. its variance is as small as possible. The objective of process optimization is hence to reduce 
variance. 

The fundamental question as to how predictor variables can influence robustness was already 
discussed in section 7.3. At this point, we simply wish to explain how favorable values can be found for 
those parameters that have a major influence on variance, without changing the mean of the process. 

8.6.2. Taguchi experimental designs 

In his quest for robust processes, Taguchi distinguishes between two types of factors, see [1], p.149: 

 Control factors are factors that can be adjusted both in laboratory tests and in production. 

 Noise factors, on the other hand, can be adjusted in laboratory tests, but not later on in 
production, e.g. for cost reasons. When a process is robust, it will be as insensitive as possible to 
these factors, e.g. position in the manufacturing appliance, ambient temperature, etc. These 
factors must not be confused with factors (also referred to as noise factors), which are basically 
unknown and are therefore not adjustable, neither in experiments, nor in production. 

The procedure basically consists in finding those treatments that minimize the response variance (due 
to the variance in noise factors). Two types of designs are employed for this purpose: 

 For control factors, a so-called inner array is used, also referred to by Taguchi as an “orthogonal 
array”. In classic statistical experimental design, this constitutes a fractional factorial experimental 
design with resolution III, see [1], p.159. As discussed in section 8.1, designs with this resolution 
bring disadvantages and can lead to problems due to the confounding of primary effects and 
twofold interactions. The use of a resolution IV design is therefore recommended. 

 For noise factors, an outer array is used, which concerns either one factor in several levels or a 
resolution III fractional factorial design for several factors. The low resolution is not critical at this 
point, because the outer array is deployed as a kind of test replication in further procedure. 
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8.6.3. Evaluation and result 

Evaluation takes place as follows: 

 To record variance, the signal-noise ratio 











2

2

10log10/
s

y
NS ,  (8.9) 

or another suitable variable (e.g. standard deviation , or variance s2) can be recorded as a 
separate response variable in addition to the mean y. 

 The effects of the mean and S/N are calculated as if the outer array were a replication of the 
experiment, even though this is not the case because the noise factors are being varied in a 
targeted manner. A conservative conclusion about significance can be drawn, for the significance 
of the effects is slightly underestimated. For the response variable S/N there is only one run; this 
response variable is therefore treated the same as in tests with one run n=1. 

 Depending on the result, the factors are apportioned as follows: 

o Factors that influence variance (and possibly the mean as well) are selected such that 
variance is minimized. 

o Factors that only influence the mean are used to adjust the response variable in line with 
design stipulations. 

o Finally, factors that influence neither the mean nor variance are used to minimize expenditure. 

EXAMPLE: Table 8.6 presents an example with 3 control factors C1 to C3 and 3 noise factors N1 to N3. A full 
factorial design on 2 levels is used as the inner array, the 23-1 design as the outer array. The significance of 
the effects of the mean and S/N were rated as “---”, “*” “**” (not significant, significant, highly significant). 
With this evaluation, the factors C1 and C2 would appear the obvious choice for increasing robustness, as 
they have a significant effect on S/N. In an optimization, they must therefore be adjusted on the level that 
displays a smaller variance (high S/N). This would change the mean of the response variable, however. 
Correction can be achieved using the factor C3, which influences only the mean of the response variable, but 
not S/N. C3 is therefore adjusted in such a way that the response variable demonstrates the necessary 
mean. 

   N1 - + - +    

   N2 - - + +    

   N3 - + + -    

No. C1 C2 C3 1 2 3 4 y s S/N 

1 + + + y11 y12 y13 y14 y1 s1 S/N1 

…           

8 - - - y81 y82 y83 y84 y8 s8 S/N8 

y * --- *        

s           

S/N ** * ---        

Table 8.6: Evaluation of a Taguchi design 

Alternatively, robustness to noise factors can also be investigated using classic experimental designs. 
Here, the noise factors must be taken into consideration as the factor, and the variance as the 
response variable. Robustness can be influenced by interactions between control and noise factors. 
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8.7. Shainin® method 

The American consultant Dorian Shainin (1914 - 2000) put forward a method that differs starkly from 
the other approaches presented here. In a wider sense, however, the Shainin® method can also be 
understood as a variant of DoE, which offers alternative approaches to designing, conducting and 
evaluating experiments. The terms tagged with ® and ™ within Chapter 8.7 are trademarks of Red X® 
Holdings LLC. 

8.7.1. Motivation: the search for the Red X® 

The Shainin® method commences with the assumption that the so-called Pareto principle applies to 
most problems. The Pareto principle states that a phenomenon that can theoretically have many 
causes only has very few causes in reality. 

Shainin® recommends five screening processes for detecting these relevant causes. These are 
characterized by a great simplicity, but can only be applied to specific questions. Instead of drawing on 
relevant prior knowledge and experience, he recommends "letting the parts speak". This 
recommendation is therefore based on the assumption that the problem in question concerns an 
ongoing production process. With this method, the response variable is commonly referred to as Green 
Y®. The factor that has the greatest influence (50% of the effect) on the result Y is called Red X®. 

As a general guide, the approach can be briefly described as follows: 

1. From many parameters, identify max. 20 as significant through systematic observation 

2. From these 20, determine the 4 most important through simple tests 

3. On this basis, implement a complete experimental design with subsequent optimization 

8.7.2. Systematic observation 

The first task is that of systematic observation, of “letting the parts speak”, and finding out as much as 
possible about the matter under investigation. This approach is particularly apt in the latter phases of 
the PCP or during production, if prior knowledge, samples and data are available. 

8.7.2.1. Multivari charts 
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Figure 8.5: Multivari chart 

The Multivari chart method constitutes an important systematic observation technique. It was 
developed by L. Seder in 1950. Process fluctuations are graphically represented. Using original values 
or vertical lines, the fluctuations are plotted independently from one another on the basis of location, 
batch, time, etc. In certain circumstances, this clarifies where the primary causes of fluctuations lie. 
Shainin® makes the following distinctions: 
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a) Position-dependent variations, e.g. position within a unit, machine to machine, clamping point to 
clamping point, operator to operator, line to line, plant to plant, 

b) Cyclic variations, e.g. lot to lot, batch to batch, 

c) Variations over time, e.g. hour to hour, shift to shift, day to day or week to week. 

A Multivari chart is simply an intelligent graphic representation of data arranged according to groups 
of variance groups. The reading of the attribute under test (the Green Y®) is entered on the ordinate  
(y-axis). In Figure 8.5, the means of 3 readings are illustrated as dots. The black dots denote clamping 
point 1, the white dots clamping point 3. It is clear that machine B systematically produces higher 
results than machine A. 

8.7.2.2. Concentration charts 

The observation of markedness is sometimes evident as a “concentration” of a peculiarity. This is the 
principle behind concentration charts. 

Insofar as the cause of a problem can be found within a unit, it makes sense to record the precise 
location and frequency of the error(s) in an error location diagram. To this aim, a simple schematic 
representation of the product is used, in which the point at which the error or deviation occurs is 
marked. The example in Figure 8.6 originates from the Elementary Tools volume from Quality 
Assurance. 
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Figure 8.6: Concentration chart 

8.7.3. Simple tests 

8.7.3.1. Component search™ 

With component search™, individual parts are systematically swapped between a “good” and a “bad” 
unit, in order to locate the part that led to quality deficiencies in the bad unit. The component search 
method is used often in the repair of faulty equipment. 

Prerequisites: 

 Used primarily in assembly 

 The response variable must be measurable with a measurement uncertainty equivalent to no more 
than 20% of the tolerance or the process variance. 

 It must be possible to dismantle and reassemble good and bad parts, without altering anything 
about the “good” or “bad” result. 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf


Design of Experiments (DoE) 

© Robert Bosch GmbH | Date 10.2010 73

Procedure (12 steps): 

1. Select 2 parts from a day’s production - one very good and one very bad (BOB = best of the best, 
WOW = worst of the worst). The further apart the measurement results of these parts, the easier it 
is to find the Red X®. 

2. Dismantle and reassemble both parts and measure the response variable again twice. 

3. Perform a significance test on the basis of the measurement results. The results of the “good” part 
must be considerably better than the results of the “bad” one. Criterion: 

5/ dD , with WOWBOB xxD   and 
2

WOWBOB RR
d


 , see Chapter 8.7.4.1. (8.10) 

4. If 5/ dD , the problem lies not with the components but with their assembly. Suggestion: 

Examine the assembly step by step. Otherwise, one or more of the components or sub-
components must be the Red X®. Then commence the component search. 

5. Set the components in order according to the size of the suspected influence. 

6. Swap component A between BOB and WOW (A = most probable candidate). 

7. Analyze the results. 

8. Always reassemble, to see whether the original state is restored. 

9. Repeat steps 6, 7 and 8 with components B, C, etc. 

10. Identify one or more components as the Red X®. A component is the Red X® if a complete 
reversal takes place, i.e. BOB becomes WOW and vice versa, when a simultaneous swap of this 
component between BOB and WOW takes place. An interaction is present if a WOW becomes a 
BOB or a BOB becomes a WOW, but not the other way round. 

11. Confirmation test: If you take a BOB product and a WOW product, and swap the components 
considered unimportant as a group, the BOB result and the WOW result should not change in 
any way. If, on the other hand, you swap all components considered important as a group, 
a noticeable, complete reversal should occur. 

12. Calculate the primary effects and interactions 

Component swap test results are represented schematically according to [12], as shown in Figure 8.7. 
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Figure 8.7: Component search. The first two tests simply consist of dismantling and subsequent 
reassembly. In test V3, the Red X® has been discovered. The final step is a confirmation test. 

8.7.3.2. Paired comparisons™ 

The paired comparisons™  is a very similar method to component search™. It is employed when units 
cannot be dismantled into individual components. Good and bad units from corresponding populations 
are mutually compared with respect to measurable quality attributes. Quality attributes that repeatedly 
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differ from one another to a noticeable extent may be responsible for the difference in quality between 
the units. This suspicion is then put to the test in further comparisons.  

8.7.3.3. Variable search™ 

The variable search™  is a technique that screens the most important factors from a mean number (5 - 
15) of them as effectively as possible. In a certain sense, the variable search is a single-factor test. 
The variable search can only be applied when we basically know, when establishing two levels for 
each factor, which level is “better” and which level is “worse”. This vital prerequisite is, of course, quite 
far-reaching. In other words, the variable search is not the search for an optimum, but rather the 
question as to which factors make a decisive contribution to the optimum. 

Procedure: 

1. Conduct comparative tests of “all factors on the bad level” VS with “all factors on the good 
level” VG. If no major difference is perceptible, no further investigation is necessary. 

2. The influence of the individual factors is now examined separately. If A is presumed to be the 
strongest factor, a test is conducted in which A is assigned to the good level and all other factors to 
the bad level. If the result roughly corresponds to the result of the test VG in 1., we can assume 
that A has a dominant influence on the response variable.   
 
This is then confirmed by means of a cross check, in which A is assigned to the bad level and all 
other factors to the good level. If the dominance of A prevails, the result of VS would be repeated. If 
A is dominant, the test does not need to be continued. If A is not dominant, B, etc. are examined in 
the same manner. 

3. If none of the factors is dominant, the factors with a perceptible influence are grouped and 
assigned once to the good and once to the bad level, while the remaining factors are assigned to 
the opposite level. 

If the results of 1. are repeated at this point, we have demonstrated that it suffices to assign the 
factors that revealed an influence in the single-factor comparisons to their good level, while the 
remaining factors can be assigned to their bad level. 
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Figure 8.8: Variable search. The first two tests simply consist of dismantling and subsequent 
reassembly. In test V5, the Red X® has been discovered. 

Now that we have reduced the number of factors to a maximum of 2 - 4, Shainin® recommends the 
use of the familiar full factorial designs with 2 to 4 factors on 2 levels, preferably with no more than 2 
replications per treatment. These designs are evaluated in the usual manner, e.g. through the analysis 
of variance. In this way, it is possible to determine which factors or which interactions are particularly 
important. Since Shainin® recommends relatively small numbers of random samples, it is obvious that 
only major effects can be demonstrated. One of the recommended procedures is the single-factor 
comparison (B vs. C™). 
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Finally, it is also worth mentioning that Shainin rejects the use of fractional factorial designs, 
because confounded designs carry the risk of misinterpretation. An example variable search is 
presented in Figure 8.8. 

8.7.3.4. Product/process search 

The aim of this approach is to separate important and unimportant process parameters, on the 
understanding that parts can be tracked during the process and the process parameters can be 
measured while these parts are undergoing production. 

Procedure: 

1. List the possible causal process parameters in order of suspected probability of influence 

2. Document which process parameters are measured precisely where and by whom 

3. Make sure that the measurement uncertainty is < 20% of the tolerance 

4. Ensure that the actual parameter values are measured, not just the settings 

5. If, during monitoring, an individual process parameter displays no variance whatsoever, it can be 
eliminated from subsequent testing. 

6. Conduct a 100% test of the manufactured products, until at least 8 good and 8 bad parts have 
been found. The span between the best and the worst part must equal at least 80% of the process 
scatter range observed so far. 

7. During the production of a part, each of the process parameters from the list must be measured 
and recorded 

8. Paired comparison of the process parameter values that resulted in “good “ parts with those that 
led to “bad” parts 

9. Perform a B vs. C™ test. 

10. Variable search™ 

11. Further optimization and, if necessary adjustment of tolerances 

8.7.4. Further tools 

As an alternative to classic significance tests such as the t-test, for example, Shainin® mentions a few 
simple test procedures that should supply the same information with less expenditure. A brief 
explanation of these and some other representation tools now follows. 

8.7.4.1. D:d rule 
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Figure 8.9: D/d rule 

In component search, the D:d rule can be used to decide whether or not the difference in test results 
from the good and bad units is significant. A significant difference exists if D/d ≥ 5. This rule can, of 
course, equally be applied to the process of variable comparison, for comparing the test results on the 
good and the bad level. 
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The calculation below elucidates the importance of the variables D and d and the representation of the 
rule D:d  5:1: 

22
2121 SSGG

d





 , 
22

2121 SSGG
D





 . (8.11) 

8.7.4.2. B vs. C™ 

B vs. C™ stands for "better versus current", so it simply signifies the comparison between these two 
states. The object of this comparison may be a product, a process or a method, for example. 

B vs. C™ is a simple (non-parametric) statistical significance test, and purely a version of the Tukey 
test. If we have 3 "B" values and 3 "C" values that do not overlap, their difference on the 95% level is 
significant. Where overlapping is present, the Tukey test must be conducted with a larger number of 
random samples. 

8.7.4.3. Isoplot® 

For examining and assessing measurement uncertainty in proportion to product variation, Shainin® 
suggests as an alternative to the classical approach (see [15,16]) the so-called Isoplot®. 

For this method, a random sample of 30 parts is taken (parts are numbered). The attribute of interest in 
each part is measured (1st series of measurements). A repeat measurement is conducted in random 
sequence (2nd series of measurements). The two results ascertained for one part form the x and 
y coordinates of the corresponding point in the plot (representation of all 30 pairs of variates). 

It must be borne in mind that abscissa and ordinates have the same scale, and the graph will therefore 
be square. The points are contained in a kind of "Zeppelin". The length L of this area (in mm) is a 
measure of process variation (see remarks), its width M (also in mm) an indicator of the 
measurement uncertainty. 

According to Shainin®, measurement uncertainty is sufficiently small if L/M  8.5. 

20

21

22

23

24

25

26

27

28

29

30

20 21 22 23 24 25 26 27 28 29 30

1. Measurement

2.
 M

ea
su

re
m

en
t

L

M

20

21

22

23

24

25

26

27

28

29

30

20 21 22 23 24 25 26 27 28 29 30

1. Measurement

2.
 M

ea
su

re
m

en
t

L

M

 

Figure 8.10: Isoplot®. 
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9. Appendix 

9.1. Fundamental concepts in statistics 

In this section, we will briefly discuss some of the fundamental ideas that are required in order to 
understand the subject of experimental design. 

9.1.1. Data series and their characteristic values 

Even when an experiment is meticulously conducted, the results will differ - they will vary - if the test is 
performed more than once, although the conditions remain constant. A data series 

ix , ni ...1 , (9.1) 

with n values of the response variable under observation can therefore be regarded as the result of a 
stochastic process. Within the context of descriptive statistics, data series of this kind can basically be 
described by the following characteristic values: 

 Mean  
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, (9.2) 

 Variance 
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22 )(
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 (9.3) 

or their square root, the standard deviation s, which characterizes the distribution of the values 
around the mean. 

Since the individual values of the data series are subject to variance, this series will itself differ if 
determined several times. Thus, its characteristic values will also be different. It is important to 
recognize that the mean and the standard deviation are also subject to variance. However, the 
variance of the mean is considerably smaller than that of the individual values, and it becomes 
smaller the larger the number of random samples. We can therefore demonstrate (see [22], p.122) that 

n

s
sx

2
2  . (9.4) 

Data series can be represented in histograms, which are produced when the values of the data 
series are classified. A histogram therefore presents frequencies of the occurring classes of attributes. 
Total frequencies can be deduced by adding the classes together. 
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Figure 9.1: Histogram and total frequency curve (schematic diagram). 
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9.1.2. Distributions and their characteristic values 

9.1.2.1. Distribution and distribution density, moments 

Things are seen in a somewhat different light if the data are viewed as a random sample from an 
infinitely large population. Thus 

ix , ni ...1 , (9.5) 

is construed as manifestations of a random variable X. A theoretical model for describing the 
population of all possible values of the variable is provided by the distribution density function 

)(xf . (9.6) 

This assigns a number f(x) to the value x, similarly to the manner in which a relative frequency is 
assigned to the value x in a histogram. We can show that if the number of random samples under 
observation is very large and the class widths of the histogram are declining in size, the distribution 
density function can be derived directly from the histogram, with the result that the latter can be 
regarded as an approximation of the density function. 

From the total frequency curve, a function can also be derived - distribution function F(x) - by crossing 
the limit to infinity. For each value x, this states the probability that a random variable X will assume a 
value lower than x. The distribution function of a distribution is generally obtained by integrating its 
density function: 





x

dvvfxFxXP )()()( . (9.7) 

Here, the independent variable of the function f(v) is designated v, in order that it can be differentiated 
from the upper integration limit x. Thus, the function F(x) is a function of the upper integration limit, 
while v is a variable by which integration takes place. 
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Figure 9.2: Distribution density and distribution function (schematic diagram). 

The distribution function assigns a probability to the value x of the variables X. Certain preconditions 
must therefore be satisfied for this to take place, so that a function can be employed as a distribution 
function: 

 Within the limits, the following must apply 

0)( F , 1)( F , from this, we can deduce 1)( 




dvvf . (9.8) 

 For all  x , 0)( xF  and F(x) must be a monotonously increasing function of x. 

The density and distribution function of a distribution possess characteristic values (also known as 
moments), which determine the appearance of the distribution. The most important are 

 the mean (sometimes known as the population mean) 






 dxxfxμ )(  (9.9) 
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 and the variance 






 dxxfμxσ )()( 22 , (9.10) 

which describe the position and width of the distribution. 

9.1.2.2. Examples of distributions 

The simplest means of illustrating the above matter is the example of normal distribution, which 
possesses the well-known “bell-shaped” distribution density function: 
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By integrating the density function, we obtain the s-shaped distribution function of normal distribution 
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As the integral cannot be further analyzed, the above equation cannot be simplified any further. 

The equations show that with normal distribution, the mean and standard deviation characteristics 
occur as parameters in the distribution function; they are often also referred to as N(). This makes 
working with them especially simple. The fact that this is not necessarily the case for every distribution, 
however, is demonstrated by the example of exponential distribution with the density function 

xλeλxf )( , 0x ,  (9.13) 

in which a parameter  occurs. The relationship between this parameter and the above characteristic 
values is described as follows: 

λ
μ

1
 ; 

2
2 1

λ
σ  . (9.14) 

Here, the relationship between distribution parameters and characteristic values is relatively simple, so 
that conversion can take place without problem. It becomes more complicated in the case of the 
Weibull distribution, which plays an important role in the description of service life; there, conversion is 
no longer that straightforward. We do not go into further detail at this point, however. 

9.1.2.3. Characteristic values of independent and dependent variables 

If a variable Y indicates a linear dependence of n independent random variables Xi 



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n

i

ii XaaY
1

0 , (9.15) 

then Y will also be a random variable. The distribution of Y cannot generally be calculated without 
problem, particularly if the variables Xi have different types of distribution. Nevertheless, it is possible to 
acquire information about the characteristic values of the Y distribution; this will depend upon the 
characteristic values of the distribution of Xi [22] p.150: 
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In particular, the mean of n normally distributed, independent variables 
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, ni ..1 , ),( σμNX i  ,  (9.17) 

is also normally distributed with 
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9.1.2.4. Estimating the mean, confidence interval, t-distribution 

We are generally up against the question as to how to determine the characteristic values of the 
unknown population. It can be demonstrated that 

 the mean of a random sample y  can be used as an estimate for the mean of the population μ , 

and 

 the variance of a random sample 2s  can be used as an estimate for the variance of the 

population 2σ . 

In addition, both estimates are also unbiased, i.e. with many replications, they approximate the values 
of the population. 

The quality of this point estimate is initially questionable, but can be evaluated as described below. If a 
random variable X is normally distributed, the variable 

σ

μX
u


 , ),( σμNX   (9.19) 

is also normally distributed with the mean 0 and the standard deviation 1. This distribution is known as 
“standard normal distribution”. An estimate of the probability P with which X lies within a given interval 

σuμXσuμ   can be made with the aid of the parameter u:  

ασuμXσuμP  1)( . (9.20) 

For example, the variable X will lie in the interval σμ 1  with a probability of 68.3%. It is therefore 

clear that u equals the attribute value of standard normal distribution with probabilities (1-/2) and  /2. 

We will now examine the mean of n independent, normally distributed variables 





n

i

iX
n

X
1

1
, ),( σμNXi  , ni ..1 , ),(

n

σ
μNX  . (9.21) 

The variable 

σ

μX
nu


  (9.22) 

has, by definition, a standard normal distribution. However, the standard deviation of the population is 
generally unknown, with the result that it must be estimated on the basis of a random sample: sσ  . 
At the same time, we can shown that in this case, the quantity 

s

μX
nt


  (9.23) 

is no longer normally distributed; its distribution is described by the so-called t-distribution (or student’s 
t-distribution). For small values of the parameter n, the t-distribution manifests a greater width and 
edge definition than normal distribution; for the large values of n, it approaches normal distribution. 

An estimate of the probability P with which X  lies within a given interval can be made with the aid of 
the parameter t. By the same token, an indirect conclusion can also be drawn regarding an interval 
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n
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tX   (9.24) 

in which the unknown population mean is located. Here, the probability  
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


 1  (9.25) 

is usually referred to as the confidence level, and the interval as the confidence interval. The more 
certain one wishes to be that the interval contains the true mean, the higher the confidence level and 
the larger the parameter t that must be selected. Tabular values of t are attached. 

In the same way, a confidence interval can also be stated for the variance, although this is not 
discussed any further here. Details can be found e.g. in [22]. 

9.1.3. t-test, comparison of two means 

The t-distribution can also be used to decide, on the basis of a so-called t-test, whether two random 
samples differ from one another significantly or not. 

To clarify this, let’s pursue the following thought experiment: Let us take a normally distributed 
population N( μ , σ ) two random samples each with scope n, calculate the means 1y  and 2y  and the 

standard deviations 1s  and 2s  (or variances 2
1s  and 2

2s ), and thus the value 
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
 .  (9.26) 

t can take on values between 0 and  . If we repeat this process very often, we can expect most 

values to be close to zero, with large values occurring only rarely. 

This ‘thought experiment’ was performed using computer simulation. For n=10 and 3000 random 
sample pairs (t-values), the histogram presented in Figure 9.3 was generated. 

 

Figure 9.3: Histogram and density function of the t-distribution. 

If the number of random samples tends to infinity and the class width simultaneously tends to zero, 
the histogram increasingly approaches the solid line that represents the density function of the  
t-distribution. 

In this example, the upper limit of the 99% random scatter range (threshold value) is t(18;99%)=2.88, 
i.e. larger values than 2.88 can only randomly occur in 1% of all cases. The threshold values of the  
t-distribution are set out in a table for various significance levels as a function of the degree of 
freedom f=2(n-1). 
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The t-test procedure is based on the relationships presented above. This test is a statistical technique 
that can be used to decide whether the arithmetic means of two series of measurements each with a 
scope of n belong to one and the same population, so that the means of the random samples differ 
from one another or not only by chance, and the difference between the means of the random samples 
is not random. The null hypothesis assumes that the means of the respective population are identical. 

Preconditions for comparison are: 

 The individual values of both random samples are representative 

 Both random samples originate from one normal distribution 

 The standard deviation of this normal distribution is the same for both random samples. 
Compliance with this precondition can be checked with the aid of an F-test. 

With the means 1y  and 2y  and variances 2
1s  and 2

2s , the next step is to calculate the test statistic 
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nt
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
  (9.27) 

 

If the result is %99,0);1(2  ntt , i.e. t lies outside the 99% random scatter range, the null hypothesis can be 

discarded. 

Remarks: 

 The expression of the test statistic t can only be applied in this simple form if the number of 
random samples is assumed to be the same (n1=n2=n). However, an equivalent calculation rule 
also exists for different numbers of random samples. 

 In the form illustrated here, the t-test tests the null hypothesis 21 μμ   against the alternative 21 μμ  . 

This question therefore has two sides. For this reason, the amount of the mean difference is 
incorporated in the expression for t. Consequently, t can only assume values 0 , so that the 

distribution shown above is produced. 

 In response to this two-sided question, Table 2 in section 9.3 specifies the threshold values 95%, 
99%, and 99.9% of the t-distribution. They correspond to the one-sided threshold values 97.5%, 
99.5% and 99.95%. 

9.1.4. Minimum number of random samples 

In the preparatory phase of experimental tests, the experimenter frequently asks himself which 
minimum mean difference 21 yy   is of interest to him in terms of his objective (system optimization, 

simplification of production, cost reduction), and what minimum number of random samples n he 
should decide on in order for this minimum mean distance - if at all present - to be significant within the 
framework of the test evaluation. 

The expression of the test statistic t 
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  (9.28) 

shows that the larger n must be in order for a “t-test response”, the smaller the mean difference 21 yy   

and the larger the variances 2
1s  and 2

2s  of the two series of measurements that are the subject of 

comparison. At the same time, we must bear in mind that the tabular value ttable becomes smaller as 
the degree of freedom f = 2(n-1) grows. 
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Ostensibly, a small difference between means with simultaneously “large” variance among the 
distributions means that the two groups of values are not or are scarcely visually distinguishable in 
a graphic representation of the two series of measurements. 

On this basis, a rough estimate of the minimum number of random samples n would be conceivable, 

and could be achieved by stating the mean difference as a multiple of a “mean variance” 2/)( 2
2

2
1 ss  , 

and comparing the calculated test statistic t with ttable for various n (note the degree of freedom and 
significance level!). As well as “trying things out” in this way, however, the minimum number of random 
samples can be deduced in a statistically accurate manner. This procedure is outlined only roughly 
here (mathematical foundations in [2]). 

During the comparison of means of two series of measurements and the resulting test decision, two 
types of error are possible. 

 Firstly, both series of measurements originate from the same population, i.e. there is no significant 
difference. If, on the basis of a t-test, we decide that a difference exists between the two means, 
we are committing a type I error (). This corresponds to the significance level of the t-test 
(for example ). 

 Secondly, if a difference between the means actually exists, i.e. the series of measurements 
originate from two different populations, the test does not demonstrate this with absolute certainty. 
The test result may purport, purely at random, that this difference does not exist. This constitutes a 
type II error (). 

For the experimenter, both types of error are disagreeable, because the suspected effect of an factor 
may cause him to propose expensive further tests, or even changes to a production process (type I 
error), for example, or because he does not recognize an effect that is actually present and thus loses 
the opportunity to suggest possible process improvements (type II error). 

Under considerations of plausibility, as outlined above, the minimum number of random samples n that 
is required to recognize a genuine mean difference on the basis of a comparison of 2 random samples 
of the same size n1=n2=n depends upon the distance between the two means 

σ
D


   (9.29) 

stated in units of standard deviation , and the significance levels  and : 

 
2

2

2
D

uu
n βα  . (9.30) 

During the concrete comparison of two series of measurements, the means 1 and 2 and the standard 
deviation  of the population (consequently also D) are not known. They are estimated by the empirical 
values 1y , 2y  and s. For this reason, the t-distribution must form the basis for the calculation of n in 

accordance with the given formula. Thus, u and u are the x-coordinates u at which the t-distribution 
assumes the values  (two-sided) or  (one-sided). 

Smaller significance levels, i.e. smaller type I () and type II () errors mean that the two distributions 
that are being compared - and consequently the associated distributions of the means - may only 
slightly overlap. To this aim, the selected number of random samples n must be sufficiently large at the 
given mean distance D. 

If our intention is to conduct an experiment using a full factorial experimental design with factors on 
2 levels, the number of replications per treatment must be selected in such a way that the overall 
number of tests is 

 
2

2

4
D

uu
Ntot

  , (9.31) 

since the effect of every factor in this case is defined by a difference of means of two samples with size 
n = Ntot / 2.  
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9.1.5. Analysis of variance 

9.1.5.1. F-test, F-distribution 

The F-test is a statistical technique that can be used to determine whether the variances of two 
random samples differ significantly. As with the t-test, how this test functions can best be explained 
using the results of a computer simulation. 

From a normally distributed population ),( σμN , we will take two random samples of size n1 and n2, 

calculate the random sample variances 2
1s  and 2

2s  finally the variable 

2
2

2
1

s

s
F   (9.32) 

F can assume values between 0 and  , but will only randomly deviate from 1. It is entirely plausible 

that if this process is repeated frequently, small values close to zero and very large values will only 
seldom occur. 

The result of a computer simulation in which the F-values were determined for N=3000 random sample 
pairs with a sampling scope of n1=n2=9 is presented in Figure 9.4 as a histogram. 

 

Figure 9.4: Histogram and density function of the F-distribution. 

If we permit the number of random samples to tend to infinity and simultaneously allow the class width 
to tend to zero, the histogram increasingly approaches the solid line (density function of the F-
distribution). The shape of the histogram depends upon the random sample sizes n1 and n2 of the 
random sample pairs under test; accordingly, the curve shape of the density function of the  
F-distribution depends upon the degrees of freedom 111  nf  and 122  nf . 

In the example calculated here, the upper limit of the 99% random scatter range (threshold value) is 

03,699,0;8;8 F , i.e. only in 1% of all cases (significance level) is it, purely at random, 2
2

2
1 03,6 ss  . 

The threshold values of the F-distribution for the various significance levels as a function of the 
degrees of freedom f1 and f2 are set out in an attached table. 

The relationship illustrated above clearly explains the procedure of the F-test. The decision must be 
taken as to whether or not two measurement series with a scope of n1 and n2 originate from two 
normally distributed populations with the same variance (the means do not need to be known). The null 

hypothesis therefore assumes that the variances of the populations in question are identical: 2
2

2
1 σσ  . 

Next, from the variances 2
1s  and 2

2s  of the two series of measurements, the test statistic 

2
2

2
1

s

s
F   (9.33) 
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is calculated and compared with the threshold value of the F-distribution. If the result is 99,0;1;1 21  nnFF , 

i.e. F lies outside the 99% random scatter range, the null hypothesis can be discarded. 

REMARKS: 

 The alternative hypothesis is 2
2

2
1 σσ  , it is therefore a one-sided question. 

 When the larger of the two variances 2
1s  and 2

2s  is written above the fraction line, F can only assume 

values greater than 1; the question is therefore two-sided. With a significance level %1α , the threshold 

value will then be determined to 99.5% based on Table 2 in section 9.3. 

9.1.5.2. Analysis of variance  

The t-test can be used to verify whether the mean values of two series of measurements differ 
significantly. The series of measurements to be compared can each be regarded formally as test 
results for the two levels 1 (e.g. material A) and 2 (material B) of a single factor (material). If the single-
factor test is expanded to more than two levels (generally m levels), a comparison of the mean values 
using the t-test is no longer possible. In this case, evaluation can take place by means of an analysis of 
variance. 

Let us now take a look at the following test results from m levels of a factor with n replications per level: 

Level Results Mean Variance 

1 nyyy 11211 ,,,   1y  2
1s  

2 nyyy 22221 ,,,   2y  2
2s  

    

m mnmm yyy ,,, 21   my  2
ms  

Table 9.1: Test results from m levels of a factor with n replications per level 

If the factor has no influence on the measurement result, all individual results can be viewed as 
originating from the same population. They - and therefore the means, too - are then subject only to 
random deviations ("test noise") of the shared mean. 

If, on the contrary, the factor has a significant influence on the measurement result, the means of the 
distributions belonging to the factor levels will differ significantly. 

During the analysis of variance, we assume m independent, normally distributed populations with the 
same variance, and put forward the null hypothesis that all readings originate from populations with the 
same mean 1 2 m . Since the precondition for this is identical variances, the null 
hypothesis means that all readings originate from one and the same population. 

The basic objective of the analysis of variance is to estimate the variance of the means in two different 
ways. Firstly, the variance of the means can be directly calculated from the experimental data: 
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   (overall mean)  (9.34) 

On the other hand, the variance of the means can be estimated from the variance of the individual 
values. The latter method produces 
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22 1
 (9.35) 

as a mean over the variances of all m levels, and acts as a measure of experimental variance. If no 
true differences exist between the individual levels, the variance of the means is therefore 

n

s
s y

y

2
22  . (9.36) 
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Finally, the test statistic 
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s
F   (9.37) 

is used to conduct an F-test (comparison of the two estimates), and the null hypothesis formulated 
above is rejected if F > F(m-1; m(n-1); 99%). (Further threshold values for F are attached). 

The larger the test statistic, the more improbable it is that the effect is random (not significant), and the 
stronger the implication of a true (significant) difference between the levels. Rejecting the null 
hypothesis means: a significant difference exists between the means of the measurement results for 
the factor levels: the factor has a significant influence on the measurement result. 

9.1.5.3. Derivation of the test statistic 

The term ‘analysis of variance’ denotes the partitioning of the variance of all readings, using the 
formulae expressed above, into either random variance (“test noise”) or systematic deviation of the 
means. This partitioning, or analysis, is described below. If m is the number of lines and n is the 
number of readings (tests) per line, the total variance of all m*n readings is expressed by 
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. (9.38) 

The variable Q = (n*m-1)s2 is the sum of squares (SS). 
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 (9.39) 
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It is possible to show that the mean term is zero. Thus: 
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yj smsnQ
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22 )1()1(  (9.43) 

222 )1( )1( )1( yy smnsnmsmn   (9.44) 

AR QQQ   (9.45) 

"Total variance = test noise + mean variance" 

Degree of freedom of RQ : )1(  nmfR  (9.46) 

Degree of freedom of AQ : 1 mf A  (9.47) 

Degree of freedom of Q :  1 mnf  (9.48) 

Statement of degrees of freedom: 

RA fff   (9.49) 

)1(11  nmmmn  (9.50) 

11  mnmn  (9.51) 

Test statistic: 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf


Design of Experiments (DoE) 

© Robert Bosch GmbH | Date 10.2010 87

2

2

2

2

)1(

)1(
1

)1(

y

y

y

y

R

R

A

A

s

ns

s
nm

nm

s
m

mn

f

Q
f

Q

F 






  (9.52) 

9.1.6. Regression analysis  

In the case of quantitative factors on n levels, the task at hand is to adapt a predefined model approach 
to the test results in the optimum manner through regression. Let us assume, for example, that we 
have N tests and hence N values of the response variable y at N values of a factor x:  

),( ii xy ; Ni ...1 . (9.53) 

For y = f(x), we suspect a linear relationship, from which the distributed response variable deviates only 
minimally and randomly by the amount : 

iii εxbby  10 . (9.54) 

During regression, it is now a matter of calculating the coefficients b0 and b1 in such a way as to enable 
the best possible prediction of the response variable. With 

ii xbby 10ˆ   (9.55) 

we express the value of the response variable predicted by the model at the point xi. The “quality” of 
the prediction is assured using the familiar least-squares method, by minimizing the sum of squares 
between the test value and the prediction at all N points xi: 
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The necessary condition for minimization of the above function is that the first partial derivations 
in terms of b0 and b1 are zero. On this basis, the coefficients can be calculated as follows  
(see [22], p.158): 
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with the designations 
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. (9.58) 

Under the precondition that  

 the response variable is normally distributed for each setting of the predictor variables, 

 a linear relationship exists between the predictor variables and the mean of the response 
variables, xaaxμy 10)(  , 

 the deviations between this linear relationship are only random in nature, and 

 the standard deviation characterizing this random variance is constant throughout the 
experimental area, 

we can demonstrate that the estimates for the coefficients of the model equation, calculated using a 
linear regression, are unbiased, i.e. their means over numerous tests concur with the actual values, 
confidence intervals can be expressed and therefore conclusions about the significance of the 
coefficients can be made, see [1], p.171ff. 

To rate the quality of the adaptation, the sum of squares (SS) of the y values can be partitioned as 
follows: 
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The first term can be explained by the regression line, the second term is assigned to residuals. 
As mentioned above, the least-squares method entails minimizing the second term. The RMS error 
(root mean square error) 

Resid

Resid

f

Q
sR  , (9.60) 

also referred to as the standard error or standard deviation of regression, is therefore suitable for 
characterizing the result of this minimization. The degree of freedom fResid = N - p depends upon the 
number p of free coefficients (2 with a linear scenario). 

The quality of the adaptation increases the greater the proportion that is explained by the regression. 
It therefore stands to reason that the following quotients can be used as a measure of quality: 

Q

Q
R Regr2  . (9.61) 

This variable is the coefficient of determination, and assumes values between 0 and 1. Values close 
to 1 indicate a high proportion of total variance that is explained by the regression. Alternatively, the 
so-called correlation coefficient is another measure that can be used: 

2
1)sgn( RbR  . (9.62) 

The correlation coefficient assumes values between -1 and +1. 

The question as to whether the proportion of total variance that is explained by the regression is 
significantly larger than the proportion assigned to residuals can be analyzed by means of an F-test 
with the test statistic 

2

RegrRegr

ResidResid

RegrRegr
RegrT

/

/

/

Rs

fQ

fQ

fQ
F   (9.63) 

fRegr = p - 1 and fResid = N - p denote the degrees of freedom, p is the number of free model 
parameters. The rating takes place as with every F-test: if FRegrT > F(fRegr; fResid ; 99%), the null 
hypothesis “The proportion of variation that is explained by the regression is as high as the 
proportion of variation of the residuals” is rejected, with the result that the regression significantly 
explains part of the variation. Threshold values for F are attached. 

The term QResid, as mentioned above, is assigned to the residuals, i.e. that part of y values in the SS 
that is not explained by the regression. The question we are facing is basically that of whether this 
proportion is due to shortcomings on the part of the model, or constitutes pure experimental variance. 
If the first hypothesis is true, further reduction of the residual variance can be achieved by adding more 
(higher) terms in the model. If the second case is correct, improvement of the model would only be 
possible if so far unknown noise variables are taken into consideration. In order to decide which of the 
above is correct, several replications of one point of the experimental area are required, at least, in 
order that the pure error can be estimated. We are assuming that the N tests were conducted in such a 
way that the ith of m treatments were repeated ni times. We can now partition QResid as follows: 
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The first proportion QLoF corresponds to the weighted SS of the deviation of the group mean of all 
replications in the ith treatment from the predicted value. It is referred to as “lack of fit”. The second 
proportion QPE corresponds to the weighted SS of the deviation of the individual values from the 
respective group mean of all replications in the ith treatment. This term is not dependent upon the value 
predicted on the basis of the existing model, and is therefore known as a “pure error”. The 
relationships are graphically illustrated in Figure 9.5: 
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iŷ

yyij  iij yy ˆ

yyi ˆ

iij yy 

ii yy ˆ

 

Figure 9.5: Components in a regression partition of the SS (schematic) 

The quality of the model in terms of whether the approach used has a sufficiently high order (but not in 
terms of whether all relevant factors have been taken into consideration!) can be analyzed by means of 
an F-test with the test statistic 
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LoF
LoFT fQ

fQ
F

/

/

PE

LoF  (9.65) 

This test is also referred to as the lack-of-fit test. fLoF = m - p and fPE = N - m denote the degrees of 
freedom, p is the number of free model parameters. If FLoFT > F(fLoF; fPE ; 99%), the null hypothesis 
“Variance due to lack of fit and pure error are the same” is rejected, with the result that the lack of fit 
is significantly greater than pure experimental variance (threshold values for F are attached). 

 Degree of freedom SS Variance F-value p-value 

Regression fRegr QRegr 
Regr

Regr2
Regr f

Q
s   

2
R

2
Regr

RegrT s

s
F   Regrp  

Residuals 
fResid = 

fLoF + fPE 

QResid = 

QLoF + QPE Resid

Resid2
R f

Q
s     

Lack of fit fLoF QLoF 
LoF

LoF2
LoF f

Q
s   

2
PE

2
LoF

LoFT s

s
F   LoFTp  

Pure error fPE QPE 
PE

PE2
PE f

Q
s     

Sum total 
f = N -1= 

fRegr + fResid 

Q = 

QRegr+QResid 

22
Regr

2
Rsss     

Table 9.2: ANOVA regression table 

With some statistical tools, a corresponding variable pRegr or pLoFT is used in addition to the test 
statistic FLoFT or FRegrT in order to assess significance, whereby 

);;1( 21RegrTRegrT ffpFF   or );;1( 21LoFTLoFT ffpFF  . (9.66) 

This value can be interpreted as the “probability of error” (type I error): the smaller this probability, the 
more significant the regression or the lack of fit. The assessment progresses in the same way as the 
test statistic: a significant result is present if, for example, pRegr ≤ 1%, a highly significant result if pRegr ≤ 
0.1%. 

The variables described are typically set out in a table. As with the table for the analysis of variance, 
this table is referred to as a (global) ANOVA table of the regression model, see Table 9.2. 
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9.2. Software tools 

If modeling is to be carried out with several factors on the basis of experimental data, the formulation of 
designs and most evaluations is time-consuming and, for many users, simply insurmountable without 
the help of software. For users without much background knowledge, in particular, a tabular calculation 
program such as MS Excel will not necessarily be of further assistance. Some users will also be in 
need of software support for linear regression, or for an analysis of variance with one factor. For this 
reason, the use of suitable software is therefore universally recommended for experiment design and 
evaluation. In general, the following tools are worthy of recommendation: 

 Minitab® 
This is a standard solution for statistical evaluations in the context of Six Sigma initiatives, which 
also features DoE functionalities and can be employed to create and evaluate DoE experimental 
designs. This solution is especially suitable for occasional DoE tasks, and users that already have 
extensive experience of this tool. A company license for Minitab is available. 

Further information can be found on the internet at http://www.additive-net.de/software/minitab 

 Cornerstone® 
This is a software tool that specializes in DoE, and enables even more extensive DoE experiments 
to be designed and evaluated. Experienced users, above all, can benefit from some of this 
software’s editing and display functions, which have been optimized with DoE in mind and give a 
tremendous help when handling real experimental data. A company license is not available. 

Further information and a test license for one month can be found on the internet at  
http://www.versuchsplanung.de/Versuchsplanung/Cornerstone 

 ASCMO® 
This is a DoE tool that has been developed at Bosch since 2004. A special feature of this software 
is that the model used is based not on polynomials but on functions with local supports, which can 
be very useful for response-surface modelling and detailed optimization of complex behaviour. The 
software is available as a MATLAB and a standalone version. Operation is interactive via a user 
interface (including helpful editing and display functions like Cornerstone), or via scripts in batch 
mode. This software is currently free of charge for internal Bosch users. 

Further information is available from the PJ-ASCTeam-Mailbox@de.bosch.com 

 Optislang® 
This is a software tool for sensitivity studies, optimization and robustness tests in the field of CAE, 
which also features DoE functionalities, with an emphasis on computer experiments. This tool has 
interfaces to many numerical simulation tools, which can be automatically activated as solvers for 
deterministic or stochastic optimizations. A company license for Optislang is available. 

Further information can be found on the internet at http://www.dynardo.de/software/optislang/ 
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9.3. Tables 

Table 1: 

Threshold values of the t-distribution (two-sided) 

 Data reliability 

f 95% 99% 99,9% 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
20 
25 
30 
35 
40 
45 

 
50 
100 
200 
300 
400 
500 
 

12.7 
4.3 
3.18 
2.78 
2.57 
2.45 
2.37 
2.31 
2.26 

 
2.23 
2.20 
2.18 
2.16 
2.15 
2.13 
2.12 
2.11 
2.10 
2.09 

 
2.09 
2.06 
2.04 
2.03 
2.02 
2.01 

 
2.01 
1.98 
1.97 
1.97 
1.97 
1.97 
1.96 

63.7 
9.93 
5.84 
4.60 
4.03 
3.71 
3.50 
3.36 
3.25 

 
3.17 
3.11 
3.06 
3.01 
2.98 
2.95 
2.92 
2.90 
2.88 
2.86 

 
2.85 
2.79 
2.75 
2.72 
2.70 
2.69 

 
2.68 
2.63 
2.60 
2.59 
2.59 
2.59 
2.58 

636.6 
31.6 
12.9 
8.61 
6.87 
5.96 
5.41 
5.04 
4.78 

 
4.59 
4.44 
4.32 
4.22 
4.14 
4.07 
4.02 
3.97 
3.92 
3.88 

 
3.85 
3.73 
3.65 
3.59 
3.55 
3.52 

 
3.50 
3.39 
3.34 
3.32 
3.32 
3.31 
3.30 
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Table 2: 

Threshold values of the F-distribution (one-sided to the value 95%) 

f 2  
f 1 1

 

f 1 2
 

f 1 3
 

f 1 4
 

f 1 5
 

f 1 6
 

f 1 7
 

f 1 8
 

f 1 9
 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

 
50 
60 
70 
80 
90 

100 
150 
200 
1000 

 
161 
18.5 
10.1 
7.71 
6.61 
5.99 
5.59 
5.32 
5.12 

 
4.96 
4.84 
4.75 
4.67 
4.60 
4.54 
4.49 
4.45 
4.41 
4.38 

 
4.35 
4.30 
4.26 
4.23 
4.20 
4.17 
4.15 
4.13 
4.11 
4.10 
4.08 

 
4.03 
4.00 
3.98 
3.96 
3.95 
3.94 
3.90 
3.89 
3.85 

 
200 
19.0 
9.55 
6.94 
5.79 
5.14 
4.74 
4.46 
4.26 

 
4.10 
3.98 
3.89 
3.81 
3.74 
3.68 
3.63 
3.59 
3.55 
3.52 

 
3.49 
3.44 
3.40 
3.37 
3.34 
3.32 
3.30 
3.28 
3.26 
3.24 
3.23 

 
3.18 
3.15 
3.13 
3.11 
3.10 
3.09 
3.06 
3.04 
3.00 

 
216 
19.2 
9.28 
6.59 
5.41 
4.76 
4.35 
4.07 
3.86 

 
3.71 
3.59 
3.49 
3.41 
3.34 
3.29 
3.24 
3.20 
3.16 
3.13 

 
3.10 
3.05 
3.01 
2.98 
2.95 
2.92 
2.90 
2.88 
2.87 
2.85 
2.84 

 
2.79 
2.76 
2.74 
2.72 
2.71 
2.70 
2.66 
2.65 
2.61 

 
225 
19.2 
9.12 
6.39 
5.19 
4.53 
4.12 
3.84 
3.63 

 
3.48 
3.36 
3.26 
3.18 
3.11 
3.06 
3.01 
2.96 
2.93 
2.90 

 
2.87 
2.82 
2.78 
2.74 
2.71 
2.69 
2.67 
2.65 
2.63 
2.62 
2.61 

 
2.56 
2.53 
2.50 
2.49 
2.47 
2.46 
2.43 
2.42 
2.38 

 
230 
19.3 
9.01 
6.26 
5.05 
4.39 
3.97 
3.69 
3.48 

 
3.33 
3.20 
3.11 
3.03 
2.96 
2.90 
2.85 
2.81 
2.77 
2.74 

 
2.71 
2.66 
2.62 
2.59 
2.56 
2.53 
2.51 
2.49 
2.48 
2.46 
2.45 

 
2.40 
2.37 
2.35 
2.33 
2.32 
2.31 
2.27 
2.26 
2.22 

 
234 
19.3 
8.94 
6.16 
4.95 
4.28 
3.87 
3.58 
3.37 

 
3.22 
3.09 
3.00 
2.92 
2.85 
2.79 
2.74 
2.70 
2.66 
2.63 

 
2.60 
2.55 
2.51 
2.47 
2.45 
2.42 
2.40 
2.38 
2.36 
2.35 
2.34 

 
2.29 
2.25 
2.23 
2.21 
2.20 
2.19 
2.16 
2.14 
2.11 

 
237 
19.4 
8.89 
6.09 
4.88 
4.21 
3.79 
3.50 
3.29 

 
3.14 
3.01 
2.91 
2.83 
2.76 
2.71 
2.66 
2.61 
2.58 
2.54 

 
2.51 
2.46 
2.42 
2.39 
2.36 
2.33 
2.31 
2.29 
2.28 
2.26 
2.25 

 
2.20 
2.17 
2.14 
2.13 
2.11 
2.10 
2.07 
2.06 
2.02 

 
239 
19.4 
8.85 
6.04 
4.82 
4.15 
3.73 
3.44 
3.23 

 
3.07 
2.95 
2.85 
2.77 
2.70 
2.64 
2.59 
2.55 
2.51 
2.48 

 
2.45 
2.40 
2.36 
2.32 
2.29 
2.27 
2.24 
2.23 
2.21 
2.19 
2.18 

 
2.13 
2.10 
2.07 
2.06 
2.04 
2.03 
2.00 
1.98 
1.95 

 
241 
19.4 
8.81 
6.00 
4.77 
4.10 
3.68 
3.39 
3.18 

 
3.02 
2.90 
2.80 
2.71 
2.65 
2.59 
2.54 
2.49 
2.46 
2.42 

 
2.39 
2.34 
2.30 
2.27 
2.24 
2.21 
2.19 
2.17 
2.15 
2.14 
2.12 

 
2.07 
2.04 
2.02 
2.00 
1.99 
1.97 
1.94 
1.93 
1.89 
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Table 2 (continued) 

Threshold values of the F-distribution (one-sided to the value 95%) 

f 2  
f 1 10

 

f 1 15
 

f 1 20
 

f 1 30
 

f 1 40
 

f 1 50
 

f 1 100
 

f 1
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

 
50 
60 
70 
80 
90 

100 
150 
200 
1000 

242 
19.4 
8.79 
5.96 
4.74 
4.06 
3.64 
3.35 
3.14 

 
2.98 
2.85 
2.75 
2.67 
2.60 
2.54 
2.49 
2.45 
2.41 
2.38 

 
2.35 
2.30 
2.25 
2.22 
2.19 
2.16 
2.14 
2.12 
2.11 
2.09 
2.08 

 
2.03 
1.99 
1.97 
1.95 
1.94 
1.93 
1.89 
1.88 
1.84 

246 
19.4 
8.70 
5.86 
4.62 
3.94 
3.51 
3.22 
3.01 

 
2.85 
2.72 
2.62 
2.53 
2.46 
2.40 
2.35 
2.31 
2.27 
2.23 

 
2.20 
2.15 
2.11 
2.07 
2.04 
2.01 
1.99 
1.97 
1.95 
1.94 
1.92 

 
1.87 
1.84 
1.81 
1.79 
1.78 
1.77 
1.73 
1.72 
1.68 

248 
19.4 
8.66 
5.80 
4.56 
3.87 
3.44 
3.15 
2.94 

 
2.77 
2.65 
2.54 
2.46 
2.39 
2.33 
2.28 
2.23 
2.19 
2.16 

 
2.12 
2.07 
2.03 
1.99 
1.96 
1.93 
1.91 
1.89 
1.87 
1.85 
1.84 

 
1.78 
1.75 
1.72 
1.70 
1.69 
1.68 
1.64 
1.62 
1.58 

250 
19.5 
8.62 
5.75 
4.50 
3.81 
3.38 
3.08 
2.86 

 
2.70 
2.57 
2.47 
2.38 
2.31 
2.25 
2.19 
2.15 
2.11 
2.07 

 
2.04 
1.98 
1.94 
1.90 
1.87 
1.84 
1.82 
1.80 
1.78 
1.76 
1.74 

 
1.69 
1.65 
1.62 
1.60 
1.59 
1.57 
1.53 
1.52 
1.47 

251 
19.5 
8.59 
5.72 
4.46 
3.77 
3.34 
3.04 
2.83 

 
2.66 
2.53 
2.43 
2.34 
2.27 
2.20 
2.15 
2.10 
2.06 
2.03 

 
1.99 
1.94 
1.89 
1.85 
1.82 
1.79 
1.77 
1.75 
1.73 
1.71 
1.69 

 
1.63 
1.59 
1.57 
1.54 
1.53 
1.52 
1.48 
1.46 
1.41 

252 
19.5 
8.58 
5.70 
4.44 
3.75 
3.32 
3.02 
2.80 

 
2.64 
2.51 
2.40 
2.31 
2.24 
2.18 
2.12 
2.08 
2.04 
2.00 

 
1.97 
1.91 
1.86 
1.82 
1.79 
1.76 
1.74 
1.71 
1.69 
1.68 
1.66 

 
1.60 
1.56 
1.53 
1.51 
1.49 
1.48 
1.44 
1.41 
1.36 

253 
19.5 
8.55 
5.66 
4.41 
3.71 
3.27 
2.97 
2.76 

 
2.59 
2.46 
2.35 
2.26 
2.19 
2.12 
2.07 
2.02 
1.98 
1.94 

 
1.91 
1.85 
1.80 
1.76 
1.73 
1.70 
1.67 
1.65 
1.62 
1.61 
1.59 

 
1.52 
1.48 
1.45 
1.43 
1.41 
1.39 
1.34 
1.32 
1.26 

254 
19.5 
8.53 
5.63 
4.37 
3.67 
3.23 
2.93 
2.71 

 
2.54 
2.40 
2.30 
2.21 
2.13 
2.07 
2.01 
1.96 
1.92 
1.88 

 
1.84 
1.78 
1.73 
1.69 
1.65 
1.62 
1.59 
1.57 
1.55 
1.53 
1.51 

 
1.44 
1.39 
1.35 
1.32 
1.30 
1.28 
1.22 
1.19 
1.08 
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Table 2 (continued) 

Threshold values of the F-distribution (one-sided to the value 99%) 

f 2  
f 1 1

 

f 1 2
 

f 1 3
 

f 1 4
 

f 1 5
 

f 1 6
 

f 1 7
 

f 1 8
 

f 1 9
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

 
50 
60 
70 
80 
90 

100 
150 
200 
1000 

4052 
98.5 
34.1 
21.2 
16.3 
13.7 
12.2 
11.3 
10.6 

 
10.0 
9.65 
9.33 
9.07 
8.86 
8.68 
8.53 
8.40 
8.29 
8.18 

 
8.10 
7.95 
7.82 
7.72 
7.64 
7.56 
7.50 
7.44 
7.40 
7.35 
7.31 

 
7.17 
7.08 
7.01 
6.96 
6.93 
6.90 
6.81 
6.76 
6.66 

4999 
99.0 
30.8 
18.0 
13.3 
10.9 
9.55 
8.65 
8.02 

 
7.56 
7.21 
6.93 
6.70 
6.51 
6.36 
6.23 
6.11 
6.01 
5.93 

 
5.85 
5.72 
5.61 
5.53 
5.45 
5.39 
5.34 
5.29 
5.25 
5.21 
5.18 

 
5.06 
4.98 
4.92 
4.88 
4.85 
4.82 
4.75 
4.71 
4.63 

5403 
99.2 
29.5 
16.7 
12.1 
9.78 
8.45 
7.59 
6.99 

 
6.55 
6.22 
5.95 
5.74 
5.56 
5.42 
5.29 
5.18 
5.09 
5.01 

 
4.94 
4.82 
4.72 
4.64 
4.57 
4.51 
4.46 
4.42 
4.38 
4.34 
4.31 

 
4.20 
4.13 
4.08 
4.04 
4.01 
3.98 
3.92 
3.88 
3.80 

5625 
99.3 
28.7 
16.0 
11.4 
9.15 
7.85 
7.01 
6.42 

 
5.99 
5.67 
5.41 
5.21 
5.04 
4.89 
4.77 
4.67 
4.58 
4.50 

 
4.43 
4.31 
4.22 
4.14 
4.07 
4.02 
3.97 
3.93 
3.89 
3.86 
3.83 

 
3.72 
3.65 
3.60 
3.56 
3.54 
3.51 
3.45 
3.41 
3.34 

5764 
99.3 
28.2 
15.5 
11.0 
8.75 
7.46 
6.63 
6.06 

 
5.64 
5.32 
5.06 
4.86 
4.70 
4.56 
4.44 
4.34 
4.25 
4.17 

 
4.10 
3.99 
3.90 
3.82 
3.75 
3.70 
3.65 
3.61 
3.57 
3.54 
3.51 

 
3.41 
3.34 
3.29 
3.26 
3.23 
3.21 
3.14 
3.11 
3.04 

5859 
99.3 
27.9 
15.2 
10.7 
8.47 
7.19 
6.37 
5.80 

 
5.39 
5.07 
4.82 
4.62 
4.46 
4.32 
4.20 
4.10 
4.01 
3.94 

 
3.87 
3.76 
3.67 
3.59 
3.53 
3.47 
3.43 
3.39 
3.35 
3.32 
3.29 

 
3.19 
3.12 
3.07 
3.04 
3.01 
2.99 
2.92 
2.89 
2.82 

5928 
99.4 
27.7 
15.0 
10.5 
8.26 
6.99 
6.18 
5.61 

 
5.20 
4.89 
4.64 
4.44 
4.28 
4.14 
4.03 
3.93 
3.84 
3.77 

 
3.70 
3.59 
3.50 
3.42 
3.36 
3.30 
3.26 
3.22 
3.18 
3.15 
3.12 

 
3.02 
2.95 
2.91 
2.87 
2.84 
2.82 
2.76 
2.73 
2.66 

5982 
99.4 
27.5 
14.8 
10.3 
8.10 
6.84 
6.03 
5.47 

 
5.06 
4.74 
4.50 
4.30 
4.14 
4.00 
3.89 
3.79 
3.71 
3.63 

 
3.56 
3.45 
3.36 
3.29 
3.23 
3.17 
3.13 
3.09 
3.05 
3.02 
2.99 

 
2.89 
2.82 
2.78 
2.74 
2.72 
2.69 
2.63 
2.60 
2.53 

6022 
99.4 
27.3 
14.7 
10.2 
7.98 
6.72 
5.91 
5.35 

 
4.94 
4.63 
4.39 
4.19 
4.03 
3.89 
3.78 
3.68 
3.60 
3.52 

 
3.46 
3.35 
3.26 
3.18 
3.12 
3.07 
3.02 
2.98 
2.95 
2.92 
2.89 

 
2.79 
2.72 
2.67 
2.64 
2.61 
2.59 
2.53 
2.50 
2.43 
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Table 2 (continued) 

Threshold values of the F-distribution (one-sided to the value 99%) 

f 2  
f 1 10

 

f 1 15
 

f 1 20
 

f 1 30
 

f 1 40
 

f 1 50
 

f 1 100
 

f 1
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 

 
40 
50 
60 
70 
80 
90 

100 
150 
200 
1000 

6056 
99.4 
27.2 
14.5 
10.1 
7.87 
6.62 
5.81 
5.26 

 
4.85 
4.54 
4.30 
4.10 
3.94 
3.80 
3.69 
3.59 
3.51 
3.43 

 
3.37 
3.26 
3.17 
3.09 
3.03 
2.98 
2.93 
2.89 
2.86 
2.83 

 
2.80 
2.70 
2.63 
2.59 
2.55 
2.52 
2.50 
2.44 
2.41 
2.34 

6157 
99.4 
26.9 
14.2 
9.72 
7.56 
6.31 
5.52 
4.96 

 
4.56 
4.25 
4.01 
3.82 
3.66 
3.52 
3.41 
3.31 
3.23 
3.15 

 
3.09 
2.98 
2.89 
2.82 
2.75 
2.70 
2.66 
2.62 
2.58 
2.55 

 
2.52 
2.42 
2.35 
2.31 
2.27 
2.24 
2.22 
2.16 
2.13 
2.06 

6209 
99.4 
26.7 
14.0 
9.55 
7.40 
6.16 
5.36 
4.81 

 
4.41 
4.10 
3.86 
3.66 
3.51 
3.37 
3.26 
3.16 
3.08 
3.00 

 
2.94 
2.83 
2.74 
2.66 
2.60 
2.55 
2.50 
2.46 
2.43 
2.40 

 
2.37 
2.27 
2.20 
2.15 
2.12 
2.09 
2.07 
2.00 
1.97 
1.90 

6261 
99.5 
26.5 
13.8 
9.38 
7.23 
5.99 
5.20 
4.65 

 
4.25 
3.94 
3.70 
3.51 
3.35 
3.21 
3.10 
3.00 
2.92 
2.84 

 
2.78 
2.67 
2.58 
2.50 
2.44 
2.39 
2.34 
2.30 
2.26 
2.23 

 
2.20 
2.10 
2.03 
1.98 
1.94 
1.92 
1.89 
1.83 
1.79 
1.72 

6287 
99.5 
26.4 
13.7 
9.29 
7.14 
5.91 
5.12 
4.57 

 
4.17 
3.86 
3.62 
3.43 
3.27 
3.13 
3.02 
2.92 
2.84 
2.76 

 
2.69 
2.58 
2.49 
2.42 
2.35 
2.30 
2.25 
2.21 
2.17 
2.14 

 
2.11 
2.01 
1.94 
1.89 
1.85 
1.82 
1.80 
1.73 
1.69 
1.61 

6300 
99.5 
26.4 
13.7 
9.24 
7.09 
5.86 
5.07 
4.52 

 
4.12 
3.81 
3.57 
3.38 
3.22 
3.08 
2.97 
2.87 
2.78 
2.71 

 
2.64 
2.53 
2.44 
2.36 
2.30 
2.25 
2.20 
2.16 
2.12 
2.09 

 
2.06 
1.95 
1.88 
1.83 
1.79 
1.76 
1.73 
1.66 
1.63 
1.54 

6330 
99.5 
26.2 
13.6 
9.13 
6.99 
5.75 
4.96 
4.42 

 
4.01 
3.71 
3.47 
3.27 
3.11 
2.98 
2.86 
2.76 
2.68 
2.60 

 
2.54 
2.42 
2.33 
2.25 
2.19 
2.13 
2.08 
2.04 
2.00 
1.97 

 
1.94 
1.82 
1.75 
1.70 
1.66 
1.62 
1.60 
1.52 
1.48 
1.38 

6366 
99.5 
26.1 
13.5 
9.02 
6.88 
5.65 
4.86 
4.31 

 
3.91 
3.60 
3.36 
3.17 
3.00 
2.87 
2.75 
2.65 
2.57 
2.49 

 
2.42 
2.31 
2.21 
2.13 
2.06 
2.01 
1.96 
1.91 
1.87 
1.84 

 
1.80 
1.68 
1.60 
1.54 
1.49 
1.46 
1.43 
1.33 
1.28 
1.11 

 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf


Design of Experiments (DoE) 

© Robert Bosch GmbH | Date 10.2010 96

10. Literature 

 

[1]  W. Kleppmann: Taschenbuch Versuchsplanung. Produkte und Prozesse Optimieren, Hanser, 
Munich, 1998 

[2]  E. Scheffler: Einführung in die Praxis der statistischen Versuchsplanung, Deutscher Verlag für 
Grundstoffindustrie, Leipzig, 1986 

[3]  J. Krottmaier: Versuchsplanung. Der Weg zur Qualität des Jahres 2000, Verlag Industrielle 
Organisation Zürich, Verlag TÜV Rheinland, Cologne, 1990 

[4]  H. Petersen: Grundlagen der statistischen Versuchsplanung, Vol.2, ecomed Verlag 
Landsberg/Lech, 1991 

[5]  W.G. Cochran, G.M. Cox: Experimental Designs, Wiley, New York, 1957 

[6]  VDA Reihe Qualitätsmanagement in der Automobilindustrie, Vol. 4 Sicherung der Qualität 
während der Produktrealisierung – Methoden und Verfahren, Chapter 5: Versuchsmethodik 
(DoE), 4th Edition 2003 

[7]  VDA Reihe Qualitätsmanagement in der Automobilindustrie, Vol. 3 “Zuverlässigkeitssicherung 
bei Automobilherstellern und Lieferanten”, Chapter 2 “Zuverlässigkeitsmethoden und Hilfsmittel” 

[8]  VDA Reihe Qualitätsmanagement in der Automobilindustrie, Vol. 4 “Sicherung der Qualität 
während der Produktrealisierung – Methoden und Verfahren”, Chapter 2 “Entwicklungsabläufe” 

[9]  ISO/TS 16949 “Qualitätsmanagementsysteme - Besondere Anforderungen bei Anwendung von 
ISO 9001:2000 für die Serien- und Ersatzteilproduktion in der Automobilindustrie” 

[10]  Chrysler, Ford, GM: QS-9000 

[11]  R. A. Fisher: The Design of Experiments, Oliver&Boyd, London 1935 

[12]  K. R. Bhote: Qualität – Der Weg zur Weltspitze, IQM, Grossbottwar, 1990 

[13]  H. Bossel: Systeme, Dynamik, Simulation. Modellbildung, Analyse und Simulation komplexer 
Systeme, Books on Demand, Norderstedt, 2004 

[14]  G. Ropohl: Eine Systemtheorie der Technik, Hanser, Munich, 1979  

[15]  Qualitätsmanagement in der Bosch-Gruppe, Vol. 8: Messunsicherheit 

[16]  Qualitätsmanagement in der Bosch-Gruppe, Vol. 10: Fähigkeit von Mess- und Prüfprozessen 

[17]  E. Haibach: Betriebsfestigkeit, VDI, Düsseldorf, 1989 

[18]  J. Riedel: Gewichtsoptimierung eines Kreuzfahrtschiffes unter Spannungsrestriktionen, 
Colloquium of the Bauhaus University of Weimar, 2000 (see www.optislang.de/Projekte/ 
Anlagenbau.htm) 

[19]  T. Wember: Skript Technische Statistik und statistische Versuchsplanung, self-published 

[20]  OptiSlang Version 3.0, Theory Manual und User’s Guide, dynardo Dynamic Software and 
Engineering GmbH, 2009 

[21]  J. Gamweger, O.Jöbstl, M. Strohmann, W. Suchowerskyj: Design for Six Sigma, Hanser, 
Munich, 2009 

[22] A. Haldar, S. Mahadevan: Probability, Reliability and Statistical Methods in Engineering Design, 
J. Wiley, 2000 

[23] G. Taguchi: Introduction to Quality Engineering; Designing Quality into Products and Processes, 
Unipub Kraus International Publications and American Supplier Institute, 1986 

[24] G. Taguchi: System of experimental design, Vol. 1 and 2, Unipub Kraus International 
Publications and American Supplier Institute, 1987 

[25] T. Bendell (Editor): Taguchi Methods; Proceedings of the 1988 European Conference, Elsevier, 
1989 

[26] L. Fahrmeir, T. Kneib, S. Lang: Regression. Modelle, Methoden und Anwendungen. 2nd Edition, 
Springer, 2009 

[27] H. Pruscha: Statistisches Methodenbuch, Springer, 2006 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf


Design of Experiments (DoE) 

© Robert Bosch GmbH | Date 10.2010 97

11. Index 

acquisition of knowledge ...............................19 
Adjusted Response .......................................51 
aliasing...........................................................60 
alternative hypothesis..............................82, 85 
analysis of variance .......................................85 

factorial.......................................................49 
multiple.......................................................49 
simple.........................................................48 
table ...........................................................49 

ANOVA table 
of the regression model .............................90 

artificial neural networks (ANN).....................65 
basis function 

radial ..........................................................65 
sigmoid.......................................................65 
trigonometric ..............................................65 

black-box model .............s. modeling, empirical 
blocking..........................................................33 
C&E matrix.........................................21, 23, 24 
cause & effect matrix .....................................21 
coefficient of determination......................44, 88 
compact support ............................................65 
component search .........................................72 
computer experiment.................................7, 35 
concentration chart ........................................72 
confidence 

interval........................................................81 
level......................................................81, 83 

confounding ...................................................60 
coordinator.....................................................19 
correlation coefficient...............................44, 88 
degree of freedom ...................................84, 86 
DFSS .........................................................9, 69 
documentation ...............................................33 
effect ..............................................................40 
end-of-life test ..................................................9 
error 

model-based ..............................................25 
random.......................................................11 
systematic ..................................................11 
type I ........................................32, 49, 83, 89 
type II .........................................................83 

evaluation matrix ...........................................40 
experiment .......................................................3 

course of ....................................................33 
experimental 

area............................................................24 
design.....................................................3, 11 
design, central composite ..........................62 
design, D-optimal .......................................25 
design, full factorial ..............................31, 40 
design, screening.................................20, 60 
design, single factorial ...............................28 
design, statistical....................................3, 11 
design, stochastic ......................................67 
variance......................................................42 

factor 
levels ....................................................27, 28 

failure plan .....................................................33 

field test........................................................... 3 
fit for standard ................................................. 8 
fit for use ......................................................... 9 
F-test............................................................. 84 
glass-box model.............  s. modelling, physical 
histogram ...................................................... 84 
historic data................................................... 23 
interaction ............................................... 30, 52 
Interaction Graph .......................................... 51 
Ishikawa diagram.......................................... 21 
kernel ............................................................ 65 
laboratory test ................................................. 3 
lack of fit ........................................................ 88 
lack-of-fit test................................................. 89 
least-squares method ................................... 41 
measurement 

equipment.................................................. 24 
error........................................................... 22 
procedure .................................................. 24 
resolution................................................... 24 

midpoint ........................................................ 62 
minimum number of random samples .......... 82 
model ........................................................ 4, 61 

approach ................................................... 25 
behavioral.................................................... 4 
calibration .................................................... 7 
meta- ........................................................... 7 
non-parametric .......................................... 67 
structural...................................................... 4 

modeling 
empirical ...................................................... 6 
gray-box ................................................ 7, 29 
physical ........................................... 6, 21, 25 
procedure .................................................... 4 
reasons........................................................ 4 

multilinear form ............................................. 40 
Multivari chart................................................ 71 
noise variable.......................................... 22, 33 
null hypothesis .................................. 82, 84, 85 
optimization............................................. 20, 23 
orthogonality ................................................. 63 
overfitting ...................................................... 65 
paired comparisons....................................... 73 
parameter identification .................................. 7 
Pareto 

optimality ................................................... 23 
principle ..................................................... 71 

P-diagram ..................................................... 22 
Plackett-Burman design................................ 60 
polynomial approach..................................... 26 
Predicted Response...................................... 51 
prediction ...................................................... 19 
predictor variable ...................................... 3, 21 

qualitative .................................................. 24 
product/process search ................................ 75 
pure error ............................................... 42, 89,  
p-value .................................................... 49, 89 
randomization ............................................... 33 
regression ..................................................... 41 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf


Design of Experiments (DoE) 

© Robert Bosch GmbH | Date 10.2010 98

standard deviation......................................44 
standard error ............................................44 

replication ........................................................3 
single..........................................................32 

requirements....................................................8 
residual ..........................................................44 
resources.................................................19, 34 
response variable ......................................3, 21 

qualitative...................................................23 
RMS error ................................................44, 88 
robustness 

analysis ......................................................20 
optimization................................................20 

sampling methods 
deterministic...............................................67 
stochastic ...................................................67 

Shainin method..............................................71 
significance........................... 10, 11, 12, 32, 33 

assessment, simple ...................................42 
level......................................................83, 85 
rating on regression ...................................87 

Six Sigma.........................................................9 
specimen .......................................................13 

archiving of.................................................33 
design.........................................................34 
designation of.............................................33 
production ..................................................35 
variance............................... 9, 10, 11, 23, 33 

spline .............................................................65 
spurious effect ...............................................60 
standard error 

of the regression coefficient ...................... 46 
star point ....................................................... 62 
sum of squares (SS) ............................... 86, 88 
system............................................................. 4 

analysis ................................................. 4, 21 
boundary ..................................................... 4 
elements...................................................... 4 
input............................................................. 5 
interactions .................................................. 4 
output .......................................................... 5 
theory .......................................................... 4 

system identification........ s. modeling:empirical 
Taguchi method ............................................ 69 
Taylor expansion........................................... 26 
test ........................................................ 3, 8, 35 

aptitude for ................................................ 34 
equipment............................................ 34, 35 
noise.......................................................... 86 
strategy...................................................... 19 

test to failure ................................................... 9 
test to pass...................................................... 8 
threshold value........................................ 82, 84 
transfer function .......................................... 5, 6 
trial .................................................................. 8 
Trial and error ............................................... 28 
validation......................................................... 8 
variable search.............................................. 74 
variable transformation ........................... 27, 41 
variance ........................................................ 84 
verification....................................................... 8 
white-box model.............  s. modelling, physical 

 
 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf


Robert Bosch GmbH

C/QMM

Postfach 30 02 20

D-70442 Stuttgart

Germany

Phone +49 711 811-0
www.bosch.com

B
VE

1
7
2
4
1
-1

S
ta
n
d
1
0
.2
0
1
0

11. Design of Experiments ( )DoE
Quality Management in the Bosch Group | Technical Statistics

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-011_BBL_N_EN_2010-10-01.pdf

	Leere Seite

