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1. Introduction 

Reliability, among many other product qualities, is often attributed particular value in customer 
surveys [1] p. 2. The guarantee of adequate product reliability is therefore a key factor for business 
success. To achieve this in these times of reduced development cycles yet increasingly exacting 
product requirements, new approaches are necessary. In addition to traditionally important 
experimental tests to demonstrate reliability, targeted design for reliability, combined with an 
arithmetical prediction of reliability and optimization, are increasingly at the center of development 
activities. This is reflected in the frontloading strategy, which requires work on reliability to be shifted 
to an earlier phase of product development, in order to reduce overall expenditure.  

Furthermore, high customer expectations and global trends such as miniaturization, growing 
complexity and reduced weight, for example, are leading to greater performance densities and so to 
declining reliability reserves. This situation can often only be offset by employing more appropriate 
and accurate methods.  

This volume is addressed to associates whose work involves design for reliability, verification and 
validation. It presents important methods that satisfy the requirements described above. The 
content should be read in conjunction with the BES Practice Description "Design for Reliability" [2], in 
which the basic principles of design for reliability are explained in more detail. 

The layout of this volume is as follows: 

 Chapter 2 introduces the basic terms and relationships, which are vital for an understanding of 
the explanations that follow. 

 Chapter 3 is devoted to design for reliability. First, it explains the general concept and the 
reliability requirements. Next, it discusses quantitative and qualitative methods of design for 
reliability, prediction and optimization. 

 Chapter 4 presents basic principles and methods of reliability verification and validation. 

 Chapter 5 is concerned with questions about reliability in the field. 

 The Annex contains some fundamental statistical concepts that are necessary in order to 
understand the relationships explained in this volume.  
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2. Basic principles 

2.1. Definition of terms  

Reliability is one of the most important product characteristics and is therefore an aspect and 
integral component of quality. For its part, reliability exerts an influence on further quality features, 
such as safety. The visual demarcations of the terms quality, reliability and safety are illustrated in 
Fig. 1. 

Quality

Reliability

Safety

Quality

Reliability

Safety

 

Fig. 1: Quality, reliability and safety 

According to [3], reliability is an umbrella term that describes availability and its influencing factors 
performance reliability, maintainability and maintenance support. 

In order to take account of the broad use of these terms, the hierarchical demarcations illustrated in 
Fig. 2 and based on the system shown in [4] are employed in [2] and in the present volume. 
Dependability can therefore be regarded as an umbrella term for reliability, availability, safety and 
security, all of which make up the attributes of dependability. This volume focuses on design for 
reliability for design elements and systems. Here, a "design element" denotes the smallest self-
contained component that can fulfill one or more functions (Glossary BES-PE 3-2009/11). It may 
consist of one or several components. 

Dependability

Reliability Availability

Software Reliability

Safety

Systems Reliability

Security

Durability Maintenance Maintainability

 

Fig. 2: Dependability and reliability 

According to [2], reliability is the ability of the product to perform a required function in the 
predefined operating range over a defined useful time. 

This useful time is divided into operating time and idle time. The operating time is the time during 
which the unit is functioning in accordance with its intended purpose. During idle time, on the other 
hand, the unit is not in operation. 

The stress time is the time during which a damage mechanism (processes that lead to a gradual 
change in a unit’s properties due to load) is acting on the unit. It generally consists of parts of the 
operating time and idle time, operating time does not necessarily concur with the stress time: for 
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example, certain electronic components in a parked vehicle are still under stress or exposed to 
corrosion. 

Lifetime is the time during which a unit can be exposed without interruption to a damage mechanism 
until failure. In general, developers endeavor to achieve a sufficiently long lifetime in terms of the 
stress time; the correlation to useful time or operating time, on the other hand, is not crucial. The 
ratio between lifetime and stress time can be expressed as safety versus failure. The above terms are 
graphically illustrated in Fig. 3. 

Operation

Stress time

Idle time

Useful time

Lifetime

Safety

 

Fig. 3: Relationship between useful time, stress time and lifetime 

For the sake of simplicity, hereinafter the words "time" or "duration" are used to represent all 
possible, damage mechanism-specific lifetime characteristics such as time (hours, months, years), 
travel, distance covered, mileage, cutting length of a tool, number of load cycles, actuations, 
switching operations, work cycles, revolutions, etc. 

Design for reliability is a discipline in engineering science, which applies scientific findings to ensure 
that the design of the product possesses the product characteristic "reliability". This also includes 
incorporating the ability to maintain, test and support the product over the entire life cycle. 

Where reliability is concerned, different objects can be examined: 

 mechanical and electrical/electronic hardware,  

 software,  

 people,  

 systems composed of the above units, and 

 services.  

This volume deals primarily with the reliability of design elements consisting of mechanical and 
electrical/electronic hardware in terms of durability, and the system reliability derived from these 
design elements, see Fig. 2. 
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2.2. Causes of component failure  

2.2.1. Local and global approaches 

L0

L0*

s0

s0*

 

Fig. 4: Global (left) and local (right) reliability assessment concepts 

Ostensibly, component failure occurs when a load exceeds the amount of load that can be withstood 
(load capacity) by the component. However, this statement is not really helpful, because it expresses 
the reasons for failure in a very superficial way and does not contribute to a deeper understanding of 
the causes of failure. Furthermore, we can soon observe that certain components may fail while 
others do not, under the same load. The cause of failure cannot therefore be found in load alone. 
Concepts that explain the failure of a component by comparing load and load capacity are referred to 
as global or load-based concepts. 

A more in-depth method of observation starts with the premise that the external load at each 
location on the component generates a (locally variable) stress. Failure then occurs when the local 
stress exceeds the amount of stress that can be withstood at the location of failure (strength). Both 
stress and strength are dependent upon the nature of the load, as different types of load can give 
rise to different damage mechanisms, which are characterized by different parameters.  

Concepts that are based on the local comparison of stress and strength are referred to as local 
concepts. 

EXAMPLE:  

Let’s take a look at a stepped bar with a fillet radius of R0, which is subjected to quasi-static load from an 
external force L0, Fig. 4. 

In order to ascertain the safety of a component with respect to brittle facture by the help of a global 
concept, component experiments must be performed under different forces L, and the force L0* determined 
at which failure first occurs. This force represents the global load capacity. The quotient L0*/L0 constitutes a 
measure of the safety of the component in terms of failure.  

The results cannot simply be transferred to other components, however: the complete component 
experiments must be repeated for a different bar with a fillet radius of R1 , in order to ascertain its load 
capacity L1*. Moreover, statements about safety cannot be made before a component is available. 

For reliability assessments using a local concept, first of all we have to find a local variable that 
characterizes stress as a result of the external force. In this example, this would be mechanical stress. 
Assuming a linear elastic characteristic, this stress can simply be calculated at the notch root (the point of 
the highest stress) as s0 = c(R0)L0 from the force L0, whereby the transfer factor c(R0) depends on the fillet 
radius but not on the load. The variable s0 represents the stress.  

Likewise, a local quantity can be derived that characterizes load capacity:  s0* = c(R0)L0*, this being strength. 
The quotient  s0*/s0 constitutes a local measure of component safety versus failure. This procedure has 
clear advantages: for assessing a design alternative, e.g. a bar with a fillet radius R1 , it would not be 
necessary to conduct further experiments, but simply to recalculate c(R1), as s1*/s1  = s0*/(c(R1)L0).  
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At this point we have simplified the process by assuming that s1*= s0*, i.e. all bars have the same local 
strength, which therefore represents a real material parameter. This does not necessarily have to apply to 
all damage mechanisms, however; the fundamental laws defining the dependence of strength on various 
influences have to be known. This is a key element of a local assessment concept. 

The above example clearly illustrates the advantages and disadvantages of the two assessment 
concepts. So, for load-based (global) concepts: 

 The advantage is high accuracy, as all experimentally determined variables were ascertained on 
the component itself. 

 On the other hand, transferability to other components cannot simply be assumed, and relatively 
little can be learned about the causes of failure. What is more, conducting the component 
experiment with complex load is often difficult or impossible, or too expensive. 

As for local concepts, on the other hand: 

 Their advantage is their suitability for use in earlier stages of the product creation process, or 
where component experiments are difficult, too expensive or unfeasible. In addition, they can be 
used to build up a deeper understanding of the causes of failure. 

 As a disadvantage of local concepts, insufficient accuracy can sometimes be mentioned. 
Furthermore, a lot of expertise has to go into the assessment concept. 

As is often the case, the solution here is to use a combination of both approaches: the strength that 
is to be employed with a local concept must be determined in an experiment, if possible on the 
component. This approach covers all influences that may not explicitly be included in an assessment 
concept due to insufficient knowledge. 

2.2.2. Damage characteristic, S/N diagram 

The deliberations above always focused on the level of load/load capacity or the local variables 
stress/strength. This only result in a meaningful procedure if a load is applied that either immediately 
leads to failure or can be withstood for an infinitely long time. Such cases are seldom of any practical 
meaning, particularly in the context of examining reliability.  

Failure often does not occur immediately, even under constant or periodic load, but only after a 
certain duration, Fig. 5. Examples are metal creep at temperatures above 40 % of the melting 
temperature, or crack propagation in brittle materials. This model assumes that the load provokes a 
certain damage that increases over time (and possibly depending on location), which may lead to 
failure. This must be characterized by a damage parameter that conforms to the physical laws of the 
local processes taking place. 

Thus, the load is a two-dimensional quantity; it features both a (possibly variable) level, and a 
duration. Consequently, when stating the level of load the duration of load must also be mentioned, 
and if the level is variable the complete load-time curve (often referred to as a load-time series) must 
be indicated.  
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Fig. 5: Delayed fracture as a result of progressive damage. Left: Metal creep under constant load 
(damage parameter elongation ε ). Right: Crack propagation (damage parameter crack length a).  
t* indicates the lifetime. 

Different lifetimes can be achieved with different load levels. To put it simply, the information about 
the dependence of lifetime on the load level, particularly where load is uniform, can only be 
illustrated in a t-L diagram by means of corresponding lifetime points (t*,L0), whereby the nature of 
the load must be described by other means (e.g. constant, uniform, cyclic with zero underload, etc.). 
The lifetime points can also be connected via a curve (assuming continuous behavior), to illustrate 
the dependence of lifetime on the load level, Fig. 6. This dependence is often described by means of 
a power function, which appears in logarithmic form as a straight line. Under uniform cyclic loading, 
this type of representation is traditionally referred to as a Wöhler curve (or S/N diagram) . 
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Fig. 6: Lifetime points in an S/N diagram. 

It is extremely important to clearly differentiate the S/N diagram from an illustration of damage over 
time by means of a damage parameter. The latter is crucial for visualizing and understanding the 
physical processes at work. In practical reliability assessments, however, it is the Wöhler 
representation of lifetime points that plays a key role. This is also because knowledge of the nature 
of a damage parameter and the concrete course of damage over time is not necessarily available for 
every damage mechanism.  
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The S/N diagram does not illustrate a time series, but rather a boundary between the zones "unit 
under observation intact" (bottom left) and "unit under observation failed" (top right). Both the "in 
load direction", for a constant lifetime feature, and the "in lifetime direction", at a constant load or 
stress, can be examined. 

2.2.3. Distributed characteristics, failure probability 

As already mentioned above, a concrete component fails if its load exceeds its load capacity, or its 
local stress at the location of failure exceeds its strength.  

If we now conduct a series of experiments with several components under the same load, different 
lifetimes will result, despite the same test conditions and (nominally) identical components. Lifetime 
is therefore a statistically distributed, not a deterministic, quantity.  What this means is that due to 
randomly fluctuating material and manufacturing conditions, the lifetime of a component cannot be 
exactly predicted. The same frequently applies to its load, as a result of fluctuating conditions of use. 
As the local variables stress and strength are derived from global load and load capacity, these are 
also distributed variables. They are characterized by their statistical distribution. Details on 
distributions and their characteristic values can be found in section 6.1.3 of the Annex. The fact that 
lifetime is a distributed variable is sometimes implied symbolically by entering a distribution density 
function above the lifetime points, Fig. 7. 

t

L

L0

t

F

q%


it


qt

 

Fig. 7: Distributed lifetime. The points indicate the variable lifetime ti* of the i-th, nominally identical 
part at a constant load quantity L0 (top). Failure probability F dependent on the lifetime characteristic 
t (bottom). 

The distributed characteristics approach opens up an entirely new perspective regarding the 
question as to why components fail: as neither the exact stress nor the exact strength of a concrete 
component is known in advance (but can only possibly be recorded or measured afterwards), the 
question as to whether a concrete component will fail will not be answered deterministically. In 
response to this question, we can only state a failure probability. In other words, we can only 
determine what proportion, from the population of all components, can fail, but not whether a 
particular component will fail. 
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As a rule, tq* (also occasionally known in the literature as Bq) signifies the lifetime until which the 
proportion q of a population of products has failed. Common values for q are e.g. 10 %, 2 % or 1 %. 
Expressed mathematically, tq* is the q-quantile of distribution. t10*, for example, denotes the lifetime 
up to which 10 % of products of a population have failed. The median of the distribution is the 50% 
quantile t50*. Where generally skewed distributions are concerned, the median differs from the mean, 
also known as MTTF (mean time to failure); in most cases, however, a relationship can be illustrated 
between two variables. tq* can be determined easily with the aid of the failure probability curve F(t) 
(possibly as a straight line in a suitable probability paper). To this aim, the point where the q%-
horizontal intersects with the failure probability curve is determined and the associated lifetime 
characteristic read on the t-axis, Fig. 7. 

Reliability is described as the survival probability R(t) , which can be determined from the failure 
probability: 

R(t) = 1 – F(t).  (2.1) 

2.3. Failure characteristic over time, failure rate and "bathtub curve" 
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Fig. 8: Failure rate and "bathtub curve" according to [1] 

In the field of quality assurance, in particular, it is common to express the failure characteristic by 
means of the failure rate λ: 

)(

)(
)(

tR

tf
tλ  , (2.2) 

whereby f(t) signifies the failure probability density function and R(t) denotes the survival probability 
at the time t, Fig. 8. The failure rate at a particular point in time can be estimated empirically, by 
dividing the number of failures per time unit by the sum of not-yet-failed components. This 
estimation is known as the failure quota. 

The failure rate can be interpreted as a measure of the probability that a component will fail, if it has 
not failed up to this point in time, [1] p. 23. The failure rate is a relative quantity: the failures are 
divided by the number of still intact units. Furthermore, the rate is a time-referenced quantity, as the 
name suggests: the failures are stated per time unit (period, year, hour, etc.). Consequently, the 
statement "X-ppm" is not a failure rate.  
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The failure rate curve over the duration of service of components has a characteristic shape. Due to 
its similarity to the image of a longitudinal section through a bathtub, it has the name "bathtub 
curve". This curve generally has three segments, although not every component portrays this typical 
behavior: 

 Segment I shows a falling failure rate and is typical of early failures due to manufacturing and 
assembly errors. An early failure characteristic means that the probability of failure in the next 
time segment is high at the start of stress, and declines over time. These failures can typically be 
averted by quality controls or experiments on a pilot series. 

 Segment II shows a constant failure rate, which is typical for random failures due to operator 
error or contamination, for example. Here, the probability of failure in the following time 
segment does not depend on the product’s previous history. The same proportion of the 
products still intact at the beginning of each time segment always fails within time intervals of 
the same length. Electronic components may demonstrate this characteristic, due to cosmic 
radiation, for example. In this case, failures can be avoided by correct usage. 

 Segment III features a rising failure rate and is typical of degradation, wear and fatigue. In this 
area, it becomes increasingly probable that an as-yet intact product will fail within the following 
time segment. (Premature) failures in this area can only be avoided by the correct design.  

The failure rate must not be equated with the absolute number of failures, as shown by the following 
two examples. 

EXAMPLE: 

A manufacturer has produced 100 units and records the following failure numbers in the following 4 time 
periods: 

 

Period 1 2 3 4 

Failures in period 10 9 8 7 

Do you think the failure rate here is falling, constant or rising?  

The failure quota can be used as the basis for estimating the failure rate. The table below shows that 
despite falling failure numbers, the failure quota remains roughly constant. This effect is due to the fact 
that the total number of still intact units falls over time. 

 

Period 
Intact units  
at the start  
of period 

Failures  
in period 

Failure quota, 

[1/period] 

1 100 10 0.10 

2 90 9 0.10 

3 81 8 0.10 

4 73 7 0.10 
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EXAMPLE: 

A manufacturer produces 100 units per period over 4 time periods and then records the following failure 
numbers: 

 

Period 1 2 3 4 

Failures in period 10 19 27 34 

Do you think the failure rate here is falling, constant or rising? 

Again, the failure quota is used as the basis for estimating the failure rate. The following table shows that 
despite rising failure numbers, the failure quota remains roughly constant. This effect is due to the fact that 
the total number of intact units rises over time, because newly produced units are constantly being added. 
 

Intact units at the start 
of the period from 
production period 

Failures in this period 

from production period Period 

0 1 2 3 0 1 2 3 

Total intact 
units at  
the start  
of period 

Total 
failures 

in period 

Failure 

quota, 

[1/per.] 

1 100    10    100 10 0.10 

2 90 100   9 10   190 19 0.10 

3 81 90 100  8 9 10  271 27 0.10 

4 73 81 90 100 7 8 9 10 344 34 0.10 

 

As part of product development, endeavors are made to increase the reliability of a product 
systematically, i.e. to avoid early failures as far as possible (quality assurance), to widen the range of 
"random failures" (usage period; useful time) and to delay the beginning of wear and aging failures 
as far as necessary, Fig. 9. The failure characteristic of products is investigated in lifetime tests 
accompanying the development process. These are evaluated by applying Weibull’s theory. 
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Fig. 9: Improving reliability during the course of product development (schematic) 

The failure rates of numerous electronic standard components are listed in Failure Rate Catalogs, e.g. 
Military handbook 217 on predicting the reliability of electronic components [10]. Starting with the 
basic, temperature-dependent failure rates of components stated therein, failure rates for concrete 
usage conditions can be calculated, if simple models are assumed and load factors are taken into 
consideration. The load factors cover mechanical, climatic and electrical stress, for example. 
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However, measured and predicted values of reliability of electronic components (calculated on the 
basis of various manuals) may differ by a factor of up to 100. The calculation methods mentioned 
must therefore be critically examined:  

 One of the principal problems is that the data employed for the assessment is old. The manuals 
are not always updated regularly (the most recent issue of [10] is from 1995, for example), so 
that the information they contain do not conform to today’s state of the art. 

 Secondly, vital predictors such as temperature change, temperature gradient, shock, vibration, 
switch-on/off processes, manufacturing quality and aging cannot be predicted, or not realistically. 

 One key objection arises from the fact that these calculation models always operate with 
constant failure rates and can therefore only apply to random failures (zone II of the bathtub 
curve). This is because in this case, calculating the system failure rate from the failure rates of the 
individual elements is especially simple, see section 3.4.5. In the electronic components of today, 
however, degradation plays an important role. Degradation leads to rising failure rates and 
cannot be covered using models such as exponential distribution, which assume constant failure 
rates. 

For the reasons described above, quantitative analysis of the reliability of electronic components 
based on manuals should be employed with caution and understanding.  

FIT (Failures In Time) is a unit of measurement showing the failure rates of electronic components in 
the area of random failures, λ = constant: 

h10

1
1

9
FIT . (2.3) 

EXAMPLE:  

If 7 out of 500 components fail within an operating time of one year, the failure rate is  

16h10598,1
h8760500

7 


λ ,  

which is synonymous with λ = 1598 FIT.  

Conversely, the expected number of failures can be calculated from a known failure rate (e.g. from a 
tabular value). If 2000 components complete a 1200-hours test with the failure rate stated above, 

approximately 4h101598h12002000 19    failures can be expected. 
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3. Design for reliability 

3.1. General concepts  

A range of approaches exists for achieving reliability in a product. A common feature they all share is 
that the achieved reliability must then be verified and validated. 

1. Test-based design. In this approach, the primary focus during the development process is on 
designing the functionality. Weak points affecting reliability are exposed in tests and then 
corrected by a design measure. Further tests follow, to verify the effectiveness of the measure. 
The "DesignTestFixTest" cycle is discontinued when the required reliability has been 
demonstrated by a test. 

2. Experience-based design. The designer can draw on empirical and qualitative experience to 
produce a design that will be reliable. This approach requires knowledge of the reliability 
characteristic of earlier products and of whether this can be transferred to the current product. 
Such knowledge typically stems from earlier test, standard and/or overdesign-based approaches 
and from the analysis of field data. 

3. Overdesign-based approach. The design is conceived such as to clearly surpass reliability 
requirements. Here, the aim is to achieve a particularly large safety reserve between stress and 
strength. The selection of this safety reserve is not made on the basis of knowledge of the 
distributions of stress and strength, but is derived from experience, or from standards and sets of 
rules. 

4. Standard and rule-based design. Design takes place in accordance with the specifications or 
design guidelines in standards and sets of rules. 

5. Design based on Design-for-Reliability principles. In this approach, reliability is knowingly and 
actively incorporated in the design element during the design phase. In this case, the aim is to 
achieve a high degree of accuracy, thereby avoiding both "underdesign" and "overdesign". 

On the basis of the damage mechanisms to be expected as a result of load, the design element is 
conceived such that the stresses occurring during the service time stipulated by the reliability 
requirements remain smaller than its strength. The design process entails the selection of the 
optimum system structure and partitioning, solution principle, design element geometry 
(dimensioning), positioning, material and production process. Reliability can subsequently be 
predicted with the aid of design concepts based on the arithmetical superposition of stress and 
strength. 

All these approaches have their advantages and disadvantages. The most important of these are 
listed in Table 1. Which approach to employ for conceiving a design element must be examined and 
established for each individual design element. The principal criteria are: 

 level of innovation,  

 cost effectiveness, i.e. development costs (test outlay, series launch costs, applicability of existing 
load, stress and strength data as well as design concepts to successive generations), production 
costs, potential quality costs, 

 speed (time to market),  

 future strategic importance of the design element, and  

 legal and customer requirements. 
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Approach Principal advantages Principal disadvantages 

Test- 
based 

No previous knowledge needed for 
design, verification on the design 
element  

Effort (tests, repeat tests), time required, 
limited transferability, of limited suitability 
when level of innovation is high 

Experience- 
based 

Effort (fast) Experienced staff required, often not 
transferable, only feasible for evolutionary 
development 

Overdesign-
based 

Effort (fast), 
(legal) certainty 

Higher planned manufacturing costs due to 
overdesign, only feasible for evolutionary 
development 

Standard- 
based 

Effort (fast), 
(legal) certainty, acceptance 

Higher planned manufacturing costs due to 
overdesign, only possible with standardized 
components and applications 

Design for 
reliability 

Transferability, accuracy as based on an 
understanding of the laws of physics, 
also suitable for new developments 

Preliminary development work needed for 
determining load, stress, strength and 
design concept 

Table 1: Principal advantages and disadvantages of the 5 approaches to achieving reliability. 

Table 2 contains a relative evaluation of the 5 approaches and their main criteria. Different 
approaches may be employed depending on the weighting of the criteria for the specific design 
element concerned. 

The design for reliability approach represents the best compromise when design elements have to be 
developed whilst simultaneously overcoming increasing stress (increasing loads and/or performance 
densities), ever shorter development times, increasing pressure on product costs and more exacting 
requirements. These days, this combination is a frequent occurrence. What is more, only the design 
for reliability is suitable when there is a high level of innovation. Further, only this approach is 
sustainable over the long term, as it enables an understanding of the failure behavior of the design 
element based on the laws of physics, allowing a knowledge base applicable to future generations to 
be built up. This knowledge base is then available for future developments as empirical knowledge 
that is reliable and can be extrapolated. Firstly, this enables advance development investment to be 
offset over time; secondly, it allows the speed advantage of an experience-based approach to be 
exploited.  

Thus, use of design for reliability is recommended for the reasons stated above. 

 

Approach Suitability for 
new 

developments 

Development 
costs 

Manufacturing 
costs 

Risk of quality 
costs 

Speed (time to 
market) 

Test-based o - o o - 

Experience-based - + o - + 

Overdesign-based - + - + + 

Standard-based - + - + + 

Design f. reliability + o + o o 

Table 2: Relative evaluation of the 5 approaches for ensuring the reliability of design elements  
("+" good, "-" poor, "o" average suitability). 
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3.2. Basic task and principles 

The task of design for reliability is to conceive the design element such that its stress during its 
service time as specified by the requirements remain smaller than its strength. 

This is achieved, firstly, by designing the stress by means of 

 system structuring and partitioning, 

 solution principle, 

 design element geometry, and 

 design element position 

and secondly by designing the strength accordingly by means of 

 solution principle, 

 design element geometry, 

 material selection and manufacturing process. 

A prerequisite for the above is a complete, quantitative description of the load acting on the higher-
level system, and the internal loads originating from this load, which act on the free section of the 
design element. 

The principles provide an answer to the following fundamental questions: 

 What is the objective of design for reliability? 

 What work methods are used to design reliability so that this objective is achieved? 

 On what object is reliability being designed? 

 When in the development process must reliability be designed? 

For the developer, the principles act as a "corridor" within which he can achieve reliability in the 
design. For management, they provide the basis for controlling the aspects involved in design for 
reliability. 

The principles are: 

 Failure avoidance. The objective of design for reliability is to prevent the occurrence of failures 
during the service time, by not triggering failure mechanisms. If the triggering of failure 
mechanisms over the course of the service time is unavoidable, reliability must be designed such 
that the failure probability is kept sufficiently low with regard to the situation concerned. How 
small this failure probability must be is established individually in each case. 

 Design with models and cause-effect relationships. Design for reliability is based on reliability 
models and cause-effect relationships. To be precise, knowledge is required of the cause-effect 
relationships between load and design, design and stress, design and strength, stress and 
damage mechanisms, reliability and stress/strength. 

 Focus on design elements. The focus is on design elements because all products consist of them, 
and the same design elements are repeatedly employed in a variety of products. Design for 
reliability begins with system structuring and partitioning along the V-model. This creates ideal 
conditions for achieving reliability at design element level. The requirements from the higher 
level are applied to the level below. Verification starts from the design element and continues to 
the system, with particular consideration being given to interactions. 
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 Correctly timed design. Since design for reliability is achieved through the design concept, it must 
take place in those phases of the product creation process in which the design is specified. These 
are product innovation, project preparation or preliminary development and product/process 
conception. Design for reliability forms part of the product design process.  

Reliability is verified and validated from the product/process development stage through to the start 
of serial production. During serial production, parameters relevant to reliability are monitored by 
means of statistical process control (SPC), and their effect on the product tested in experiments 
(reliability inspection). During operation, reliability is measured. Firstly, this step validates the 
accuracy of the reliability predictions and consequently the design concepts used; secondly, it helps 
to create a database (strength figures) for future developments. 
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Fig. 10: V-model of product development. Requirements are broken down from the higher-level 
system to the design elements. Verification and validation take place in reverse order, from the 
design element to the system. 

3.3. Reliability requirements 

For a guarantee of sufficient reliability, first of all the reliability requirements have to be determined. 
These are characterized by the following aspects: 

 For which functions must reliability be guaranteed, and what are the failure modes at which the 
function can no longer be accomplished? This statement allows a clear decision to be made later 
on as to whether failure has occurred or not. More details on functions can be found in [11], 
Annex 3. 

 At what load must reliability be guaranteed? The load covers all externally acting mechanical, 
thermal, electromagnetic and chemical loads, and therefore also the ambient conditions. The 
amount of load is often variable. Its definition must therefore include part loads and the 
frequency with which they occur. Loads outside the intended use (misuse), which are not among 
the requirements, must be kept strictly separate from the above, however. 

 For what useful time and operating time must reliability be ensured? This information is 
subsequently used to define the relevant stress time, which forms the basis for assessing the 
reliability of the component. Different characteristics may denote the "time/duration", 
depending on the damage mechanism in question: typically, these are the number of load 
changes in the case of fatigue, and the time in the case of corrosion. It must also be borne in 
mind that where complex load with several components is involved as well as the duration, the 
synchronization of the components over time is frequently of particular importance. 

 What reliability measure must be guaranteed? This quantifies the required reliability in the form 
of a survival probability. This measure must be selected so as to ensure that verification through 
trials is also possible. 
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Lifetime variables such as MTTF and B10 are sometimes stipulated as a reliability measure, see section 
2.2.3. This is generally not recommended, as these are not reliability requirements but rather lifetime 
stipulations, which considerably restrict design freedom during development on the one hand, and 
do not provide any information about the survival probability of the design element on the other 
hand, because the useful time and operating time have not been specified. A procedure such as this 
only makes sense if the useful time and operating time are unknown, as is typically the case with 
catalog goods, also see section 3.4.2. Furthermore, the stipulation of a certain lifetime quantile as a 
measure of reliability also neglects the variance in lifetime, which can have far-reaching 
consequences for reliability, as the following example illustrates. 

EXAMPLE:  

A manufacturer must choose between two suppliers of a part, who have provided the following information 

about the lifetime of the part: Supplier 1: B10 = 5000 h, supplier 2: B10 = 6000 h. The manufacturer decides in 

favor of supplier 2 because of the better B10 values.  

During the warranty period of 1000 h, however, several complaints are received due to failure of the 
purchased part. Nevertheless, closer analysis of the failure numbers shows that the supplier had complied 
with his pledges, as shown in the following table:  
 

Weibull parameter Failures after 
Supplier 

T, [h] b, [-] 
MTTF, [h] B10, [h] 

1000h 5000h 6000h 

1 7275.4 6 6749.5 5000 7 ppm 10%  

2 26896.7 1.5 24280.9 6000 7143 ppm  10 % 

What has happened? The manufacturer did indeed choose a supplier who pledged a maximum volume of 
failures of 10 % after 6000 h for his parts, but he forgot to take into account how quickly these failures are 
reached, i.e. whether 9 % of failures are achieved after as few as 1000 h or only after 5000 h, for example. In 
other words, the manufacturer neglected to take into proper consideration the variance in lifetime 
(described by the Weibull parameter b).  

What’s more: if his decision had been made on the basis of the supplier’s statements regarding MTTF, the 
result would have been the same. In this case, the difference in favor of supplier 2 is even clearer. 

The general requirements given may be on very different levels from one customer to another, which 
is why it can be particularly difficult to base reliability requirements on them: 

 If the requirements originate directly from the end customer, they are very general and 
expressed "in the voice of customer". Functions are only specified for the uppermost system level 
(product level). Loads, such as useful time and operating times, must often be assumed on the 
basis of the intended use. The same applies to the reliability measure. Here, the road to be 
traveled until all the relevant reliability requirements have been determined is mostly especially 
long.  A systematic use groups and use case analysis and the Quality Function Deployment (QFD) 
method can help to quantify the requirements step by step to the extent that loads, useful 
time/operating times and a suitable reliability measure can be specified firstly for the product 
and subsequently for the unit in question. 

 For a system supplier, quantitative requirements may have been laid down by an OEM customer 
for the system to be delivered. These must then be examined to ensure that they are complete 
and reasonable. For example, the requirements for a fuel injection system will result from the 
conditions in the vehicle. Reliability requirements for the individual components are unknown in 
this case, but can be derived from the system requirements. If no requirements have been given 
by an OEM customer, these must first be formulated with him, as described in the case 
"requirements from end customers". 
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 In the case of tier 2 suppliers, functions, loads, useful time and operating time and the reliability 
measure may have been stipulated as requirements for the component, frequently based on the 
requirements for the higher-level system. Requirements for a gear will result from conditions in 
the transmission, for example.  

The following sources may be employed for determining or adding to the requirements:  

 Customer; the satisfaction of customer wishes is at the heart of every quality-oriented company 
policy. Here, in particular, variance due to different users (e.g. beginner, experienced, semi-
professional), higher-level systems (e.g. applications in various vehicle types), use of parts 
including assembly, transport and service (e.g. drilling and turning) and operating conditions (e.g. 
use in different geographical locations) must be taken into consideration.  

 Market; comparison with competitors is a decisive factor for successful positioning in the market. 

 Legal regulations and the state of the art; these must generally be observed when deducing and 
establishing reliability requirements. 

The customer satisfaction that one wishes to achieve is set against development and production 
costs. In addition, there is a direct relationship between the desired reliability and the quality costs, 
as well as the overall costs caused by the system (total life cycle cost). Therefore, the determination 
of target parameters for the reliability requirements is a business decision that brings about 
positioning in the market. The QFD method can provide considerable assistance at this point both in 
the definition of target values and in aligning product development with the customer’s wishes. 

3.4. Quantitative reliability assessment 

3.4.1. Overview 

The relationship between stress/strength and reliability can be summarized as follows, Fig. 11: 

 The starting point for assessment are the loads that may lead to damage to the component.  

 The stress is derived from these loads within the framework of a local concept. For this purpose, 
suitable variables must be found that characterize the damage mechanism under observation. 

 Parallel to this, the strength is determined by means of an experiment. In the context of the local 
concept, this takes the form of a trial on specimen. The strength of the component is calculated 
from the load capacity of the sample using this concept. 

 The failure probability F is calculated from the distributed stress and strength. The survival 
probability R = 1 - F is a measure of reliability. It can be assessed by way of a comparison with the 
required reliability.  
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Fig. 11: House of Reliability: From load to failure probability 

3.4.2. Determining stress 

This step involves deducing the stress and the stress time from the requirements. Stress is a local 
parameter that characterizes the effects of the load on the design element in terms of the damage 
mechanism under observation.  
 

Damage mechanism  Loads and boundary conditions Stress parameter 

Plastic deformation Static mechanical load Mechanical stress or strain 

Creep  Static mechanical load and 
temperature 

Mechanical strain and  
temperature 

Fatigue right up to 
technical cracking 

Variable mechanical load or 
variable temperature  

Amplitude of mechanical stress or strain 

Crack propagation Static or variable mechanical load 
or constant or variable 
temperature 

Stress intensity factor (SIF) or range of 
SIF 

Wear (adhesion, abrasion, 
surface cracking, tribo-
oxidation) 

Mechanical load and temperature, 
composition of tribological system 
and relative movement of partners 

Friction power density* 

Electrochemical corrosion  Metal, conductive medium and 
temperature 

Electrical potential* 

Diffusion Difference in concentration Concentration gradient 

Dielectric damage Electric field, temperature Electrical voltage, temperature 

Electromigration  
(including thermal and 
voltage migration) 

Electrical current, and possibly 
differences in temperature and a 
static mechanical load 

Electrical current density, temperature, 
temperature gradient, gradient of 
hydrostatic mechanical stress  

* Not yet established as an element of a local design concept 

Table 3: Loads and associated damage mechanisms  
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Fig. 12: From requirements through loads to stress 

Table 3 contains some damage mechanisms with their associated stress parameters. Further details 
can be found in [12,13]. Combinations of damage mechanisms are also possible; a typical example is 
thermomechanical fatigue (fatigue, creep and oxidation).  

The starting point for determining stress is always  

 a concrete design, 

 a load L(t), which may consist of several components, and 

 a stress parameter P as a local variable, which characterizes the damage mechanism under 
observation. 

Determining the stress means establishing the local characteristic over time of this local variable 
P(x,t) on the component as a consequence of load (x – position vector, t - time). If several damage 
mechanisms are stimulated for the load in question, different local variables and different stresses 
may also need to be taken into consideration. In this case, the complexity of the assessment grows 
enormously. 

To determine the stress, first of all load-time characteristics are deduced from the requirements, and 
stress-time characteristics derived from these, Fig. 12. These may often need to be divided into  

 part application,  

 damage mechanism, and  

 type of stress,  

because the subsequent weighting, superposition and extrapolation of the individual stress 
components cannot simply be combined as desired. The direct addition of tensional and torsional 
load is not possible, for example, neither is the direct addition of stress from part application with a 
different duration. Likewise, different stress components, such as shear stress and normal stress, 
cannot be directly added together. 

The lovel and duration of load can: 

 be determined from the loads of the higher-level system, depending on the intended use. They 
will then typically take the form of load-time series or (classified) load collectives. Collectives are 
compact in form, but also have disadvantages. For example, the chronological sequence of the 
load is not defined in a collective. Furthermore, different components of a complex load cannot 
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be synchronized over time using collectives. If these cases are relevant to the part application in 
question, load-time series should therefore be utilized.  

 be derived from measurements on similar predecessor products. In this case, transferability from 
the old to the new product must be assured, or the loads must be re-evaluated.  

The stress is typically calculated from the loads using simulation, but may also be deduced on the 
basis of analytical relationships. The technique used is often structural-mechanical calculations with 
the aid of the Finite Element Method (FEM), which is used to calculate local stresses from the 
external forces and moments - typically for assessing the damage mechanisms fatigue or crack 
propagation. However, local temperature characteristics can also be calculated from a given, possibly 
variable ambient temperature or heat source, for example, e.g. for assessing the damage mechanism 
creep. If a linear-elastic material characteristic is presupposed, quasi-static calculations can be 
carried out to determine the stress conditions for a unit load. Here, the chronological sequence of 
the stress parameter is achieved by scaling the load-time series L(t) by the (location-dependent) 
transfer factor cL=1(x): 

)()(),( 1 tLctP L   xx . (3.1) 

Where the characteristic is not linear, P must be derived directly from the relationship P = P(x,L(t)), 
which is a great deal more complicated. The variable does not have to be a scalar for either the stress 
parameter or the transfer factor. In the case of fatigue, for example, mechanical stress is employed 
for both variables, which constitutes a 2nd-order tensor with 6 independent components. 

Alternatively, in exceptional cases stress can also be determined in experiments, with the aid of 
strain gages, for example, often if there is insufficient knowledge of the cause-effect relationships 
between load and stress. This turns out to be difficult, however, as the accessibility of the measuring 
locations for determining local variables cannot be taken for granted. 

As stress is a locally distributed variable and the location of failure is generally unknown in advance, a 
reliability assessment must be conducted for the complete (discretized) unit, and then the location 
with the smallest reliability named as the most probable failure location on the basis of the worst-
case principle. This step can only be dispensed with if the failure location is known in advance from 
experience. 

The determination of the stress time is often more difficult. This is the time during which the damage 
mechanism under observation is acting, measured in a damage mechanism-specific unit. It must be 
derived from the operating time and idle time, which are typically real time units. 

The following procedure is recommended: 

1. Firstly, determine the unit in which the stress time is to be measured. The two most common 
cases are  

a. real time units (hours, days, years, etc.) for time-dependent damage mechanisms such as 
corrosion and creep, and 

b. number of load changes for the damage mechanism fatigue. 

2. Next, the useful time and pattern of use must be determined by means of use case and use 
groups analysis. The useful time is thus divided into operating time and idle time. 

3. After this, the proportion of operating time and idle time during which the damage mechanism is 
acting (stress time) must be determined. Load change-dependent damage mechanisms such as 
fatigue will probably act primarily during the operating time, whereas time-dependent factors 
such as corrosion can act throughout the useful time (operating time and idle time). Unexpected 
effects may occur, however. For example, an electronic component in a vehicle may also be 
under voltage when the vehicle is not in operation, which may result in alternating thermal stress 
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and so in fatigue. Alternatively, the corrosion suffered by a component during operation in the 
vehicle can only be suppressed by an increased temperature, meaning that it is only damaged 
during idle times.   

4. Finally, the total stress time is divided into the times under stress of the individual part 
application. For this purpose, higher-level assumptions about the relative frequency of the 
individual part applications are often required, which must be made as objective as possible. For 
example, the relative proportion of urban, interurban and freeway driving, or certain driving 
maneuvers, can be determined on the basis of statistical analyses of driving behavior. The same 
applies to the relative frequency of use at low or high outside temperature, humidity, etc., and 
weather statistics from the region in question may provide assistance in this connection. 

The deliberations above demonstrate that it is not possible to formulate generally applicable rules 
for deducing the stress time, and that each individual case must be evaluated separately. 

EXAMPLE:  

A piston pump is operated via a triple cam on a drive shaft. The system to which the pump belongs is 
intended for 20 years of use and is in operation 8 h a day in a 1-shift cycle. The shaft rotates at a constant 
speed of 3000 rpm while the system is in operation. To determine the stress level in terms of fatigue 
suffered by a component in the pump, which is subjected to load due to pressure pulsations in the pump 
chamber, the following procedure can be applied:  

First of all, we need to determine the unit in which the amount of stress is to be measured; in the case of 
fatigue this is the number of load changes. Next, we must ascertain the proportion of operating time and 
idle time at which the damage mechanism causes fatigue - in this case during the operating time only. This 
is not immediately obvious, however, but must be calculated from the useful time and pattern of use: 

TB = 20 years · 230 days/year · 8 h/day · 60 min /h =  2208000 min 

Here, it is assumed that the system is in operation 230 days of the year. From the operating time, we can 
now calculate the number of piston strokes: 

NK = TB min · 3000 rpm · 3 = 19.872·109. 

Since we already know from earlier pressure measurements that there are approx. 10 pressure oscillations 
(reverberations) per piston stroke, for the number of load changes: 

N = NK · 10 = 198.72·109. 

A special procedure must be employed when determining stress in so-called catalog products. These 
are products with a wide range of application and for which the future use and, in particular, the 
useful time, are uncertain.  

In such cases, the manufacturer must group potential uses into typical classes, and deduce loads and 
stresses within each class as described above. Here, however, the reliability assessment by the 
manufacturer is not for a stress time defined in advance, but rather is obtained indirectly by stating 
the lifetime of the product for the use class in question. In this way, after he has selected the use 
class that seems most apt to his particular use, the user can determine the stress time during which a 
certain reliability is guaranteed. This procedure is illustrated in Fig. 13, further details on presenting 
lifetime data in the probability plot can be found in section 4.3.2. 
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Fig. 13: Calculating the stress time from the permitted failure probability on the basis of lifetime for 
catalog products (representation on the probability paper) 

Once all stress components have been ascertained, they are superposed on a scalar equivalent stress 
time series, then classified to form a stress collective. Classification is understood to be a process in 
which the characteristic over time of the stress-time characteristics is broken down into individual, 
damage-relevant parts, which are then grouped in classes. For the "fatigue" damage mechanism, the 
amplitudes of the changes in stress play a key role, but so does the mean stress at which the changes 
in stress take place. With a collective, which forms the basis for a damage assessment, the 
information about the mean stresses is lost. For this reason, the amplitudes must be transformed as 
"damage-equivalent" to a certain mean stress. In addition, it is necessary to ensure that the constant 
amplitude strength curve (Wöhler curve) is compatible with this, i.e. shows the same mean stress. 

Finally, a damage assessment is performed, assuming that the strength in question is present. This 
procedure is set out in section 3.4.6. 

3.4.3. Determining strength 

Strength denotes the maximum stress that can be withstood by a design element for a defined stress 
time and for a given damage mechanism. It is calculated from the load capacity, which is deduced 
directly from an experiment. This experiment is typically conducted in such a way that the amount of 
load Li is kept constant, and several specimens are subjected to load until they fail. The experiment in 
which the load is applied uniformly at different levels until failure is known as a Wöhler experiment. 
The time to failure represents the (variable) lifetime of the specimens ti*. Through statistical 
evaluation, parameters of the distribution, such as the median t50*(Li) are determined at a given load 
Li. This procedure is then repeated for another load.  

If the aim is to apply the data in a local concept, the load Li can then be converted into a local 
variable at the failure location (of stress) si. Trials on specimens are usually conducted in this case. 
However, the Wöhler experiment can also be performed on components, in order to determine load  
capacities for load-based assessments. To ensure uniform treatment in both cases, a parameter Pi is 
next introduced, which can stand both for a load Li and a stress si, Fig. 14. 
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Fig. 14: Wöhler experiment and Wöhler curve. The shaded circles mark the time of failure with the 
parameter P at a certain level; the blank circles are experiments that ended without failure. 

The mean lifetime increases as the load falls. When entered as a double logarithm, this relationship 
can typically be represented as a straight line. Below a certain threshold, the lifetime values rise so 
dramatically that the time that is realistically available for the experiment is exceeded and no failure 
can be identified. This threshold is the so-called endurance limit. The time span until the endurance 
limit is reached is referred to as the finite life. To simplify matters, the Wöhler curve is often assumed 
to run horizontally below the endurance limit, although for some material classes a very flat, but not 
horizontal, form can be demonstrated. 

The Wöhler curve can be described mathematically by means of the following equation: 

k

DD P

P

t

t










  for DPP   and t  for DPP  , (3.2) 

whereby PD designates the so-called endurance limit and tD denotes the transition (turnaround) point 
from finite to infinite life. The Wöhler exponent k determines the slope of the Wöhler curve: the 
higher k is, the flatter the curve in the finite life range. t generally signifies the lifetime characteristic, 
which may look different for certain damage mechanisms. Where fatigue is concerned, for example, 
the variable N is traditionally used to denote the number of load changes. The variables are median 
values of load capacity or strength. The index "50" and the superscript "*" have been omitted for the 
sake of clarity. 

Equation (3.2) is also referred to as the Coffin-Manson law, and is often used to described lifetime in 
the event of fatigue as a result of mechanical or thermal load. This relationship is also employed in 
numerous other cases, such as for characterizing the lifetime of insulators, for example, under 
exposure to an electrical voltage [12], p. 259.  

In some cases, another relationship between P and t can also be deduced on the basis of physical and 
theoretical correlations. The following relationship is a typical example: 











00

exp
P

c

P

c

t

t
, (3.3) 

which was calculated directly from the known Arrhenius equation to describe the speed of chemical 
reactions. Here, c signifies the ratio Ea/K of activation energy Ea and Boltzmann constant K = 8.6E-5 
eV/K. However, c can also generally be expressed as a free constant, which has to be adapted in line 
with the experimental results. This equation is often employed to describe lifetime in the case of 
damage due to the effect of temperature, so that P = T (T absolute temperature in Kelvin).  
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The motivation for this is a model in which damage is a temperature-dependent, physicochemical 
process that only leads to failure once a critical material conversion is reached, with the result that 
the lifetime t is inversely proportionate to the reaction speed v, as described by the Arrhenius 
equation 









T

c
vTv exp)( 0  (3.4) 

(v0 signifies a material constant). Thus  

)(

1

Tv
t   becomes 

)(

)( 0

0 Tv

Tv

t

t
   (3.5) 

and the generalization T = P leads directly to equation (3.3). Further theoretical relationships 
between stress and lifetime are discussed in [12], section 7.4. 

3.4.4. Component reliability 

3.4.4.1. True failure probability 

The failure probability is deduced from the distributions of strength and stress, Fig. 15.   

It is assumed that the variable in question has log-normal distribution, i.e. the logarithm of the 
variable is normally distributed. P = lg(X) therefore designates the logarithm to base 10 of either the 
load, the stress or the stress time, and P* = lg(X*) denotes the logarithm of load capacity, strength or 
lifetime (the procedure is identical in all three cases). The distribution density functions of P and P* 
are expressed by 

),,( 2
PP sPPf ,  )*,*,( 2

** PP sPPf . (3.6) 

*,PP  signifies the mean values of P and P*, and 2
*

2 , PP ss  their variances. For the purpose of assessment, 

an auxiliary variable  

z = P* - P  (3.7) 

is initially introduced. The normal distribution of P and P* directly results in the normal distribution 
of z, in the form of 

),,( 2
zz szzf , PPz  * , 2

*
22

PPz sss  . (3.8) 

Failures occur if P > P*, i.e. if the stress is higher than the strength, which is identical with z < 0. The 
failure probability is the relative proportion of these cases among all possible cases, and can be 
expressed by 

dzzfF z



0

)( . (3.9) 

The explicit evaluation of the above integral can be avoided by means of a transformation. We 
introduce the variable u, 

zs

zz
u


 , (3.10) 

so that it has standard-normal distribution (mean value 0 and standard deviation 1), and express the 
following with u0 : 

zs

z
zuu  )0(0 .  (3.11) 
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For the failure probability, this results in  

duufuF

u

u



0

)()( 0 . (3.12) 

This integral can be calculated using spreadsheet programs such as Microsoft Excel, and is set out in 
tabular form in section 6.3.1 of the Annex. A graphical representation can be found in Fig. 15 below. 
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Fig. 15: Failure probability for normally or log-normally distributed variables 

In summary, the failure probability calculation can be described as follows: 

1. The mean values and variances of P and P* are expressed by 2
*

2 *,,, PP sPsP . Calculate  

22
*

0

*

PP ss

PP
u




 . (3.13) 

2. Read the value F(u0) of the standard normal distribution from section 6.3.1, this is the failure 
probability. Reliability is R =  1 - F. 

3. Assess whether the given reliability exceeds the required reliability ( erfRR  ). 
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3.4.4.2. Simplified failure probability 

The distribution of stress is often not known. Therefore, in simplified form a fixed value P, which 
always occurs, is assumed as the stress, Fig. 16.  

In this case, the assessment is simplified to form 

PPz  * ,   (3.14) 

2
*

2
Pz ss  ,   (3.15) 

*

0

*

Ps

PP
u


 .  (3.16) 

However, we can demonstrate that this is only a conservative approach if P is a high quantile of the 
(unknown) distribution of the stress (e.g. 99%), otherwise, the calculated, simplified failure 
probability is smaller than the true probability. Details can be found in [5], p. 311f. 
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Fig. 16: Simplified failure probability 

3.4.4.3. Safety margins  

Alternatively, to assess reliability, a safety margin 

50

*
50

X

X
j  ,  (3.17) 

can be used in place of survival probability. Here, *
50X  denotes the median (value with a 50% failure 

probability) of the log-normally distributed variables load capacity, strength or lifetime, and X50 
denotes the median of the log-normally distributed variables load, stress or stress time (not the 
mean values of these variables). Assessment is achieved by comparing j with a required safety jerf, 
and is successful if j ≥ jerf. The safety margin is often presented graphically on a logarithmic scale as a 
distance between the logarithms of the median values, Fig. 17. 

The expression of a safety margin constitutes an alternative to an assessment of reliability on the 
basis of survival probability. Indeed, this is often used, but has a major disadvantage in that a 
relatively arbitrary required safety has to be stipulated. Guidelines or empirical values can be used 
for determining this figure. However, this very rarely concurs with real failure numbers, so that the 
connection between field behavior and design is played down. 
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Fig. 17: Representation of the safety margin 

When the required safety is based on statistics, however, it is possible to show that the two 
procedures are equivalent. The relationship between the safety margin and failure probability can be 
deduced as follows.  

By expressing logarithms of equation (3.17) and taking account of the relationship (see [6], p. 71) 

P  = E(lg(X)) = lg(X50),  (3.18) 

P *= E(lg(X*))= lg( *
50X ),  (3.19) 

equations (3.8) and (3.11) show that 

zsuzPPj 0*lg  . (3.20) 

Here, E(.) signifies the expected value of a random variable. Equation (3.20) produces 

zsuuj 010)( 0
 .   (3.21) 
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Fig. 18: Required safety dependent on the required failure probability at different values for sz. 

On the other hand, according to equation (3.12), the failure probability F also depends upon u0 , i.e. 
for a given variance sz a relationship exists between j(u0) and reliability R(u0) = 1 – F(u0). If therefore, 
with a known and predefined variance sz, the required safety is derived from u0,erf in accordance with 
equation (3.21): 

zerf su

erfj ,010
   (3.22) 

and u0,erf is calculated from the required reliability Rerf in accordance with equation (3.12): 
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duufR

erfu

uerf 

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,0

)(1 , (3.23) 

the two procedures are equivalent. The relationship is illustrated in Fig. 18. 

REMARKS:  

The measure of variation 1/T = XR=10% / XR=90% > 1 frequently used for fatigue can be converted to s by 
means of the relationship 

2.56

lg(1/T)
s   (3.24) 

XR=10%  or XR=90% refers to the quantile of any varying log-normally distributed variable, e.g. stress, strength 
or lifetime, with a survival probability of R=10% or R=90%. 

3.4.4.4. General distribution functions 

The sections above are based on the use of normally or log-normally distributed variables. But this 
assumption does not always make sense. Below, we go on to describe how a procedure may look 
when variables are generally distributed. 

The distribution of load, stress or stress time is expressed by the distribution density functions fP, the 
distribution of load capacity, strength and lifetime by fP*. The failure probability is generally the 
proportion of expected failures in relation to all possible cases.  
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Fig. 19: Failure probability based on the distributed load and load capacity or stress and strength 

First of all, let us take a look at a concrete value for P, Fig. 19.  Here, failures can be expected for all 
components with P* < P, i.e. load capacity is smaller than the load, or the strength is smaller than the 
stress, or the lifetime is smaller than the stress time. Components in the area (P*,P*+dP*] have the 
probability of occurrence fP*(P*)dP*, see section 6.1.3.1. To determine the failure probability for all 0 
< P* < P, these components must be added together. As this population is infinitely large 
(characteristics are described by distributions), this adding process is achieved by forming integrals: 


P

P dPPf
0

* **)( . (3.25) 
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The above integral represents the so-called conditional failure probability for a given P (load, stress 
or stress time).  

In order to calculate the (total) failure probability for all possible P, in accordance with the theorem 
of total probability (see section 6.1.1 in the Annex), each conditional failure probability must be 
weighted with its probability of occurrence, and added together over all possible cases. The 
loads/stresses/times under stress in the area (P,P+dP] have a probability of occurrence of fP(P)dP, 
adding is again achieved by the formation of integrals. Finally, the following results for the failure 
probability: 

dPdPPfPfF

P

PP











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

0

*

0

**)()( . (3.26) 

The above formula is a general means of expressing any distributions. In practice, the focus is mostly 
on special cases that permit simplified calculation, so that the calculation of the above integrals can 
be avoided.  

3.4.4.5. Arithmetical lifetime at variable stress  

In order to experimentally determine the lifetime of components at variable loads, experiments will 
repeatedly be necessary. The question arises as to whether this lifetime cannot be arithmetically 
deduced from the Wöhler curve (constant amplitude load capacity) and the load collective. Similar 
considerations apply to the local observation of a stress collective and a strength Wöhler curve. This 
is possible to a certain extent, if we apply the concept of damage accumulation, which is described 
below. To ensure the uniform treatment of local and global variants, the parameter P is employed, as 
usual, which can stand both for a load L and a stress s. t generally signifies the relevant lifetime 
characteristic. In the case of fatigue, as here, this is the number of load changes N. 
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Fig. 20: From the Wöhler to the lifetime curve for variable loading through damage accumulation 

With a constant amplitude load of a particular level Pi, the point where the Wöhler curve intersects 
with this load represents the lifetime ti*, Fig. 20. The fact that this is a statistically distributed variable 
is initially disregarded. If at this load level the amount is not ti*  but hi  <  ti*, failure will not occur. The 
model assumes that only a part of the lifetime is "used up", namely, the hi /ti*-th part. This part may 
also be understood as partial damage Di. If further part collectives with different load levels Pi occur 
in a load collective, to determine the total damage of the collective D, their partial damage Di must 
be added together: 

 
i ii
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For assessing the part collectives below the so-called endurance limit, at which ti*(Pi)=∞, there are 
different approaches, also referred to as Miner’s rule: 

  "Elementary Miner’s rule": These part collectives contribute exactly as much to the total damage 
as the others. The slope of the Wöhler curve continues below the endurance limit. 

  "Original Miner’s rule": These part collectives do not contribute to the total damage, and are 
disregarded. A horizontal curve is assumed below the endurance limit. 

  "Modified Miner’s rule": These part collectives contribute less to the total damage than the 
others. This is because a flatter gradient than that of the Wöhler curve is assumed below the 
endurance limit. 

From a practical point of view, the third approach has proven the most useful and is often employed 
in the "Miner-Haibach" model, although this is not discussed any further here, see [5] p. 191ff. 

In the case of a constant amplitude load, failure evidently occurs at D = ti*/ ti* = 1. At the same time, 
when the amount of load is variable it initially appears reasonable to assume that failure occurs at D 
= 1. If the collective damage equals D < 1, the collective can be repeated 1/D times until D = 1 and 
failure is therefore reached. Consequently, with a collective amount h0, the achieved lifetime is 


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D

h
D

t
11

0  (3.28) 

whereby D can be determined from equation (3.27). 

This strategy is known as linear damage accumulation, and constitutes a certain simplification, as in 
reality there is no physical reason for this linear approach. Numerous effects are known that result in 
a non-linear total damage characteristic. Thus, endurance tests have shown that actual failure often 
does not occur at D = 1, but rather at amounts of damage between 0.1 and 10, and sometimes 
beyond. Nonetheless, this approach is frequently the only practicable solution for obtaining an 
arithmetical estimate of lifetime under variable load based on constant amplitude strength. A certain 
pragmatic improvement in accuracy can be achieved by determining the actual total damage, known 
as the critical total damage D50% ≠ 1 for certain collective forms, and using this as the basis for further 
calculation instead of D50% = 1. Consequently, for the lifetime assessment: 



i

ih
D

D
t %50 . (3.29) 

In order to be able to make use of the approaches described in the preceding sections to calculate 
reliability, we need to deduce the exact distribution of lifetime according to equation (3.29). This is 
no trivial matter, however. It is possible to show that with log-normally distributed stress hi and 
strength ti*, the partial damages Di are also log-normally distributed. However, this applies no longer 
to the total damage D (as the sum of log-normally distributed partial damages), and consequently 
also not to the lifetime t*. For the purpose of assessment, we could conceive of an approach in which 
the equations (3.29) and (3.27) are regarded as a functional correlation between the lifetime and the 
random variables hi and ti*: 

*),( ii thft  . (3.30) 

Thus, the lifetime may well be a random variable with an unknown distribution, but its characteristic 
values such as mean and variance can be derived from the characteristic values of the distributions of 
hi and ti*, see section 6.1.3.3 in the Annex. From a pragmatic viewpoint, however, a log-normally 
distributed lifetime t*, with the same spread as the Wöhler curve, is assumed. 
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For lifetime safety tj , the following is finally produced with equation (3.29): 
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
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. (3.31) 

3.4.5. System reliability 

The reliability of a system can be evaluated on the basis of the failure characteristic of its 
components with the aid of the Boolean systems theory. To this aim, certain important preconditions 
must be met [1], p. 78: 

 The system is either irreparable or the assessment is taking place upon the first system failure 
(for reparable systems). 

 The system elements can only assume the states "functioning" or "failed". 

 The system elements are mutually independent, i.e. the failure characteristic of an element is not 
influenced by the failure characteristic of other elements. 

The first step in assessing system reliability consists in simulating the reliability structure of the 
system in a Reliability Block Diagram (RBD). In this diagram, the effect of failure of an element on the 
system is modeled, whereby the mechanical structure does not necessarily have to be modeled. Thus, 
in the Reliability Block Diagram, elements that are only physically present once in the structure can 
occur at several locations. 

The diagram features an input node I and an output node O. The system is functioning if a path 
between the input and output nodes is formed by the functioning elements. If not, the system has 
failed.  

Element 1 Element 2 Element n…I O

Element 1

Element 2

Element n

…

I O

Element 1 Element 2 Element n…I OElement 1 Element 2 Element n…I O

Element 1

Element 2

Element n

…
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Element 1

Element 2

Element n

…

I O

 

Fig. 21: Reliability Block Diagram of a serial structure (top) and a parallel structure (bottom)  

Three elementary structures can be employed for constructing the block diagram, Fig. 21: 

 The serial structure, Fig. 21 top. Here, the system can only function if all elements are functioning, 
i.e. the failure of one element immediately results in the failure of the structure. 

 The parallel structure, Fig. 21 bottom. Here, the system functions if at least one of the elements 
is functioning, i.e. only the failure of all elements results in the failure of the structure. 

 The k-out-of-n structure. Here, the system functions if at least k of a total of n elements are 
functioning. 
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REMARKS:  

Thus, a serial system is an n-out-of-n system, and a parallel system is a 1-out-of-n system. The 
block diagram of a k-out-of-n system can be represented as a combination of serial and parallel 
elements. 

The Reliability Block Diagram simulates the reliability structure and must not be confused with the 
physical structure of the system, as the following example demonstrates. 

EXAMPLE:  

An electric component consists of a parallel circuit of three identical electric resistors Ri =3Ω, Fig. 22 left. 
According to the specification, the resistance of the component must not exceed 1.2 Ω. What does the 
Reliability Block Diagram look like? According to the law for resistors connected in parallel, the total 
resistance of the component at n=3 is: 

Ω1
11

1




n

i iRR
. (3.32) 

If 1, 2 or 3 of the resistors fail, the total resistance figures of the component are as follows: 
 

Failures n R, Ω 

1 2 1.5 

2 1 3 

3 0 ∞ 

The above demonstrates that for the component to function, all resistors must be functioning, which is 
described by a Reliability Block Diagram with a serial structure, Fig. 22 right. 

R1 R2 R3I O

R1

R2

R3

~ ~ R1 R2 R3I O

R1

R2

R3

~ ~

 

Fig. 22: Electric circuit diagram of a component with three resistors connected in parallel (left), 
Reliability Block Diagram of the component (right)  

The failure or survival probability of these elementary structures is derived from the failure or 
survival probabilities of the elements as follows, [1], p. 81.  

According to the product law, the survival probability of the serial structure based on n elements is 





n

i

inS RRRRR
1

21  ,  (3.33) 

whereby Ri < 1 dictates that RS < min(Ri), i.e. the survival probability of the structure and therefore 
also its reliability, is smaller than the reliability of each individual element. If, however, clear 
differences exist in the reliability of the individual elements, and to the extent that only one element 
has a reliability of R0 < 1 and all others Ri ≈ 1,  the element with the smallest reliability will determine 
the reliability of the system, and RS ≈ R0. 

If the failure characteristic of the elements in a serial structure can be described by means of an 
exponential distribution, the calculation of system reliability is especially simple. In this case (also see 
section 6.2.2), the reliability of the elements is expressed by 

)exp()( tλtR ii  .  (3.34) 
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According to equation (3.33) for system reliability 

)exp()exp(
1

tλtλR
n

i

i 


,  



n

i

iλλ
1

 (3.35) 

whereby λ and λi denote the failure rates of the systems and the elements. Accordingly, with a serial 
structure, the failure rate of a system is simply the sum of failure rates of the elements (with an 
exponentially distributed failure characteristic). However, we should make clear once again at this 
point that exponential distribution can only describe random failures (constant failure rate), not early 
failures (falling failure rate) or degradation, fatigue or wear (rising failure rate). 

On the other hand, the product law dictates that for the parallel structure based on n elements 





n

i

i

n

i

inP RFFFFF
11

21 )1( , (3.36) 





n

i

iPP RFR
1

)1(11 , (3.37) 

whereby Fi < 1 dictates that FP < min(Fi) and therefore RP > max(Ri), i.e. the survival probability of the 
structure and thus also its reliability is greater than the reliability of each individual element. 

If n independent elements of the system all have the survival probability R0, the survival probability 
of a k-out-of-n system is expressed by (see [13], p. 20): 

  ini
n

ki

RR
i

n
R 











 00 1 . (3.38) 

Complex systems can be formed from a combination of the above-mentioned elementary structures. 
The quantitative assessment of a system’s survival probability can be deduced from the survival 
probabilities of the elements by searching for the said elementary structures in the hierarchical 
system structure from the inside out, and evaluating them according to the formulae described 
above until the entire system has been processed.  

The following example illustrates the considerable influence the system structure has on reliability. 

EXAMPLE:  

A complex product (a car, for example) consists of 500 parts, in which one failure leads directly to the 
failure of the product as a whole. We wish to estimate the system reliability of the product if the individual 
parts have a reliability of 99% or 99.99%. 

As the failure of any individual part results directly in the failure of the system, a serial structure is 
appropriate for modeling the reliability of the product. Thus, the survival probability of the system is 

%66.099.0
500

%99; SR , or %12.959999.0
500

%99.99; SR . 

Although one could assume that at 99%, the individual parts have a high survival probability, this is 
obviously not sufficient to guarantee sufficient system reliability in complex systems. This also explains the 
extremely exacting requirements for the reliability of elements in complex systems. 
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3.4.6. Summary and example 
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Fig. 23: From loads to system reliability. Abbreviations: TA - part application, BT - component, SM - 
damage mechanism, L - load, P - stress parameter, Pv - equivalent stress parameter , K - stress 
collective, BA - strength, D - damage, R - reliability. 

The path from the loads to proof of reliability can be summarized as follows, Fig. 23: 

1. Divide the application into part applications. In the automotive field, this could be driving routes 
e.g. urban/interurban/expressway, driving maneuvers e.g. cornering/driving straight ahead, or 
geographical and climatic conditions e.g. Northern Europe/Africa or winter/summer. Different 
applications are treated as different applications; in a worst-case approach, the application 
relevant to design (the one with the smallest reliability) is singled out. 

2. System partitioning of the product into components.  

3. Calculate the load-time characteristics Likl(t) of the i-th component for the k-th part application 
for a representative period from the system loads, typically by means of multibody simulation 
(MBS) or measurement, possibly on a predecessor product.  

4. Determine the relevant damage mechanisms. 

5. Determine the stress parameter for the j-th damage mechanism. Plot the stress-time 
characteristics Pijklm(t) for the ikl-th load in respect of the j-th damage mechanism, typically 
through calculation using the Finite Element Method (FEM) or measurement using strain gages. 

6. Calculate the equivalent stress-time characteristic Pv
ijk(t) by weighting and superposing all 

stresses from the loads of the i-th component, j-th damage mechanism and k-th part application 
by means of the design concept. (In the case of fatigue: employ the relevant multiaxial approach.)  

7. Classify Pv
ijk(t) to form a collective Kijk. If necessary, transform the collective with the aid of the 

design concept. (In the case of fatigue: transform to the stress ratio of the Wöhler curve.)  

8. Determine the strength curve (Wöhler curve) BAij for the i-th component and the j-th damage 
mechanism, typically by means of a trial with subsequent transfer to the component using the 
design concept to take account of the differences between the sample and the component. (In 
the case of fatigue: e.g. surface quality and stress gradient.) 

9. Calculate the total damage Dijk of the i-th component for the j-th damage mechanism and the k-
th part application from the respective collectives and Wöhler curves. 
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10. Calculate the total damage Dij of the i-th component for the j-th damage mechanism by scaling 
(extrapolation) and adding the damage totals Dijk over all part applications. This step may be 
skipped if necessary, as then rare events that are treated as a part application (e.g. restricted 
driving to the next service station), can be taken into consideration during Step 13 by applying 
the theorem of total probability and superposing the reliabilities of all part applications. 

11. Calculate the total damage Di of the i-th component by weighting and adding the damage totals 
Dij over all damage mechanisms with the aid of the design concept. This typically presents a 
major difficulty, because in this case a linear damage accumulation is often not appropriate. The 
superposition of fatigue and creep in the case of high-temperature fatigue can be mentioned as 
an example. 

12. Calculate the reliability Ri of the i-th component from its damage total Di. 

13. Calculate the system reliability R from the reliabilities of its components Ri. Verify reliability by 
comparing R with the required system reliability Rerf. Alternatively, target values can be defined 
after system partitioning for the required reliability of the components Ri,erf, at which the 
verification of system reliability is assured. In this case, reliability can be verified earlier on at 
component level, by comparing Ri with Ri,erf for the i-th component. If reliabilities of individual 
part uses with known probabilities of occurrence are present, these may be superposed to form a 
total reliability by applying the theorem of total probability (see section 6.1.1), taking their 
probabilities of occurrence into consideration. 

The path from the requirements to the reliability assessment is represented schematically by means 
of a (fictitious) drill chuck of a hammer drill for home use. It must be borne in mind that this is a 
schematic presentation that cannot incorporate all aspects of a reliability assessment in the 
necessary depth, and that illustrates some relations in simplified and abridged form. 

EXAMPLE:  

According to definitions by the "home use" market segment, first of all customer requirements for the 
hammer drill product are ascertained through surveys, and technical product characteristics developed on 
this basis using the QFD method. A comparison of the competition reveals that the product must cover the 

two following part applications with a survival probability of Rerf = 99% : 

Part application 1: 20 min hammer drilling in defined concrete with pressing force of F1 = 100 N. 

Part application 2: 40 min drilling in defined masonry with pressing force of F2 = 100 N. 

These requirements are aimed at the uppermost system level (product use). The pressing forces on the 
handle of the hammer drill may have been determined by trials on similar predecessor products, for 
example. Following further detailing of the design, loads for all subsystems or components, such as 
transmission, impact mechanism, etc. result from this system load at the uppermost system level. For an 

SDS drill (component 1), the following load-time characteristics can be deduced from the loads F1 and F2 by 
means of a 1-minute multibody simulation of the (hammer) drill process: 

Load-time characteristic 111: Load from impact force F111(t), t = 0,...,1min, 

Load-time characteristic 112: Load from torsional moment M112(t), t = 0,...,1min, 

Load-time characteristic 121: Load from torsional moment M121(t), t = 0,...,1min. 

The supplier of the tool needs this data in order to perform successful design reliability. As knowledge of the 
complete system is required to derive this data, these requirements can only be provided by the product 
manufacturer (OEM).  
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From the load-time characteristics 111, 112 and 121, once a tool design is available the tool supplier can 
now calculate stress by means of a structural-mechanical FEM simulation. From experience, he knows that 
fatigue can be considered as a damage mechanism (SM 1) for the tool, and therefore defines mechanical 
stresses in the tool as a local stress variable. Assuming a linear material characteristic, a linear-elastic FEM 

simulation delivers the (location-dependent) transfer factors cF=1(x) and cM=1(x) for a unit load or a unit 

moment. These can then be used to calculated the (location-dependent) stress-time characteristics. If cF=1 

and cM=1 stand for the coefficients at the failure location, the following stress-time characteristics result: 

Stress-time characteristic 1111: Normal stress σ1111(t) = cF=1·F111(t), t = 0,...,1min, 

Stress-time characteristic 1112: Shear stress τ1112(t) = cM=1·M112(t), t = 0,...,1min, 

Stress-time characteristic 1121: Shear stress τ1121(t) = cM=1·M121(t), t = 0,...,1min. 

The individual stress-time characteristics can now be superposed. Stress-time characteristics 1111 and 1112 
concern the components of a multiaxial stress which, depending on the multiaxiality approach used, can be 
weighted and superposed to form a equivalent stress distribution (more details in this connection can be 
found e.g. in [5], p. 162ff): 

min1..0)),(),(( 11121111111111  ttτtσσσ VV , 

min1..0)),(( 1121112112  ttτσσ VV . 

The scalar equivalent stress characteristics can now be classified into collectives: 

Vσ111  → K111,1min,  

Vσ112  → K112,1min, 

thus producing mean-stress transformed collectives at 

K111,1min → K111,1min,tr,  

K112,1min → K112,1min,tr.  

These transformed collectives represent the actual stress we are looking for. For a damage assessment of 
the "fatigue" mechanism, the strength of the drill needs to be determined in the form of a Wöhler curve for 
a cyclic pressure load: 

 BA11. 

Thus, for damages arising from 1 minute of use: 

D111,1min = D111,1min(K111,1min,tr,BA11),   

D112,1min = D112,1min(K112,1min,tr,BA11).  

These partial damages can now be projected and added for the required time of part use: 

D11 = 20 · D111,1min + 40 · D112,1min. 

Alternatively, the collectives can be upscaled with subsequent damage calculation. However, this method of 
damage calculation is considerably longer, whereas upscaling the damage total requires only multiplication 
by one factor, making this procedure much more efficient. 
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D11 is the damage total of the only damage mechanism, "fatigue", under observation, thus D1 = D11. The 

reliability of the tool R1 can now be expressed from the damage total D1 as 

R1 = R1(D1,D50%), 

whereby D50% signifies the critical damage total, which is known from previous endurance tests.  

Element 1

Element 2

OI

Element 3

Element 5Element 4

Element 1

Element 2

OI

Element 3

Element 5Element 4
 

Fig. 24: Reliability diagram of the drill chuck/drill system 

In order to verify sufficient reliability of the overall "drill chuck/drill" system, the reliability of the remaining 
system components must also be assessed in the same way. Let us assume that the system consists of 
5 elements: 1 – SDS drill, 2 – SDS drill bit, 3 – SDS drill chuck, 4 – additional hexagonal drill chuck,  

5 – hexagonal drill. The survival probability of the individual elements is R1 to R5. The system reliability is 
determined using the Boolean system theory on the basis of the reliability of the elements, using the 
reliability diagram of the structure, Fig. 24. Elements 1 and 2 form a parallel structure, as both SDS drills 
must fail in order for the "SDS drill" subsystem to not function. The subsystems 12 and 3 form a serial 
structure, as both the "SDS drill" subsystem and the "SDS drill chuck" subsystem are required for a 
functioning SDS drill chuck/drill subsystem. The same applies to the hexagonal drill chuck/drill subsystem 
comprising elements 4 and 5. In order for the overall drill chuck/drill system to function, either the 123 or 
45 subsystems must be functioning, thereby forming a parallel structure. 

To find the solution, first of all we look for the elementary structures in the block diagram. Elements 1 and 2 
form a parallel structure, therefore 

)1)(1(1 2112 RRR  . 

In the following illustrations, elements 1 and 2 are eliminated and replaced by a fictitious element 12 with 
the above survival probability. Elements 3 and 12 form a serial structure, as do elements 4 and 5, therefore: 

 )1)(1(1 213123123 RRRRRR  , 

5445 RRR  . 

Elements 3 and 12 are eliminated and replaced with the fictitious element 123, the same applies to 
elements 4 and 5, which are replaced with element 45. Finally, elements 123 and 45 have a parallel 
structure, therefore the survival probability of the system is 

   542134512312345 1)1)(1(111)1)(1(1 RRRRRRRRR  . 

The reliability of the drill chuck/drill system is regarded as verified if 

%99 erfRR . 
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3.5. Qualitative methods  

This section discusses several methods that provide a qualitative means of assessing or increasing 
reliability.  

3.5.1. Failure Mode and Effects Analysis (FMEA) 

The FMEA is an analytical method of preventive quality assurance. It is used to identify potential 
weak points, to recognize and evaluate their significance and to introduce measures in good time to 
avoid or disclose them. The systematic analysis and elimination of weak points minimizes risks, 
lowers failure-related costs and improves reliability. 

The FMEA is a method for analyzing risks posed by single failures. In this process, individual risks are 
weighted against one another to reveal the main focal points. The FMEA does not provide 
information about the absolute level of the risk of a failure. Fault tree analysis is more suited to 
examining combinations of failures.  

Targeted application of the FMEA brings the following advantages: 

 Avoidance of failures in design and development. 

 Fewer subsequent product modifications and so reduced costs. 

 Avoidance of repeat failures through the systematic acquisition of specialist/failure knowledge 
about the product or process. 

The time spent on avoiding failures at the start of the product creation process is more than justified, 
as it eradicates the considerably more substantial follow-up costs that would be incurred at a later 
point.  

The FMEA is a systematic method. Its basic principle is to ascertain all conceivable types of failure for 
any systems, subsystems and components. At the same time, it uncovers possible failure 
consequences and causes. Next, the risk is evaluated and optimization measures determined. The 
FMEA can thus be performed in 5 steps: 

1. Structuring  

2. Functional analysis  

3. Failure analysis  

4. Analyses of actions  

5. Optimization 

Details on performing an FMEA can be found in [9]. 

3.5.2. Design Review Based on Failure Mode (DRBFM) 

DRBFM is a systematic, preventive approach in the product creation process, which has the aim of 
avoiding potential problems before they occur and completely satisfying technical requirements. 
While the FMEA reveals all conceivable weak points through systematic analysis, and is therefore a 
broad assessment, DRBFM focuses on particularly relevant areas that are then dealt with "in depth".  

The most important benefits of DRBFM consist in: 

 tracking down potential problems even in the draft phase, taking fundamental issues into 
consideration in suitable fashion during the design process and so avoiding problems. 
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 pushing ahead with detailed work, gaining an understanding of cause-effect relationships and 
influencing parameters. 

 systematically revealing gaps in knowledge. 

 enabling associates to pursue objective debate. 

 including supervisors in design reviews and encouraging them to provide leadership in terms of 
content. 

 reducing failure rates and failure-related costs. 

DRBFM is a method that focuses on concerns raised by modifications to a reference design. This 
reference is regarded as understood, robust and proven in the field. It may originate from 
predecessor products or from a different area of application. 

The DRBFM method basically consists of two elements:  

 analysis and improvement of the design parallel to the development process, and  

 the design review.  

To put this method into practice, the development process must be "front-loaded", i.e. the main 
focus must be on the early stages, and technical experts must be involved. The method is 
incorporated into everyday development work.  

DRBFM follows the GD3 philosophy: 

 Good Design: A good design is the basis for a product that is outstanding, competitive and simple 
to produce. A good design is always a robust design. A good design is not modified without a 
compelling reason or without in-depth analysis. 

 Good Discussion: Good discussions are already held in the early stages of development. Different 
points of view are applied involving the SE team, technical experts, Production, suppliers, etc. 
These discussions are open, constructive, focus on causes and are conducted with respect for all 
parties. 

 Good Design Review: Thorough and detailed examination of the draft by an interdisciplinary 
team of experts and executives. The developer(s) explain(s) his/their draft and invite(s) discussion. 
Drawings, actual parts, experimental results and field data are employed for this purpose. 

Further details on this subject are contained in the Committed BES Practice, "Design Review Based on 
Failure Mode (DRBFM)". 

3.5.3. Fault Tree Analysis (FTA) 

Fault tree analysis (FTA) is a deductive, analytical method that is used to find combinations of failures 
(primary events) of individual functional elements of an object under observation, which lead to an 
undesired event, or "top event". Based on Boolean algebra with the help of corresponding symbols, a 
graphical representation, the fault tree, is created. This tree expresses the logical interaction of 
primary events. When probabilities of single events are also expressed, it can be used to calculate 
the probability of the top event. As such, this method enables not just qualitative but also 
quantitative assessments to be made. 

In a second step, the fault tree is transformed into logical expressions, with the help of which all 
repetitions of events are eliminated. Then the "shortest" event path, which leads to the "top event", 
can be determined (minimal cut set; minimal set of subsystems whose failure causes the system to 
fail). 
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An FTA consists of the following steps: 

 Prepare an inclusive system analysis 

 Define the undesired event (top event) 

 Establish the response variables of analysis 

 Produce the fault tree (qualitative description) 

 Qualitative evaluation 

 Determine the reliability characteristics of the basic events (quantitative description) 

 Quantitative evaluation 

 Determine the need for action, measures, monitor success 

 Documentation. 
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Fig. 25: Fault tree for the example in section 3.4.6, generated using the FaultTree+ tool. Failure 
probability Q of the top event "system failure", as a function of the failure probabilities of the 
individual elements Qi = 0.1. 
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4. Verification & validation 

4.1. Trials and quality 

The quality and reliability of products must be ensured on the launch of series production, especially 
in the automotive industry, which is no mean feat given the current reduction of development times 
to 3 years and the corresponding pressure on costs. Virtually all relevant standards, rules, directives, 
etc. e.g. [7,8] require products to be subject to trials during their development. 

Here, a trial is understood to be a test conducted on a technical product to verify and validate quality 
features, including reliability.  

According to DIN EN ISO 9000, verification is confirmation, through the furnishing of objective proof, 
that set requirements have been met. Validation, on the other hand, is said by the above standard to 
be confirmation, through the furnishing of objective proof, that the requirements for a specific use or 
application have been met. 

Thus, trials are intended to confirm that the set requirement has been satisfied and the reliability of 
the product has been proven. The latter also explicitly takes account of the aspect of product liability. 
Furthermore, trials are intended to provide knowledge about various influences (e.g. environmental) 
on products and processes and, in particular, to increase data certainty. 

To quote [7]: "Confirming or improving concepts after design through experiments lays the 
foundations for a quality product." The trial is thus understood to be a core component of quality 
assurance. On the other hand, the shortened development times and increased cost pressure 
mentioned above have led to a certain paradigm shift: trials are no longer regarded as the only 
means of proof. [7] therefore recommends that "… trials focus on new components or technologies. 
The scope of trials conducted until now must be critically analyzed and reduced if necessary … Then, 
through constructive optimization, trials can be avoided in many cases." However, now as ever it 
remains clear that "trials are necessary wherever required technical features cannot be determined 
satisfactorily or at all during development using theoretical methods" and that "components that 
remain high risk require the added certainty of a trial" [7]. 

Trials are based on the following principles: 

 Trials must be started as early as possible. It is clear, however, that trials cannot be conducted at 
very early stages of product development when no prototypes are as yet available. The result is 
an iterative procedure, whereby the latest prototype version at any time undergoes trials. 

 The specimens themselves, and the conditions of the trial, must correspond as far as possible to 
the established requirements that need to be fulfilled (verification). The result is a procedure 
whereby the latest prototype version at any time undergoes trials under the relevant trial 
conditions, such as loads or media. Finally, the evaluation of field data of products already in 
series production enables conclusions to be drawn about the relevance of the established 
requirements (validation). 

 An important basic principle is working with standard test procedures, which are governed by 
specific sets of rules, e.g. DIN IEC 68 "Basic environmental testing procedures", or VDI 4005 
"Influences of environmental conditions on reliability of technical products". However, the 
individual, product-specific test severity is agreed between the principal and the customer. Test 
procedures related to release are set out in a testing sheet. 

Two trial philosophies with their respective advantages and disadvantages apply to the above 
principles. 
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 "Test to pass" refers to a procedure whereby a particular trial must be passed without adverse 
effects on the product in order for the test to be rated as positive. Only a lower threshold for the 
reliability of the product can be deduced from the results of this test, however; the actual 
distance between the load and the load that can be withstood remains unclear, which harbors 
considerable risks for subsequent use. This approach is closely related to a development 
philosophy whereby trials are seen as the satisfaction of customers’ wishes, for trials of this kind 
are always set by the customer. Such requirements are often based on higher-level sets of rules, 
so that the product can be regarded as "fit for standard" after it has passed the test. The 
advantages of this procedure are wide acceptance of the results and a degree of certainty, as one 
can always invoke the existence of a prescribed trial. The disadvantages are obvious, however: 
the field relevance of such tests is frequently unclear, and problems can occur in the field despite 
such a trial being passed.  

 "Test to failure" refers to a procedure whereby the limits of the product are determined in a 
more stringent trial, the end-of-life test, which will generally result in clear adverse effects or 
even failure. This type of trial is understood here as an important development activity, which is 
intended to flag up risks and open the door to improvements. "Assessment" of the product is not 
achieved directly as a result of the trial, but in a separate investigation, which incorporates the 
results of the trial and the field-relevant conditions of use.  In this approach, the existence of 
prescribed tests is of lesser importance: these may be important in order to satisfy the customer, 
but are of limited conclusiveness. As field relevance has great importance in this approach, 
following a positive rating the product can be classed as "fit for use". A clear advantage here is 
that when correctly applied, field problems cannot occur because the limits of the product and 
the field-relevant conditions of use are known, and the distance between the two has been 
classed as adequate. The greatest difficulty lies in determining the field-relevant conditions of use, 
which must generally be agreed with the customer. 

Generally speaking, we can conclude that the advantages described above point to a clear shift from 
the first to the second of these two trial philosophies. Consequently, "fitness for intended use" is the 
quality objective to be aspired to for all products, beyond compliance with agreed specifications, and 
this includes the development of test methods for relevant loads in the field. 

Detailed instructions on the trial process are contained in process procedures. A test plan is used to 
systematically establish the necessary tests, with information on  

 the type of test (vehicle testing, trial on customer’s premises, static/climatic/dynamic/other tests, 
endurance tests on test benches),  

 the test duration (e.g. in the form of a testing sheet), and 

 the intended number of samples. 

As a rule, a selection sheet listing the relevant types of test for the product area in question is used 
for drawing up the test plan. 
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4.2. Test planning 

4.2.1. Number of specimens and test duration for a success run test 

To determine the number of required specimens, the following procedure described in [1], p. 267f, 
based on binomial distribution, can be used. 

n identical specimens that have the survival probability R(t) at test time t are examined. The 
probability that all specimens survive this time is R(t)n according to the product law. Thus, the 
probability of at least one random failure by the time t is PA = 1 - R(t)n. 

By reversing this calculation, we can establish that if no failure occurs during the test of a sample of 
size n by the time t, the minimum survival probability (and thus reliability) of a specimen equals R(t), 
with a confidence level of PA. Thus  

R(t) = (1 - PA) 1/n   (4.1) 

and accordingly 

))(ln(

)1ln(

tR

P
n A
 . (4.2) 

This type of test planning is referred to as "success run", because the test involved is without failures. 
The dependence of the number of specimens on the required reliability with a given confidence level 
is illustrated in Fig. 26. It is clear that experimental proof becomes increasingly complex for higher 
levels of reliability. 
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Fig. 26: Number of specimens n for a success run test, as a function of the reliability of a specimen to 
be demonstrated R(t) and the required confidence level PA. 

If a statement now needs to be made about reliability over a time t0 ≠ t, and a Weibull distribution 
with parameters b, T is assumed, for the two times t and t0 
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Following the logarithmizing and division of the two equations, the result is (also see [1], p. 268): 
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with the lifetime ratio LV = t/t0 . Consequently 
b
VLtRtR )()( 0 . Applying this in equation (4.2) results in: 
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Therefore, at a constant reliability to be demonstrated of R(t0) and a confidence level of PA, 
increasing the test duration t leads to a reduction in the number of specimens n and vice versa. 
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Fig. 27: Number of specimens n for a success run test, as a function of the reliability of a specimen to 
be demonstrated R(t0) at differing lifetime ratios LV (confidence level PA = 90%, b = 2). 

4.2.2. The consideration of failures 

In the equations above, failures during the test time can be taken into consideration as described 
below. The confidence level is generally subject to binomial distribution as per [1], p. 272: 
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with x - number of failures during the test period t and n - number of specimens. Generally speaking, 
this equation cannot be explicitly resolved by n, but must be determined iteratively. This can be 
avoided by means of a graphical evaluation using the Larson nomogram. Details on this are not 
contained here, but can be found in [1]. 

4.2.3. The consideration of prior knowledge 

Bayesian statistics (Thomas Bayes, 1702-1761) deal with estimation and test methods under the 
consideration of prior knowledge. Normally, one estimates the unknown parameters μ (mean) and σ 
(standard deviation) of a normal distribution through the variables x  and s, which are determined 
from the results of a sample. Confidence intervals (by x  or s) can be stated for both parameters, 
which cover the unknown values μ and σ, see section 6.1.3.4. The widths of these intervals depend 
upon the sample size and the chosen confidence level. Inasmuch as "suitable prior knowledge" of μ 
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and σ is available, estimate values can be calculated on the basis of the Bayesian theorem, the 
confidence levels of which are smaller than those attained without consideration of prior knowledge.  

Generally speaking, combining prior knowledge (in the form of an "a priori distribution") about the 
characteristic of a random quantity with additional knowledge derived from experimental results 
delivers improved information ("a posteriori distribution") about the random variable. 

The above-mentioned example is only one of the many application examples of the Bayesian 
theorem, but it already shows its problematic aspects: what does "suitable prior knowledge" mean?  

If applied to the problem of estimating the characteristic lifetime T and the shape parameter b of the 
Weibull distribution, the prior knowledge about the failure characteristic of a product could be used 
to improve the estimate of b and T using the results of a current lifetime test. Provided that the prior 
knowledge ensued from experiments on a sample of specimens that are comparable with the 
specimens currently under test, the Bayesian theory would, as expected, deliver the same result as if 
both samples were grouped in one unit. 

If, on the contrary, the prior knowledge was based on a different sample version or on a similar 
product, its applicability would depend upon the degree of similarity of the objects under test. The 
subjectivity of this kind of decision is one of the reasons why Bayesian theory is the subject of debate 
in the professional world and why its practical applicability is controversial. A detailed discussion of 
this topic can be found in [17]. 

4.2.4. Accelerated lifetime test 

In many cases, the test times required to demonstrate compliance with reliability requirements 
under "normal" stress are unacceptably long in relation to the overall time available for the 
development of a product. Endeavors are therefore made to employ methods that curtail or limit the 
test times. Here, a distinction is drawn between the following subgroups: 

 Parallel testing: If the equipment and technology permit, the simplest procedure is the 
simultaneous testing of specimens. Here, it must be borne in mind that the actual failure times of 
parts tested in parallel must be recorded, and the failure of an individual part must not exert any 
influence on the failure characteristic of the remaining parts. Since these requirements are 
sometimes difficult to meet, it may be appropriate to combine parallel testing with evaluation 
strategies for incomplete tests. 

 Incomplete tests: Methods whereby the test time or the number of failures is established prior to 
the test (e.g. sudden death test, degradation test), and whereby the "incompleteness" of the 
recorded lifetimes is accounted for by a special evaluation. 

 Physical acceleration: Method whereby conclusions on lifetime under "normal" load are drawn 
based the results of tests under an increased load on the basis of a physical model. Such a 
conclusion is obviously only justifiable on the assumption that the increase in load does not 
provoke any change in the failure mechanism. 

No further explanation is required for the performance of parallel tests. The evaluation of incomplete 
tests is described in more detail in section 4.3. Physical acceleration, however, requires more in-
depth discussion.  

The simplest method of physical acceleration consists in increasing the load intensity without 
changing the load level, e.g. omitting idle times, raising load frequencies, etc. However, caution is 
recommended, because unexpected phenomena may occur, such as marked heating when the load 
frequency is raised, for example, which will contribute to a shortened lifetime. 
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Physical acceleration can also be achieved by increasing not the load but the stress, by varying a 
control factor (e.g. wall thickness). Here, too, undesirable side effects (e.g. changed surface 
properties after modification of the wall thickness) must be taken into consideration. 

If a stress P (e.g. temperature, acceleration, voltage) is applied, after a certain time t (general value of 
the lifetime characteristic, e.g. operating time, number of load changes, of pulses, etc.) the object to 
which this is applied will demonstrate a certain degree of damage. The relationship between P and t 
can frequently be expressed by 

.)( constPft   (4.7) 

If equation (4.7) is applied once for t,P and once for t0,P0, and both equations are divided, the 
relationship can be expressed as follows: 
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If such a relationship is valid, we would expect that an increased stress P within the shortened time t 
will provoke the same damage (same failure probability) as the original stress P0 within the original 
time t0. 
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Fig. 28: Physical acceleration on the probability paper (schematic). Line 0 – initial failure probability 
distribution, Line 1 – distribution after a permitted physical acceleration, Line 2 – distribution after an 
impermissibly high physical acceleration, which causes the failure mechanism to change. 

Examples of the relationships expressed in equation (4.7) are the Arrhenius equation (temperature T 
as stress parameter P) 
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and the Coffin-Manson formula (number of load changes N as lifetime characteristic t) 
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whereby c and k denote constants.  

Based on the Coffin-Manson relationship, equation (4.8) means that 
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which is also the typical representation of a Wöhler curve as is used to describe fatigue failures, for 
example, see section 3.4.3. Thus, the increased stress P > P0 gives rise to a lifetime N < N0 reduced by 
the factor  
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The factor κCM is known as the Coffin-Manson acceleration factor, and is frequently used for the 
physical acceleration of lifetime tests under mechanical load. 

In physical chemistry, the temperature dependency of a reaction rate is expressed by the Arrhenius 
equation: 
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Here, c denotes the ratio of activation energy and Boltzmann constant Ea/K, although c can also be 
expressed as a free constant that has to be adapted in line with test results. v0 signifies a reaction 
constant.  

If a model is developed whereby a physicochemical process takes place during damage through 
exposure to temperature, which only leads to failure once a critical "material conversion" is reached, 
the time until this material conversion is attained can be interpreted as lifetime t. Thus, the lifetime is 

inversely proportionate to the reaction rate  t  1/v , and under consideration of equation (4.13), the 
direct result is equation (4.9).  

If equation (4.9) is applied once for t,T and once for t0,T0, and these equations are divided, the 
relationship is as follows: 
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Accordingly, at a higher temperature T > T0, the lifetime t < t0 is reduced by the factor 
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κA refers to the Arrhenius acceleration factor, and can be used very effectively for the purpose of 
time-acceleration.  

It must be noted that an acceleration factor is based on a concrete failure mechanism, i.e. different 
failure mechanisms can display different constants c and k, so that their acceleration factors will also 
differ. A physical acceleration can be taken into consideration during test planning by replacing the 
quantity LV  with κ·LV  in equation (4.5) or (4.6), with LV = t/t0, t – test duration (after physical 
acceleration), t0 – period of time in the field. 

4.2.5. Reliability Growth Management (RGM) 

RGM is a concept for planning, tracking and observing the reliability of products and serves as a 
visual aid during the development phase. This strategy, which was developed by Duane in the 1960s, 
is based on the idea that the reliability of a product increases as a result of efforts undertaken during 
development. Here, Duane established that such an increase cannot grow in an unlimited fashion, as 
experience shows, but moves within certain limits (possibly subject to organizational units).  

Tracking whether the current level of reliability lies within these aforesaid limits can be employed as 
an early indicator of possible problems. Reliability is measured by the statistical characteristic MTTF 
(Mean Time To Failure). Duane’s approach assumes that double logarithm plotting of MTTF versus 
the cumulative testing time will produce a straight line with a positive slope when reliability is 
increasing. 
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The procedure can be described as follows: 

 In the planning phase of a reliability growth program, a target lifetime is established (in the 
diagram: MTTFF=3000h), and a planned cumulative total testing time T (in the diagram: T = 10000 

h), after which this target value should be reached. These two values define an end point in the 
RG diagram (the indices I und F stand for Initial and Final). 

 The initial reliability , MTTFI, is the mean lifetime reached at the end of an initial testing phase or 

an estimate value based on earlier developments (starting point). 

 The straight line between the starting point and end point in the RG diagram establishes the 
desired growth rate for product reliability. During the course of development, this rate must be 
achieved, at least, when the set reliability target has to be attained within the planned time and 
with the available resources. The two straight lines above and below the target line correspond 
to a growth rate of 0.3 (lower line) and 0.6 (upper line) respectively, and indicate a typical growth 
rate. 

 The current reliability determined through tests is plotted in the RG diagram. A comparison with 
the straight lines established during the planning phase renders any deviation from the planned 
growth obvious. 
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Fig. 29:  RGM diagram 

The RGM approach adds the elements planning, tracking and visualization of development progress 
to the performance and analysis of lifetime tests. It suffers major disadvantages, however: 

 It conveys the impression that the reliability of a product ("reliability growth") rises automatically 
and purely due to the fact that products are being tested. In reality, only current reliability can be 
measured or proven in tests. The improvement of reliability, on the other hand, is based on an 
improvement to the design during the development process. 

 The RGM approach does not take into consideration the different efforts of a successful and a 
less successful development process. Furthermore, the empirical values for typical growth are 
based on experience from the 1960s. However, development times and methods have changed 
dramatically since then. 

 This method suggests that long development cycles with sophisticated tests using the "trial and 
error" approach are inescapable. However, in reality an optimum is achieved when a largely 
mature design is developed based on knowledge of cause-effect relationships within the 
framework of a preventive approach, so that this design must then only be verified in 
experiments. 

For this reason, the RGM method should be treated with some skepticism, and employed solely as a 
planning and tracking instrument. 
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4.3. Evaluation of lifetime data 

The evaluation of lifetime data entails adapting the data to a particular distribution and determining 
its distribution parameters. The question generally arises as to how the parameters of the population, 
from which this data originates, can be determined from the data of a sample. The most important 
graphical and analytical procedures are presented below. 

4.3.1. Complete and und incomplete (censored) data 
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Fig. 30: Types of censoring: Right (1), left (2) and interval censoring (3).  

If a sample of n parts is tested in a lifetime test until the failure of all specimens, this is referred to as 
a complete sample. If, on the other hand, some specimens are removed from the test before failure, 
the test is discontinued before the failure of all objects or the precise time of failure is unknown, this 
is known as an incomplete sample. In this connection, we refer to censored samples.  

We generally distinguish between three types of censoring, Fig. 30: 

 Right censoring: Here, we know that a specimen has survived up to certain point in time. 
However, the (later) time at which this specimen failed (or will fail) is unknown. 

 Left censoring: Here, we know that a specimen has already failed at a certain point in time. But 
we do not know exactly at what (past) time this failure occurred. This case arises, for example, 
when no automatic failure monitoring has taken place, and failures that may have occurred at 
any time after the start of the test are revealed upon the first manual inspection.  

 Interval censoring: This type of censoring is a combination of the first two types. Here, the failure 
of a specimen may have taken place in a certain interval between two moments in time (e.g. 
between two inspections), but the exact time is unknown. 

The right censoring method has the greatest practical relevance. Here, in turn, we distinguish 
between three types, Fig. 31: 

 Type I censoring: The test is discontinued at a fixed point in time t. The number of failed 

specimens r, 0  r n up to this time is a random variable. 

 Type II censoring: The test is discontinued after the failure of a predefined number r of specimens. 
r = 1 is the so-called sudden death test. In this case, the number r is known before the start of the 
test, but not the time t at which failure occurs. Here, the total test time is a random variable. 

 Mixed censoring: Objects under test frequently have to be withdrawn from an experiment before 
failure. Unlike with type I or II censoring, in which the surviving runouts are all removed from the 
experiment at the same time, here there may be different times of "removal". This is the case 
when products are being tested for a particular type of failure (e.g. in the electronics), and 
different types of failure occur (e.g. mechanical). 
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Fig. 31: Types of right-censored data. Type I censoring (left): Experiment stopped after a prescribed 
time. Specimens 4 and 5 reach the end of the experiment without failure. Type II censoring (center): 
Experiment stopped after a prescribed number of failures, in this case 4. Specimens 4 and 5 are still 
intact at the time of the most recent failure. Multiple censoring (right). Specimen 4 is removed from 
the experiment early, specimen 5 reaches the end of the experiment without failure.  

Special mathematical techniques are employed to evaluate incomplete samples. Although no failure 
time exists for the specimens that have been removed from the test, the test time completed 
without failure constitutes vital information that must be considered during the evaluation. 

4.3.2. Graphical evaluation in the Weibull plot 

A double logarithmic expression of the distribution function of the Weibull distribution  
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This is a linear equation of the form y = a0 + a1 · x, with x = ln(t). In a graph that has been transformed 
accordingly ("Weibull plot"), the distribution function of the Weibull distribution would appear as a 
straight line. By entering observed failures in the Weibull plot and through subsequent 
approximation with a straight line, estimate values of the two Weibull parameters b and T can be 
defined.  

Although these days graphical evaluation no longer seems in keeping with the times and can be 
accomplished by standard software such as Weibull++ from the Reliasoft company, this 
representation is important for an understanding of the relationships. Moreover, most of the 
techniques presented here are also implemented in commercial software packages (possibly in 
modified form). 
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4.3.2.1. Complete data 

This section describes the procedure for graphically determining estimate values of the parameters 
characteristic lifetime T and shape parameter b for complete data , see [1], p. 203f.  

Procedure: 

1. Order the n failure times  ti by size, the smallest value with rank 1, the largest with rank n. 

2. Calculate the failure probability Fi for each rank number i with  
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Fi .  (4.18) 

3. Enter the pairs of variates (ti ,Fi) in the Weibull probability paper. 

4. Determine a best-fit line through the points (graphically or analytically). If the plotted points lie 
on the best-fit line to a sufficient extent, the failure characteristic can be adequately described by 
means of a Weibull distribution. 

5. The point at which the best-fit line intersects with the horizontal 63.2 % line has the characteristic 
lifetime T on the time axis, which can be read there.  

6. Enter a parallel line to the best-fit line through the pole point. The shape parameter b can only be 
read on the right-hand shape parameter scale (graphical evaluation). In the case of an analytical 
evaluation, the shape parameter b reflects the slope of the best-fit line. 
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Fig. 32: Graphical definition of Weibull parameters in the probability plot (schematic) 

REMARKS: 

Equation (4.18) is an approximation of the exact relationship, which can be deduced on the basis of the 
binomial distribution, see section 6.1.3.5 in the Annex. 

If we drop a perpendicular line from the point where the best-fit line intersects with the horizontal 10% line 
on the time axis, the lifetime t10 can be read. The same applies to the 50% line and all further quantiles. 

The scaling of the logarithmic time axis (t-axis) can be adapted to the occurring failure times by multiplying 
it by a suitable scale factor. If we select the factor 10h (10 hours), for example, then 

number  1     on the t-axis corresponds to the value  10     hours, 

number  10   on the t-axis corresponds to the value  100    hours, 

number  100 on the t-axis corresponds to the value  1000 hours. 

Instead of for the time, scaling can also be carried out for the mileage, the number of load changes, 
switching operations or work cycles, for example. 
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EXAMPLE:  

A sample of 10 electric motors was examined on a test bench after a predefined test cycle. Until their 
failure, the specimens achieved the following numbers of cycles (in ascending order and in units of 
105 cycles): 
 

Motor no. 1 2 3 4 5 6 7 8 9 10 

Cycles until failure, /105 0.41 0.55 0.79 0.92 1.1 1.1 1.4 1.5 1.8 1.9 

Failure probability, %  6.7 16.3 26.0 35.6 45.2 54.8 64.4 74.0 83.7 93.3 

Read: Characteristic lifetime 
5103.1 T  test cycles, shape parameter b=2.1. 
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Fig. 33: Example in the probability paper 

4.3.2.2. Incomplete data 

Incomplete data is what is obtained when the failure times of some specimens are unknown. The 
test time that has elapsed for specimens that have not failed but were removed from the test, or for 
specimens that have not yet failed constitutes a vital piece of information that must be taken into 
consideration during evaluation, as shown by the following example. 

EXAMPLE:  

A manufacturer has produced and sold 100 units. The following failures are recorded in the first 
three months after their sale: 
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Month No. of failures 

1 1 

2 1 

3 2 

What is the mean lifetime? A naive (and incorrect!) evaluation would base the mean on the 
evident lifetimes, without taking into consideration the fact that the overwhelming majority of 
units has survived for at least 3 months: 

25.2
4

322111



t . (4.19) 

The mean lifetime obviously cannot be 2.25 months, for at this time it is not true that nearly half of the 
units has failed, as one would expect from the mean lifetime. 

The sections that follow go on to describe suitable methods for the consideration of incomplete data. 

Censoring types I and II 

In both cases (types I and II censoring), the evaluation process is similar to that of a complete sample, 
see section 4.3.2.1. The failure probabilities can be calculated for entry in the Weibull plot using the 
approximation formula  

4.0

3.0





n

i
Fi  for ri ,,2,1    (4.20) 

(an exact relationship is shown in section 6.1.3.5 of the Annex). 

The fact that n - r specimens have not failed is expressed by n, not r, occurring in the denominator in 
the approximation formula.  

EXAMPLE (CONTINUED):  

So, correct evaluation of the example from the previous section must also consider the fact that 
96 parts have survived for 3 months (type I censoring). Thus, equation (4.20) delivers the 
following failure probabilities: 

 

Failure no. Time Fi,[%] 

1 1 0.7 

2 2 1.7 

3 3 2.7 

4 3 3.7 

A graphical evaluation is contained in Fig. 34. The following characteristic values were read: Characteristic 

lifetime T = 35 months, shape parameter b = 1.4, time at which half of parts will have failed (median):   t50 = 
27 months. 

NOTE: 

During the evaluation of experiments with type I or II censoring, it is mostly necessary to extrapolate the 
best-fit line in the Weibull plot beyond the time of most recent failure in order to estimate the characteristic 
lifetime T. This is basically problematic, inasmuch as further failure mechanisms cannot be ruled out. In 
case of doubt, therefore, a statistical conclusion on the failure characteristic can only be based on the time 
between the smallest and greatest observed lifetimes.  

The note above can be generalized thus: With both complete and incomplete samples, evaluation in the 
Weibull plot provides information about the failure characteristic that is limited to the interval between the 
smallest and largest value of the lifetime characteristic. 
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Fig. 34: Example of type I censored data in the probability paper 

Multiple censoring 

Multiple censoring describes the case where specimens are removed from the test before it has 
come to an end, in a destructive test, for example, or if field parts were intact at the time of 
inspection and after that point no more information about them is available. In another typical case, 
mixed failures from two different failure mechanisms have occurred. During evaluation, the failures 
of the other mechanism in each case are not neglected, but must be rated as runouts. 

Johnson evaluation 

[8] describes a procedure based on Johnson that is used for evaluating experimental results with 
multiple censoring. The background to this procedure can be explained as follows. 

Let us assume the following experimental data: 
 

Time Event  

t1 Failure 1 

t2 Runout 1 

t3 Failure 2 

t4 Runout 2 

The question now arises as to which ranks the two failures can be assigned to. The first failure 
obviously has rank 1, as no event happened previously. With the second failure, the situation is 
somewhat more difficult. Failure 2 may have either rank 2 or 3 depending on whether runout 1 
would have failed before or after failure 2. The idea is to allocate a (non-integer) rank number 
between 2 and 3 to the second failure. This rank number may be based on the consideration as to 
which cases are possible with the available data: 
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Rank Possibility 1 Possibility 2 Possibility 3 

1 Failure 1 Failure 1 Failure 1 

2 Failure of runout 1 Failure 2 Failure 2 

3 Failure 2 Failure of runout 1 Failure of runout 2 

4 Failure of runout 2 Failure of runout 2 Failure of runout 1 

According to the above, failure 2 would have the rank number 3 in one case, and rank number 2 in 
two cases. Thus, its mean rank number would be: 

33.2
3

2231



i . (4.21) 

With this mean rank number, the procedure described in section 4.3.2.1 from step 2 onwards can 
continue to be applied. If the quantity of data becomes larger, the case differentiation may become 
complex but can be expressed adequately using a combination of relationships.  

NOTE: 

With this method, only the number of runouts between two failures is taken into consideration, not the 

actual time experienced by a runout. Thus, situations in this example in which t2 is slightly greater than t1 or 

somewhat smaller than t3 would be treated absolutely identically. Intuitively, however, we know that the 
lifetime in the first case must tend to be smaller than in the second case. These circumstances reflect a 
disadvantage in this method, to the extent that where data is greatly censored (fewer failures, many 
irregularly distributed runouts) alternative approaches not based on rank numbers, such as maximum 
likelihood, may well be preferable. 

Procedure: 

1. Enter n events (failures and runouts) in column a, the associated event times tj in column b (j = 
1,…,n). 

2. Sort the events and event times by tj.  

3. Enter consecutive numbers j in column c, starting with j = 1. 

For each line j: 

4. Calculate the growth in rank number Nj and enter in column d. If the current event is a failure, 
the following applies:  

jn

in
N j

j 


 

2

1 1 , i0 = 0, (4.22) 

with the previous rank number ij-1. If the current event is a runout, then Nj = 0.  

5. Calculate the mean rank number ij from the previous rank number ij-1 and the current growth Nj 
and enter in column e: 

jjj Nii  1 , i0 = 0. (4.23) 

6. Continue with step 2 from section 4.3.2.1. 

Nelson evaluation 

A method suggested by Nelson [8] is described here as an alternative to the Johnson procedure. This 
method is explained below. 

j is the number of an event (failure or runout) in the set order of the relevant times tj. At the moment 
at which a failure occurs, rj = n – j + 1 units are undoubtedly still intact, including the "just failed" unit. 
Earlier runouts, for which uncertainty exists as to whether they are still intact at this time, are 
omitted from the calculation. In other words, it is assumed that runouts between the last and the 
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current failure time have failed now, at the latest. The number of still intact units ri  is sometimes 
confusingly referred to as "inverse rank". The ratio 

j

j
r

λ
1ˆ   (4.24) 

is by definition an estimate value for the momentary failure rate, which is defined by  

)(

)(

)(1

)(
)(

tR

tf

tF

tf
tλ 


   (4.25) 

The definition of the failure probability density 

dt

dR

dt

Rd

dt

dF
tf 




)1(
=)(  (4.26) 

gives rise to 

dt

dR

R
tλ

1
)(   and dR

R
dttλ

1
)(  . (4.27) 

Further calculations are based on the following relationships for the cumulative failure rate H(t), 
which is produced by integrating the preceding equation: 

))(1(ln=))((ln)()( tFtRτdτλtH

t

 


. (4.28) 

For the failure probability, this results in  

))(exp(1)( tHtF  .  (4.29) 

For the purpose of practical calculation, we recommend systematically entering the intermediate 
steps in a table with columns a to h.  

Procedure: 

1. Number lines nj ,...,2,1  and enter in column a. 

2. Enter event times in order of magnitude in column b. 

3. Enter the data belonging to the failure times, "A" for failure or "H" for removal, in column c. 

4. Enter the number of still intact units 1 jnrj  in column d. 

Further entries are made only for the failures ("A"): 

5. Calculate the reciprocals of the numbers from column d and enter them in column e. 

6. Calculate the total of numbers from column e from the first to the j-th line and enter in the j-th 

line in column f. The values jĤ  may be greater than 1. 

7. With the help of the values jĤ  from column f, calculate the exponential powers )ˆexp( jH  and 

enter in column g. 

8. Subtract values from column g from 1 and enter the results in column h. 

9. Continue with step 3 from section 4.3.2.1. 
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The example below should further clarify this procedure: 

EXAMPLE: 

The result of a field test on 40 products delivers a result of tj complete operating hours (lifetimes). The 
failure of the products occurred due to both mechanical and electronic defects. In this example, we assume 
that an evaluation should be undertaken to examine electronic failures ("A" = failure in the table). Thus, the 
products that failed due to mechanical defects can be treated as though they had been removed from the 
experiment prior to the occurrence of the electronic defect in question ("H" = removal in the table). We 

know that they were electronically intact until the mechanical failure at the time tj. Of course, the 
mechanical failures can also be evaluated in addition to the procedure described here. 

The calculations are summarized in Table 4. 

The observed lifetimes (failures "A") are entered in the Weibull plot with the failure probability from column 
h, Fig. 35 shows the result of evaluation for this example. The results read were b≈1.4 and T≈8000h. The 
unshaded circles represent the points that would arise if we ignored the lifetimes of the removed products 
and evaluated the 8 observed failures just like a complete sample. In this case one would wrongly ascribe a 
substantially smaller characteristic lifetime as the result. The fact that the "H" parts were intact up until 
their removal is an essential piece of information and must be considered during evaluation. 
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Fig. 35: Illustration of the Nelson evaluation on the probability paper (shaded circles). The unshaded 
circles represent an (incorrect) evaluation in which the lifetimes of the removed products were 
ignored.  
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a b c d e f g h 

j tj, [h] A/H ri 
j

j
r

λ
1ˆ   

j j

j
r

H
1ˆ  

)ˆexp(ˆ
jj HR   jj RF ˆ1ˆ   

1 513 A 40 0.0250 0.0250 0.9753 2.5% 

2 1118 A 39 0.0256 0.0506 0.9506 4.9% 

3 1186 A 38 0.0263 0.0770 0.9259 7.4% 

4 1468 H 37     

5 1520 H 36     

6 1529 A 35 0.0286 0.1055 0.8998 10.0% 

7 1688 H 34     

8 1907 H 33     

9 1919 H 32     

10 2094 A 31 0.0323 0.1378 0.8713 12.9% 

11 2170 H 30     

12 2201 H 29     

13 2239 H 28     

14 2280 H 27     

15 2345 H 26     

16 2356 H 25     

17 2386 H 24     

18 2483 H 23     

19 2641 A 22 0.0455 0.1832 0.8326 16.7% 

20 2724 H 21     

21 2736 H 20     

22 2739 H 19     

23 2796 H 18     

24 2865 A 17 0.0588 0.2421 0.7850 21.5% 

25 2912 H 16     

26 2990 H 15     

27 3196 H 14     

28 3353 H 13     

29 3355 H 12     

30 3425 H 11     

31 3472 H 10     

32 3522 H 9     

33 3575 H 8     

34 3696 H 7     

35 3723 A 6 0.1667 0.4087 0.6645 33.6% 

36 4319 H 5     

37 4343 H 4     

38 4563 H 3     

39 5360 H 2     

40 7497 H 1     

Table 4:  Evaluation pattern for "multiple-censored data" according to Nelson 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-013_BBL_N_EN_2011-06-01.pdf


Methods of design for reliability, verification and validation 

 

©Robert Bosch GmbH | Date 06.2011 

 

61

4.3.3. Analytical evaluation 

Three analytical procedures can be used for determining the parameters of a distribution derived 
from experimental data: 

 Method of moments: Here, characteristics of the population (so-called moments) are estimated 
on the basis of sample characteristics, and include elements such as expected value, variance, 
skewness, etc. Next, the parameters of the distribution are calculated from these estimated 
moments. This dependence between parameters and moments may be known theoretically, but 
is not that simple in some cases, such as in the 3-parameter Weibull distribution, for instance. 

 With the regression method, the lifetime data is entered in the probability paper, then 
approximated to a straight line through a process of regression. The parameters of the 
distribution can now be estimated on the basis of this straight line. 

 In the maximum likelihood approach, the parameters of a distribution are determined such that 
the probability of observing the lifetime values currently under observation is maximized. This 
probability is expressed by the so-called likelihood function.  

These methods are discussed in further detail below.  

4.3.3.1. Method of moments 

In the method of moments, the sought-after parameters of a distribution are calculated from their 
moments. The following key figures are designated as a moment of the k-th order mk: 






 dttftm k
k )( , k = 1, 2, … (4.30) 

The following central moments also exist: 






 dttfmtm k
kz )()( 1 , k = 1, 2, … (4.31) 

The best known moments are: 

 expected value 




 dttftmt )()E( 1 , (4.32) 

 variance 2
122)Var( mmmt z  , (4.33) 

 skewness 
2
2

3
3 )(

z

z

m

m
tS  . (4.34) 

The moments now have to be estimated from the empirical moments of a sample: 
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    






n

i

i tt
snn

n
tS

1

3

33

1

21
)( , (4.37) 
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and associated with the characteristic values of a distribution. For the Weibull distribution, for 
example, it can be shown (see [1] p. 240) that 

00
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whereby Γ(.) denotes the gamma function. From this relationship, the parameters T, b and t0 can be 
deduced: first b from the third equation, then T and t0 from the first and second equations.  

NOTE: 

Only complete samples can be assessed using the method of moments. 

4.3.3.2. Regression method 

Linear regression analysis is a method that enables best-fit lines to be calculated for a presumed 
linear relationship between two variables x and y, if the experimental data is available in the form of 
pairs of variates (xi ,yi). Let us assume, for example, that n of these pairs are available:  

),( ii yx , ni ,...,1 . (4.41) 

For y = f(x) we suspect a linear relationship, from which the varying response y deviates only 
minimally and randomly by the amount ε: 

iii εxaay  10 . (4.42) 

During regression, it is now a matter of calculating the coefficients a0 and a1 in such a way as to 
enable the best possible prediction of y. Here, 

ii xaay  10
ˆ  (4.43) 

designates the value predicted from the best-fit line y at the point xi. The "quality" of the prediction 
is assured using the familiar method of least squares, whereby the sum of squared deviations 
between the test value and the prediction at all n points xi is minimized: 
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The necessary condition for minimizing the above function is that the first partial derivations in terms 
of a0 and a1 must disappear. The terms 
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can be used to calculate the coefficients as follows (see [1], p. 243): 
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Under the precondition that  

 the variable y is normally distributed for each setting of x, 

 a linear relationship exists between x and the expected value of y, xaayE  10)( , 

 the deviations between this linear relationship are only random in nature, and 

 the standard deviation characterizing this random spread is constant throughout the 
experimental x space, 

it is possible to demonstrate that the estimate values calculated by means of linear regression for the 
straight line coefficients conform to expectations, i.e. their mean values over numerous tests concur 
with the actual values. 

This strategy can be used for deducing the parameters of a distribution from the calculated 
coefficients of the best-fit line. For this purpose, a suitable transformation must be carried out, which 
can transform the distribution function into a straight line. For the two-parameter Weibull 
distribution, for example, the following relationships arise: Through a double logarithmic expression 
of the distribution function 
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this expression is produced  
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This is a linear equation in the form 01 axay  . The parameters of the best-fit line are produced 

from the above equation as 

  ii Fy  1lnln ,  ii tx ln . (4.49) 

The parameters of the distribution can be deduced directly from the parameters of the best-fit line: 
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NOTE: 

Regression analysis also enables the evaluation of incomplete samples. The failure probability Fi required 
for the evaluation is estimated using the same approaches as described for the graphical evaluation, see 
section 4.3.2. 

In some software tools, x is regarded as a dependent variable on which regression is based. 

4.3.3.3. Maximum likelihood method 

The Maximum Likelihood Estimation (MLE) can be used very effectively to estimate parameters of a 
distribution from sample data, without the prior failure probabilities having to be estimated 
beforehand, as in the regression method. The technique is explained briefly below, further details 
can be found in [1], p. 246ff. 
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Let us assume there are n failure times ti, i = 1,...,n. The unknown failure density function of the 
population, from which the observations originate, contains k unknown parameters ψj, j = 1,...,k, e.g. 
parameters b and T of the Weibull distribution, and is denoted by f(t,ψ1,…,ψk). The probability that 
the i-th failure takes place in the interval (ti ,ti+dt], i.e. precisely where it was observed, is by 
definition f(ti,ψ1,…,ψk)dt. Consequently, the probability that all failures simultaneously take place 
where they were observed (logical "and" operator) is a product of the probabilities of the individual 
failures: 

dtψψtfψψttP
n

i

kikn 



1

111 ),...,,(),...,,,...,( . (4.51) 

With the given failure times ti, this probability obviously depends upon the choice of distribution 
parameters ψj. The principle behind Maximum Likelihood Estimation is to select the distribution 
parameters in such a way as to maximize this probability. To do so, first of all the likelihood function 





n

i

kikn ψψtfψψttL
1
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is introduced. As dt is a constant that does not depend upon the variable parameters, the probability 
will be at its maximum at the same point as the maximum of the likelihood function. As the next step, 
the above function is expressed as a logarithm, which considerably simplifies further procedure. Here, 
too, as the logarithm is a monotonous function, the maximum of ln(L) is at the same point as the 
maximum of the function L. The result is: 
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Λ(t1,…,tn,ψ1,…,ψk) represents the logarithmic likelihood function. Its maximum (in terms of the 
parameters ψj) is at the point where all partial derivations disappear: 
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The k equations contained in (4.54) can only be used to determine the k unknown parameters of the 
distribution. In general, however, these equations can be non-linear in the parameters, so that as a 
rule, software with a suitable numerical optimization process is required to solve them. 

The process can also be applied without problem to censored data. To do so, the definition of the 
likelihood function in equation (4.52) is extended as follows, [14], p. 309: 
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whereby ),...,,( 1 kii ψψtL  denotes the following terms: 

),...,,( 1 ki ψψtf , if ti represents a failure, (4.56) 

),...,,( 1 ki ψψtF , if ti represents a left-censored observation, (4.57) 

),...,,( 1 ki ψψtR , if ti represents a right-censored observation, (4.58) 

),...,,(),...,,( 11 k
L
ik

R
i ψψtFψψtF  , if ti represents an interval-censored observation. (4.59) 

These definitions directly reflect the properties of the likelihood function described above. The 
procedure for certain censoring types and concrete distribution functions such as the normal, 
exponential and Weibull distribution are not discussed any further at this point; further details can 
be found in [14], p. 309ff. 
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NOTES: 

Unlike the regression method, MLE does not need a failure probability and is therefore independent from 
rank distribution. Censored data is taken into consideration with its exact time of observation, not only by 
the number of pieces of data, as with the rank regression method.  

MLE can result in a systematic deviation of the estimation from the true value (bias), especially where 
smaller samples are concerned.  

The above remarks lead us to recommend the use of this method for larger samples with more than 
30 failures and strongly censored data (many runouts, possibly irregularly distributed). For small samples or 
incomplete data, the rank regression method is preferable. 

4.3.4. The consideration of finite sample sizes, confidence intervals 

If a parameter of the distribution of a population is estimated from a sample, some uncertainties 
always abound. If a mean of a sample is used as an estimate for the expected value, for example, in 
the event of multiple sampling the individual values and the mean calculated from them will 
necessarily fluctuate. This fluctuation will increase 

 the greater the variance of the population, and 

 the smaller the sample size. 

The idea of the confidence interval is used to take into account this uncertainty when estimating the 
parameter on the basis of the (subjectively selected) sample size. 

The term ‘confidence interval’ is understood as an interval calculated from sample values, which 
covers the true but unknown parameter of the distribution of a population with a predefined 
probability known as the confidence level P. For example, the selected confidence level may be P = 
90 %. This probability states that when sampling is frequent, the confidence intervals calculated from 
it will cover the true parameter in 90% of cases, and will not cover it in only 10 % of cases. The 10 % is 
expressed as the probability for a type I error α = 10%, so that P = 1 - α. Details on the various 
techniques for calculating confidence bounds are contained in the Annex. 

REMARKS: 

P is frequently interpreted as a probability with which the true parameter of the population lies within the 
calculated confidence interval. This is incorrect, because the true value may be unknown but is not a 
random variable – it is a constant. The sample values and confidence intervals calculated from these are 
subject to fluctuations, however. 

A distinction is made between one and two-sided confidence intervals, depending on whether a 
lower/upper threshold or an interval estimation is required for the parameter of the distribution, 
Fig. 36. One-sided intervals are mostly employed for reliability assessments, as only a one-sided limit 
is needed for the parameters (e.g. minimum average lifetime).  

1- 1- 
1-

/2 /2

Characteristic

f

1- 1- 
1-

/2 /2
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f

 

Fig. 36: One-sided (left and right) and two-sided (center) confidence intervals. The true parameter of 
the population is covered by the interval marked with an arrow with a probability of P = 1 - α. 

Confidence intervals can be stated for any estimated parameter. In a probability paper 
representation of failure data, the confidence interval of the failure probability function is a two-
dimensional interval enclosed by curved lines (confidence bounds) above and below the calculated 
best-fit line, Fig. 37, right. All the straight lines in this interval correspond to distributions of the 
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population that are possible but have varying probability, and which may have led to the failures 
observed in the sample. The confidence bounds lie closer together the greater the sample size (with 
the same confidence level) and the lower the confidence level (with the same sample size). 

t

F(t)
Confidence 

bounds

t t

F F

 

Fig. 37: Confidence interval (two-sided) in the probability paper.  

A confidence level is typically taken into consideration in the evaluation of lifetime data by reading 
the quantile of the lifetime tq not on the median (50 % value) but on the boundary of a given 
confidence interval, Fig. 38.  
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tq,90%

q%
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t

F

tq,90%

q%

90%

tq,50%  

Fig. 38: Lifetime quantile tq with confidence level 50 % or 90 % (one-sided) 

If the uncertainty of a limited sample size is not taken into consideration, there is reason to fear far-
reaching consequences, as the following example shows. 

EXAMPLE: 

A manufacturer must decide between two suppliers who have provided the following information on the 
reliability of the required part for a useful time of 3 years: 

 

Supplier A Supplier B 

R = 99.4% R = 99.9% 

The manufacturer decides in favor of supplier B, as his product demonstrates a higher reliability. However, 
the supplied part suffers several instances of failure. What has happened?  

An analysis has shown that the above data is based on the median (confidence level 50 %), as the 
manufacturer did not demand anything else. However, supplier B based his statements on a trial with only 
5 parts, which by chance had a relatively high reliability. Supplier A, on the other hand, tested 25 parts. If 
the manufacturer had demanded reliability figures for a higher confidence level, e.g. P=95 % (one-sided), his 
choice would have been different: 

 

Supplier A Supplier B 

R95% = 97.1% R95% = 69.9% 
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4.4. Special experiments 

This section discusses some special experimental techniques. Further details can be found e.g. in [15], 
section 11. 

4.4.1. Lifetime test 

Unlike the constant amplitude Wöhler experiment (S/N test), in which the load is kept uniform at one 
level, experiments must often be conducted with variable loads, as in reality uniform loads are rare. 
These experiments are known as lifetime tests.  

Variable loads are typically represented as load collectives. A load collective is formed by first 
breaking down the load characteristic over time into a sequence of damage-relevant single events 
(e.g. load amplitudes with the damage mechanism fatigue), then classifying them. In each class, 
these single events are described by the load parameter Pi, which has a constant level within a class. 
The classes are referred to as part collectives. They are arranged in blocks, from the more to the less 
damaging parts, to represent the total collective. The size of the collective h0 represents the sum of 
all part amounts hi of the individual collective stages. Typically, the curve shown in Fig. 39 results. 
Load collectives are chiefly advantageous because they permit a much more compact representation 
than the original load-time series. Further details on different types of classification can be found in 
[5], section 2. 
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Fig. 39: Load collective and lifetime point (left). Lifetime curve (right). 

The lifetime test is performed by repeatedly applying the variable load until failure. However, the 
application of the load over time does not have to correspond to the order of the block sequence 
mentioned above. Rather, the load is applied through a random sequence of loads of differing levels, 
the frequency of occurrence of which corresponds to the part frequency in the load collective. This is 
because applying the loads in blocks produces effects that do not occur in reality. 

A lifetime point ( t i*,P0) represents the lifetime t i* for a certain load (that varies over time), whereby 
the representation takes place at the level of the highest collective stage P0, Fig. 39 left. The 
associated load collective is typically expressed in addition to enable the load to be visualized.  

A lifetime test is repeated several times under the same load and with (nominally) the same 
specimens in order to record lifetime variance. The lifetime data is evaluated using the procedure 
described in section 4.3. To ascertain the lifetime at a different load level, all part stages of the load 
collective are changed proportionately such that the highest stage reaches the desired level. As with 
the Wöhler curve, the lifetime curve for variable loading, Fig. 39 right, is produced. In double 
logarithmic form, this often appears as a straight line.  
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4.4.2. Sudden death test 

The sudden death test (test to the first fracture) is a time-reducing method for testing the failure 
characteristic of parts in test bench experiments. 

The available total quantity of objects under test is divided into m groups of the same size (test lots), 
each with k specimens. k is the number of available test benches, or the number of specimens that 
can be simultaneously tested on one test bench. The first group (test lot) is subjected to load in an 
endurance test until the first specimen in this group fails. The time until the first failure is recorded. 

Next, the second group is subjected to load in the same way until the first failure. This process is 
repeated for all m groups. In this way, m values of first failures are obtained. 

Since the experiment is stopped after the first failure (first fracture) within a respective test lot, a 
special case of type II censoring with r  = 1 is employed for this method.  

4.4.2.1. Simplified graphical evaluation  

[1], p. 221 suggests a simplified graphical evaluation, which we now go on to describe. 

The lifetime values are arranged in ascending order and entered in the Weibull probability paper, as 
with the classic graphical Weibull evaluation. Each of these first failures is assigned the median of 
rank sizes based on the approximate relationship 
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3.0
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
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
m

i
tF i  (4.60) 

Alternatively, the exact formula from section 6.1.3.5 in the Annex can be employed. The straight line 
of the first failures is produced in the probability paper.  

We can now show that the shape parameter of a Weibull distribution is the same both for a subset of 
a sample and for the entire sample. In other words, the shape parameter of the first failures 
corresponds to the shape parameter of the overall distribution; thus, the sought-after shape 
parameter b can be determined directly from the straight line of the first failures. 

The straight line must be corrected, however (moved to the right) in order to precisely represent the 
failure characteristic and to determine the scale parameter. This correction is necessitated by the 
fact that a failure probability  

4.0

7.0*
1 


k
F  (4.61) 

can be assigned to the first failure of a test lot, and the median (50 % value) of the calculated first 
failures is taken as a representative value for this failure. A vertical line is therefore drawn through 
the point of intersection of the 50% probability curve and the straight line of the first failures. The 

point where this intersects with the *
1F  line produces the straight line of overall distribution. The 

straight line of the first failures must be shifted parallel to this point, Fig. 40. The characteristic values 
of the distribution can now be read on the shifted straight line in the usual manner. 
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Fig. 40: Simplified graphical evaluation of a sudden death test (schematic). Line 1 – straight line of 
first failures, line 2 – straight line of total sample 

4.4.2.2. Nelson evaluation 

Below we discuss the Nelson method of evaluating sudden death data (example from [8]). 

EXAMPLE: 

In a laboratory experiment, n = 54 parts were tested using the sudden death method. As 6 test bench 
spaces were available, m = 9 test lots of 6 parts each (k = 6) were tested in parallel. After each first failure, 
the entire test lot was replaced by the next 6 parts. In the following table, the lifetimes of the first nine 
failed parts are listed in ascending order (column b). In column c, A stands for failure and H for removal. 

The evaluation is carried out using the steps described in section 4.3.2.2. 
 

a b c d e f g h 

j tj, [h] A/H ri 
j

j
r

λ
1ˆ   

j j

j
r

H
1ˆ  

)ˆexp(ˆ
jj HR   jj RF ˆ1ˆ   

1 10 1 A 54 0.0185 0.0185 0.9816 1.8% 

  5 H      

7 14 1 A 48 0.0208 0.0393 0.9615 3.9% 

  5 H      

13 16 1 A 42 0.0238 0.0631 0.9388 6.1% 

  5 H      

19 18 1 A 36 0.0278 0.0909 0.9131 8.7% 

  5 H      

25 20 1 A 30 0.0333 0.1242 0.8832 11.7% 

  5 H      

31 23 1 A 24 0.0417 0.1659 0.8471 15.3% 

  5 H      

37 25 1 A 18 0.0556 0.2215 0.8013 19.9% 

  5 H      

43 28 1 A 12 0.0833 0.3048 0.7373 26.3% 

  5 H      

49 32 1 A 6 0.1667 0.4715 0.6241 37.6% 

  5 H      

Table 5:   Evaluation pattern for a sudden death test (example from [8]) 
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4.4.3. Highly accelerated test methods 

The methods described below are elements that add to the trial or reliability test portfolio. They are 
not suitable for verifying the reliability of systems or components for which real operating load must 
be taken into consideration, and thus are no substitute for the quantitative reliability assessment. 

4.4.3.1. Step-stress method (load increase)  

In the step-stress method, the load applied to the specimen is increased in predetermined time 
intervals. This approach has the objective of shortening the failure times (accelerated life testing), 
under the assumption that the increase in load does not cause any change in the failure mechanism. 

Where there is a fixed shape parameter b, each load level corresponds to a straight line in the 
Weibull plot. Therefore, calculation must be based on the failure straight lines belonging to the 
"basic load" on the basis of the failures observed at the higher load levels. The result is a recursive 
method that can, however, only function if a relationship is known or is assumed to be known 
between the load level and the characteristic lifetime T. 

Due to these required assumptions, the method described here appears problematic, to say the least. 
The principle is presented in Fig. 41. 

t

F

 

Fig. 41: Step-stress method in the Weibull probability paper (schematic) 

4.4.3.2. Highly Accelerated Life Testing (HALT) 

HALT stands for Highly Accelerated Life Testing, a method of accelerated testing discussed in the 
literature since 1993. Use of this method is preferable with electrical and electronic components, less 
so with mechanical components [1], p. 284f.  

The basic principle behind this test method is, similarly to the step-stress method, to determine the 
relevant failure mechanisms in the shortest possible time by increasing a single load quantity step by 
step until failure, starting with the nominal load of the product. The step duration is constant. 

However, as HALT works with loads that are considerably higher than the relevant load level in 
operation, this is a qualitative method for determining operating limits; it cannot be used to 
ascertain statistically relevant reliability values. This is also this method’s principal difference from 
the step-stress approach. If failures occur, one must first examine very critically whether they can 
also occur under the intended "normal" operating conditions.  
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The HALT process commences with the analysis of possible loads, e.g. electrical, mechanical, thermal, 
etc. These must be established individually for each product. The necessary steps are run through 
iteratively below: 

 Test with step-by-step load increase 

 Analysis of test results, determination of root causes 

 Optimization (of the design, the material, the supplier, etc.). 

The functional and destruction limits are determined in these experiments. For this reason, it is 
important that the specimens are in operation and monitored during the tests. If the functional limits 
are exceeded, the object under test irreversibly becomes faulty; beyond the destruction limits, it is 
irreversibly (permanently) destroyed. 

HALT is used: 

 to detect weak points in an early sample phase, 

 to determine the design limits of the design, 

 to determine the load limit at which the damage mechanism of individual machine elements 
changes (this limit must be taken into consideration in the definition of QALT and HASS - see 
below), 

 to determine robustness compared with other products (this is an effective means of estimating 
the effects of modifications), 

 to recognize subsequent misuse in the field on the basis of damage patterns within a findings 
endurance run. 

It is not possible to quantitatively predict reliability on the basis of data from these experiments, 
however. 

4.4.3.3. Quantitative Accelerated Life Testing (QALT) 

A QALT is a test that demonstrates the durability of a design element in respect of a single failure 
mode. Tests are conducted with omission and/or increased load, to reach a known failure mode as 
quickly as possible. The total stress of the design element at this failure mode is determined from the 
load collective of the product. This total stress is applied uniformly to the machine element, although 
loads outside the specification may also be employed.  

Various methods of time acceleration can be used, depending on our understanding and the nature 
of the failure mode: 

 Omission of unused times  

 Omission of non-damaging times 

 Conversion of a low stress level to a higher level by means of a suitable acceleration factor, to 
achieve failures more quickly. 

QALTs are used: 

 for time acceleration when testing a specific design element, 

 as a means of ascertaining acceleration factors as compared with long-term endurance runs, 
vehicle tests or the field, 

 to verify/demonstrate the long-term stability of a design element if the acceleration factor is 
known. 
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4.4.3.4. Stress Screening and Highly Accelerated Stress Screening (HASS) 

The typical stress screening definition for electronic components features 100% testing under stricter 
test conditions, with subsequent delivery of products that passed the test to the customer. The idea 
here is to remove faulty parts that suffer early failure in the first part of the bathtub curve. This 
procedure is only practicable if the delivered parts are not significantly damaged by the test. 

The object under test is typically damaged in hydraulic/mechanical tests. Therefore, the typical stress 
screening definition for electronic components is interpreted for the testing of hydraulic and 
mechanical products as follows:  

 HASS is a constituent of the reliability test.  

 A HASS test is a QALT in which the known target value has been set such that reaching this target 
value enables a clear conclusion to be drawn about the quality of the design element under 
observation.  

 If a target value is not achieved in the HASS, this generally suspends the parts.  

HASS tests are used: 

 for the rapid comparison of a specific machine element in products from ongoing production 
with the released sample phase, 

 as a necessary prerequisite for the release of process modifications to a specific design element 
during serial production. 

4.4.4. Degradation test 

It is quite possible that no failures may occur during the available test time, so that no conclusions 
about reliability can be drawn. For some damage mechanisms, however, a quantity that increases 
over time, known as the damage parameter, can be ascertained and measured, and this 
characterizes the degree of damage. For example, the wear of a component can be determined on 
the basis of material abrasion, or the degree to which a solder connection is ruined on the basis of 
the electrical resistance.  
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Fig. 42: Possible damage characteristics in a degradation test (schematic).  

A helpful technique is now, on the basis of the damage characteristic determined in this experiment, 
to extrapolate this to the values at which it is assumed the object under test will fail. However, this is 
only possible if the type of characteristic (linear, exponential, etc.) is known either from physical 
relationships or from earlier tests. Otherwise, extrapolation cannot be permitted.   
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Different characteristics are possible, which must be taken into consideration, Fig. 42. t0 denotes the 
aspired-to or maximum possible test duration, the line in bold signifies the sensible interval in which 
the damage parameter is recorded and can be extrapolated over the lifetime t*. Extrapolation is 
often only feasible in the linear section of the characteristic. 

Procedure: 

1. Determine the functional relationship between the damage parameter Y and the lifetime 
characteristic t on the basis of physical relationships or several tests until failure. This relationship 
also depends upon k free parameters ai , which must subsequently be experimentally adapted:  

),...,,( 1 kaatfY  . (4.62) 

2. Determine the limit violation Y* from which failure can be expected. Establish the test duration t0, 
measuring times tj < t0, j = 1,...,n and number of specimens to be tested m. 

3. For the i-th specimen, i = 1,...,m conduct the trial and measure the damage parameter Y at the 
times tj , j = 1,...,n. 

4. From the experimental data of the i-th specimen ),( i
jj Yt , j = 1,...,n, determine the k free 

parameter in equation (4.62) by means of regression. Now, for the i-th specimen: 

)ˆ,...,ˆ,( 1
i
k

ii aatfY  . (4.63) 

5. Determine the lifetime ti (time at which limit violation Y* is reached) of the i-th specimen: 

)ˆ,...,ˆ*,( 1
1 i

k
ii aaYft  . (4.64) 

To do so, the inverse function ),...,,( 1
1

kaaYft   must be determined. 

6. Repeat steps 3 to 5 for all specimens. 

7. Evaluate the lifetimes ti
 , i = 1,...,m as described in section 4.3. 

The example below further illustrates this procedure. 

EXAMPLE: 

A tire manufacturer knows from experience that the abrasion Y of his products has a linear dependence on 
the distance driven: 

 taY  1 . (4.65) 

Therefore, for reasons of time, he does not test his tires until they are completely worn, but up to a distance 
of 10,000 km. The threshold wear for this manufacturer is 8mm. Higher values are prohibited due to legal 
requirements.  

In a trial of a new product, 5 tires were tested. Their wear was measured every 1000 km.  

The following data was recorded: 
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Distance driven Abrasion in mm for tires 

km 1 2 3 4 5 

1000 0.16 0.22 0.25 0.18 0.32 

2000 0.36 0.49 0.61 0.35 0.57 

3000 0.63 0.51 0.63 0.48 0.88 

4000 0.83 0.99 1.12 0.86 1.10 

5000 1.02 0.92 0.95 0.80 1.25 

6000 1.24 1.43 1.62 1.19 1.55 

7000 1.37 1.45 1.58 1.12 1.53 

8000 1.71 1.69 2.02 1.48 2.34 

9000 1.99 2.07 2.14 1.54 2.44 

10000 2.27 2.07 2.09 2.00 2.39 

Through linear regression, the following values of the parameter a1 and lifetime t  = Y/a1  of each tire were 
determined, Fig. 43: 

 

Tire 
Parameter 

1 2 3 4 5 

a1, mm/km 2.28E-04 2.15E-04 2.20E-04 1.87E-04 2.46E-04 

t, km 
3.50E+04 3.72E+04 3.64E+04 4.27E+04 3.25E+04 
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Fig. 43: Evaluation of the degradation test in the example.  

4.5. Validation on the customer’s premises  

According to DIN EN ISO 9000, validation is confirmation, through the provision of objective proof, 
that the requirements for a specific intended use or application have been met. Consequently, a trial 
performed for the purpose of validation must take into account the specific use or intended 
application of the product in question. 

The aim of validation on the customer’s premises is to discover possible faults that may occur 
through interactions of a component with its environment (overall system, media, applications, etc.), 
and that were not foreseeable during the development phase. According to the state of the art, 
validating trials are the most effective method of revealing potential faults of this nature.  
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However, it is worth mentioning the limited statistical conclusiveness of these experiments, which 
can generally only be conducted with very few parts or for a limited duration. As a result, only 
obvious faults with a relatively high probability of occurrence can be disclosed, see Fig. 26. 

The purpose of validation is to examine all uses of the part (e.g. different applications). To this aim, it 
may be necessary to divide the uses into groups, in which critical load cases are tested 
representatively for all uses in that group. 

The following criteria may be used to select these uses: 

 Level of innovation 

 Sales volume 

 Performance density. 

The parts are subject to diagnosis regardless of whether or not they have passed the test. Here, 
particular attention must be paid to unexpected levels of wear, unusual fault patterns, etc. 

The selection of tests to be performed must be based on the specific product concerned. 

4.6. Tests during production 

Reliability is an aspect of quality. Therefore, all activities performed within the framework of a QM 
system must also be applied to the fulfillment of established or set requirements in respect of 
reliability [8], p. 291. The regular testing of samples of products from serial production that are ready 
for delivery (reliability inspection) is intended to monitor whether these requirements are 
continuously being satisfied. 

Specimens from production may be considerably less expensive and available in larger quantities 
than samples during the development phase; nevertheless, the scope of these tests must generally 
be limited due to restricted test bench capacity. The performance of normal (non-accelerated) 
endurance runs, in particular, would take far too long for the rapid detection of risks to product 
reliability. 

A suitable approach here is to employ accelerated test methods such as HASS, to achieve rapid 
comparison with the verified, released sample phase, or at least to track modifications of features 
relevant to reliability. 

Alternatively, so-called burn-in tests may be performed. The burn-in test is a form of 100% testing 
during the serial production of electronic components, in which potential early failures are triggered 
by a defined load (e.g. temperature, humidity, current), and the products in question removed. The 
test conditions must be chosen such as to ensure an adequate selection of "good" and "bad" 
products, without damaging the "good" ones. As a rule, however, these conditions are difficult to 
meet in the case of mechanical components. 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-013_BBL_N_EN_2011-06-01.pdf


Methods of design for reliability, verification and validation 

 

©Robert Bosch GmbH | Date 06.2011 

 

76

5. Reliability in the field  

5.1. Product liability 

According to the German Product Liability Act, product liability means that a manufacturer is liable 
for damages suffered by third parties arising from non-conformities in his product. A product is faulty 
when it exhibits safety deficits, i.e. it does not provide the safety which the user of the product may 
rightfully expect. Safety expectations can be justified by all kinds of statements (advertisements, 
brochures, promotions). Therefore, these statements must be regarded with caution. 

Product liability is primarily "strict liability". This means that the manufacturer is liable whether or 
not he is responsible for the non-conformity. The decisive factor is solely the occurrence of the non-
conformity. Each unit (Development, Purchasing, Production and Sales) is responsible, within its 
scope of work, for avoiding safety deficits in products under all circumstances. 

In order to satisfy product liability requirements, the manufacturer must examine his products on the 
market to ensure that: 

 previously unknown non-conformities do not occur, 

 the user is not exposed to danger through combining the product with popular accessories – 
including from other manufacturers – (e.g. add-on parts for the product), and 

 intervention and modification are not frequently undertaken (e.g. changing the control limit in 
control units). 

The customer must be instructed on how to use the product properly and without danger, and 
informed about residual risks. Installation instructions, instructions for use, warnings and safety 
information must be clear and comprehensible and aimed at the level of knowledge of the target 
group (professional/layman). 

5.2. Field observation and Active Field Observation (AFO) 

First and foremost, field or market observation means that the manufacturer of a product fulfils his 
obligations arising from the German Reform of the Law of Obligations in 2002 in respect of the 
German Equipment and Product Safety Act (GPSG) and the German Product Liability Act (ProdHaftG). 
In other words, in the event of a complaint the product in question must be examined in order to 
then permanently eradicate any defects. 

Furthermore, the manufacturer is basically required to conduct market observations permitting the 
early detection of safety defects in connection with the product he has manufactured. This means 
that the manufacturer must follow up all notifications of complaints during the usual period of use if 
these give cause for concern that the product does not offer the safety that the general public may 
rightfully expect. 

On the other hand, AFO refers to observations of product behavior in the field irrespective of 
complaints, i.e. tests are conducted on functioning products. The analysis of long-running functional 
products, i.e. throughout the product lifetime, provides valuable insight into the behavior of modules 
and machine elements of the product, which enables robustness to be assessed under real field load. 

At the heart of the principle of AFO is the usability of the data acquired, i.e. the product-related gain 
in knowledge in terms of: 

 the behavior of long-running products in the field in terms of function/safety/failure probability 

 the comparison of product trials & tests with real field load 
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 a product design adapted to real field load  

 finding out and verifying rationalization measures on the product 

The procedure consists in virtually breaking the product down into modules or machine elements, in 
order to gain considerable knowledge for current and future products from the analysis of products 
in the field, including older generations. For this process to succeed, the reuse of modules over 
generations of product platforms is indispensable. Examples of this are the output stage designs of 
control units, material combinations for assembly and connection technology, the sealing of products 
and all materials and their loads, which are used in design elements. 

According to this principle, the "AFO analysis" of the products in the laboratory of the relevant 
development department must not only be based on function. Rather, the dedicated examination of 
a module in combination with existing automotive data on experienced field loads should enable the 
robustness of the entire product to be determined. 

5.3. Evaluation of field data 

Methods for evaluating field data are described in detail in [16]. Here, just a few additional remarks 
are provided. 

The principal difficulty inherent in the analysis of field data lies in their incompleteness. Data on 
failure behavior may be gathered from warranty cases, inspections, etc., but information about the 
behavior of products that have not failed is generally difficult to obtain. However, for the analysis of 
lifetime the incorporation of observations of intact units is vital, as was demonstrated in section 4.3. 
Only this permits evaluation using methods for censored data. For this reason, some special 
procedures have been elaborated, which are briefly presented here. 

The simplest method consists in estimating the number of intact units from the number of units 
brought into circulation. If k failures were registered up to a certain time, for example, it can be 
assumed that if n parts have been brought into circulation, (n-k) parts have not failed up to this time. 
Evaluation is possible using the method for types I and II right-censored data . However, n is not 
necessarily equivalent to the number of sold units, as not all products immediately reach the end 
consumer. Here, product-specific relationships must be taken into consideration. 

If the lifetime characteristic is not a time variable and the use of the product over time is clearly 
inhomogeneous, the above method cannot be directly applied. With a vehicle, for example, the 
lifetime characteristic is its mileage. This cannot be deduced simply from the fact that a certain 
number of vehicles were still intact after a year, even if the lifetime of the failed vehicles has been 
precisely determined. Two approaches may be employed to tackle this problem: 

 The most accurate results can be expected when the performance distribution of the product (e.g. 
the mileage of a car) is known. In this case, the total number of units still intact at a certain time 
can be broken down, depending on the scope of the individual performance distribution classes. 
If we know, for example, that 20 %, 30 % and 50 % of vehicles have an annual mileage of 40,000, 
25,000 and 15,000 km respectively, it follows that of 1000 vehicles that have not failed after one 
year, 200 will have driven 40,000 km, 300 25,000 km and 500 15,000 km without failure. Here, 
the analysis makes use of the process for multiple-censored data. 

 A performance distribution is deduced from complicated and time-consuming use-case analyses. 
If these are not available, as a simplified process the number of intact units can be "distributed" 
over all failures. In other words, it is implicitly assumed that the performance distribution and the 
failure distribution are identical. Whether this assumption is justified must be examined from one 
case to another. Here, the evaluation can make use of the simplified method employed for a 
sudden death test. 
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A further difficulty lies in the complexity of the field data. The problem is not necessarily the quantity, 
but its nature: often, it is not immediately apparent exactly what has happened upon failure, and 
even whether something has failed. Thus, failure data can be distorted and may sometimes have 
unexpected effects. Examples are known where a manufacturer assumed a lack of reliability in his 
products due to larger numbers of returns during the warranty period. However, the problem lay in 
the fact that maintenance staff were paid by the number of replaced units, of which many were 
actually fully intact. Following a detailed analysis, the solution was to alter the performance incentive 
system for the maintenance staff, not the design of the product.  

Another example is the case of an offroad car manufacturer in the 1960s who assumed an average 
speed of 50mph for his SUVs. After several failures had been recorded, an analysis revealed that 
50mph was indeed reasonable for driving off road, but most SUVs were used as normal vehicles, 
which drive considerably faster. As a result, the requirements for future products were changed, 
instead of introducing quality assurance measures. 

One situation that crops up with particular frequency is the occurrence of mixed failures, for example 
in a mechanical and an electronic component of a product, or two different failure mechanisms come 
into play in a single component. A "mixed" evaluation of both mechanisms in this case is prohibited, 
as is the "omission" of one of the mechanisms. Instead, correct evaluation necessitates treating the 
failures of the competing failure mode as a runout, and applying the method for multiple-censored 
data. 

A similar situation occurs when field failures are recorded at a certain time, for which it is unclear 
whether these are early failures due to production faults, or wear and fatigue-induced failures. An 
inappropriate assumption during evaluation can lead to completely incorrect results. If, for example, 
10% of produced units demonstrate a heat-treatment fault, field failures due to this fault must also 
be based on 10% of the production volume, which must be taken into consideration in the 
calculation of intact units. 

The examples described above show that, in most cases, the detailed diagnosis and analysis of 
failures is indispensable. One should in no event rely on an estimate of the failure rate or the Weibull 
exponent to decide between competing failure modes. Further details on this subject can be found in 
[8.16]. 
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6. Annex 

6.1. Statistical basis 

This section contains some fundamental statistical concepts that are necessary in order to 
understand reliability.  

6.1.1. Definition and characteristics of probabilities 

In everyday engineering practice, variations often occur that can basically be divided into two 
categories [15], p. 45ff: 

 deterministic, their reason is known and their effect can be precisely predicted, and 

 random, neither the cause nor the effect of this cause can be described without further work. 

A typical example of the first case is the movement of a vehicle as the result of acting forces; an 
example of the second type is the strength of a part as a result of unknown effects during the 
manufacturing process. Since random variations cannot be accurately predicted, we turn to the 
concept of random variables, to which a certain probability can be ascribed. The strength of a part in 
production, for example, is described by a random variable that can assume certain values only with 
a certain probability. 

Various terms can be used to define probability. In the "classic" definition by Laplace, the probability 
of an event is defined by the relationship 

n

r
P : , nr 0  (6.1) 

whereby r signifies the number of most favorable cases and n the number of all cases. If, for example, 
we wish to calculate the probability of throwing a 4 with a dice, then this probability is 1/6, for the 
outcome would only be favorable in one out of six cases. This definition is often used to convert a 
relative proportion into a finite population and a probability: if a statement is made that 20 % of parts 
of a batch have failed, this also means that the probability of randomly "drawing" a failed part during 
a test is 20 %, and vice versa. 

The above definition is only applicable when the number of events is finite, however. A remedy is 
provided here by the "statistical" definition of probability according to von Mises. This approach is 
based on an infinitely large population, from which a size n sample is taken. If the event takes place 
in r cases in this sample, the limit of relative frequency r/n for sample sizes tending to infinity is 
employed as the definition of probability: 

n

r
P

n 
 lim: , nr 0 . (6.2) 

Although equations (6.1) and (6.2) look similar, their interpretation is very different: In the first 
equation, n stands for the size of the finite population; in the second, n is the size of the sample of an 
(infinite) population. Thus, if 20 % of parts fail in a sample, this does not imply that the failure 
probability in the population is necessarily 20 %. Wholly different proportions may occur in the next 
sample taken. So, the variation in the samples also plays a decisive role. 
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Equation (6.2) is also not totally satisfactory, as it is strictly speaking an estimate, not a definition [1], 
p. 36. But it is fully adequate for considerations of reliability. We should also mention at this point, 
rather by and by, the "axiomatic" definition by Kolmogoroff, which does not define probability but 
considers it as a fundamental characteristic of events that satisfy certain axioms.  

The probabilities of different events can be interrelated. Some of the most important relationships 
are explained here, further details can be found in [15], p. 25ff. 

 The probability of an event A is expressed as P(A). The probability that A does not take place is 
expressed by 1 - P(A). 

 The conditional probability that event A takes place, assuming that event B has occurred, is 
expressed by P(A|B). If the events are independent, P(A|B)=A and P(B|A) = P(B) applies. 

 The probability that events A and B take place simultaneously is expressed by P(AB) and is the 
result of P(AB) = P(A)·P(B|A). In the case of independent events, the "product rule" P(AB) = 
P(A)·P(B) applies. 

 The probability that event A or B takes place is expressed by P(A+B) and is the result of P(A+B) = 
P(A) + P(B) – P(AB). In the case of independent events, P(A+B) = P(A) + P(B) – P(A)·P(B). 

 Theorem of total probability: In the case of n mutually exclusive events Bi    

(i.e. 1)(...)()...( 11  nn BPBPBBP ), P(A) = ∑i P(A|Bi)·P(Bi) applies. 

 By transforming this last relationship, we obtain the Bayesian theorem: P(A|B)= P(A)·P(B|A)/P(B). 

The theorem of total probability plays an extremely important role in considerations of reliability, as 
illustrated below. 

EXAMPLE: 

A manufacturer purchases parts from 3 different suppliers and wishes to calculate the failure probability of 
these parts. The quantities delivered by the suppliers and their respective failure probabilities are known: 

 

 Supplier 1 Supplier 2 Supplier 3 

Proportion supplied 20% 30% 50% 

Failure probability 4% 2% 1% 

The theorem of total probability can be used to calculate the failure probability. Here, A denotes the event 

"failure" and Bi "delivery from suppliers 1 to 3": 

P(A) = P(A|B1)·P(B1) + P(A|B2)·P(B2) + P(A|B3)·P(B3) = 0.04·0.2 + 0.02·0.3 + 0.01·0.5 = 1.9% 

The failure probability will therefore be considerably smaller than with supplier 1, because the latter 
delivers parts with the highest failure probabilities, but also delivers relatively small quantities, which is 
included as a "weight" in the above formula. It is important to bear in mind that the above scenario 
encompasses all suppliers, however, so that the sum of proportions delivered is 1.  
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6.1.2. Data series and their characteristic values 

Even when an experiment is meticulously conducted, the results (e.g. the measurement of tensile 
strength) will differ – they will vary – if the test is performed more than once, despite conditions 
remaining constant. A data series  

ix , ni ,...,1 , (6.3) 

with n values of the variable under observation can basically be expressed by the following 
characteristic values within the framework of descriptive statistics: 

 Mean to describe the position of the values 
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 Variance 
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or their square root, the standard deviation  s, which characterizes the variance of the values 
around the mean. 

Since the individual values are subject to variance, their characteristic values will also differ if the 
data series is measured several times. It is therefore important to recognize that the mean and the 
standard deviation are also subject to variance. However, the variance of the mean is considerably 
smaller than that of the individual values, and it becomes smaller the larger the sample size. We can 
therefore demonstrate (see [6], p.122) that 

n

s
sx

2
2  . (6.6) 

Data series can be represented in histograms, which are produced when the values of the data series 
are classified. A histogram therefore presents frequencies of the occurring classes of attributes. Total 
frequencies can be deduced by adding the classes together. 

Characteristic

Fr
eq

u
en

cy

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy

CharacteristicCharacteristic

Fr
eq

u
en

cy

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy

Characteristic  

Fig. 44: Histogram and cumulative frequency curve (schematic diagram). 

6.1.3. Distributions and their characteristic values 

6.1.3.1. Distribution and distribution density, moments 

Things are seen in a somewhat different light if the data is viewed as a sample from an infinitely large 
population. Thus  

ix , ni ,...,1 , (6.7) 
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is construed as manifestations of a random variable X. A theoretical model for describing the 
population of all possible values of the variable is provided by the distribution density function f(x). 
This assigns a number f(x) to the value x Fig. 45, left, similarly to the manner in which a relative 
frequency is assigned to the value x in a histogram. We can show that if the size of the sample under 
observation is very large and the class widths of the histogram are declining in size, the distribution 
density function can be deduced directly from the histogram, with the result that the latter can be 
regarded as an approximation of the density function. The probability of this random variable 
assuming X values in the interval (x;x+dx] is 

dxxfdxxXxP )()(  . (6.8) 

From the cumulative frequency curve, a function can also be derived, the distribution function  F(x), 
by crossing the limit to infinity. For each value x, this states the probability that a random variable X 
will assume a value lower than x, Fig. 45 right. The distribution function of a distribution is generally 
obtained by integrating its density function: 





x

dvvfxFxXP )()()( . (6.9) 

Here, the independent variable of the function f(v) is expressed as v, in order that it can be 
differentiated from the upper integration limit x. The function F(x) is therefore a function of the 
upper integration limit, while v is a variable by which integration takes place.  
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Fig. 45: Distribution density and distribution function (schematic diagram). 

The distribution function assigns a probability to the value x of the variables X. Certain preconditions 
must therefore be satisfied for this to take place, so that a function can be employed as a distribution 
function: 

 Within the limits, it must be the case that  0)( F , 1)( F , and consequently  

1)( 




dvvf . (6.10) 

 For all  x  it must be the case that F(x) is a monotonously increasing function of x. 

The density and distribution function of a distribution possess characteristic values (also known as 
moments), which determine the appearance of the distribution. The most important are: 

 the mean (sometimes also referred to as the expected value)  






 dxxfxμx )()E(  (6.11) 

 and the variance   
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




 dxxfμxσx )()()Var( 22 , (6.12) 

which describe the position and width of the distribution.  

6.1.3.2. Examples of distributions 

The simplest means of illustrating the above issues is the example of normal distribution, which 
possesses the well-known "bell-shaped" distribution density function:  
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By integrating the density function, we obtain the s-shaped distribution function of normal 
distribution 
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As the integral cannot be further analyzed, the above equation cannot be simplified any further.  

The equations show that with normal distribution, the mean and standard deviation characteristics 
occur as parameters in the distribution function; they are often also referred to as N(μ,σ). This makes 
working with them especially simple. The fact that this is not necessarily the case for every 
distribution, however, is demonstrated by the example of exponential distribution with the density 
function 

)exp()( xλλxf  , 0x , (6.15) 

in which a parameter λ occurs. The relationship between parameters and the above characteristic 
values is described as follows: 

λ
μ
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 ; 

2

2 1







λ

σ . (6.16) 

Here, the relationship between distribution parameters and characteristic values is relatively simple, 
so that conversion can take place without problem. It becomes more complicated in the case of the 
Weibull distribution, which plays an important role in describing lifetime; there, conversion is no 
longer that straightforward. We do not go into further detail at this point, however. 

6.1.3.3. Characteristic values of independent and dependent variables 

If a variable Y indicates a linear dependence of n independent random variables Xi: 





n

i

ii XaaY
1

0 , (6.17) 

then Y will also be a random variable. The distribution function of Y cannot generally be calculated 
without problem, particularly if the variables Xi have different types of distribution. Despite this, it is 
possible to calculate characteristic values of the Y distribution precisely as a function of characteristic 
values of the Xi distributions, see [6] p. 150: 


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n

i

XiiY μaaμ
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0 , (6.18) 
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In particular, for the mean of n normally distributed, independent variables  
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and this, likewise, is normally distributed with 
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If the relationship between Y and the independent random variables Xi, contrary to equation (6.17) is 
non-linear, then it is generally the case that 

),...,( 1 nXXgY  , (6.22) 

a Taylor series development can be used to derive a first order estimate of mean and variance, [6] 
p. 150: 

),...,( 1 XnXY μμgμ  , (6.23) 
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This linearized estimate is not a good approximation in the environs of extrema. In this case, a Monte 
Carlo simulation may deliver better results. To this aim, randomly larger samples are generated on 
the basis of the known distributions of the variables Xi. Next, a value for Y is calculated in accordance 
with equation (6.22) for each configuration of variables, so that in the end a sample of the same size 
is also available for Y.  The characteristic values of the Y distribution can now be obtained from this 
sample using estimates based on equations (6.4) and (6.5). Further details are contained in [6], 
section 9. 

6.1.3.4. Point and interval estimation of the mean, confidence interval 

We are generally up against the question as to how to determine the unknown characteristic values 
of the population. It can be demonstrated that 

 the mean of a sample x  can be used as an estimate for the mean of the population μ , and 

 the variance of a sample 2s  can be used as an estimate for the variance of the population 2σ . 

In addition, both estimates conform to expectations, i.e. with many replications, they approximate 
the values of the population.  

The quality of this point estimation is initially questionable, however, but can be evaluated using the 
following procedure. If a random variable X is normally distributed, the variable 

σ

μX
u


 , ),( σμNX  (6.25) 

is also normally distributed with the mean 0 and the standard deviation 1. This distribution is known 
as "standard normal distribution". An estimate of the probability P with which X lies within a given 
interval σuμXσuμ   can be made with the aid of the parameter u:  

ασuμXσuμP  1)( . (6.26) 
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For example, the variable X will lie within the interval σμ 1  with a probability of 68.3 %. It is 

therefore clear that u equals the characteristic value of standard normal distribution with 
probabilities (1 - α /2) and α /2. 

We will now examine the mean of n independent, normally distributed variables  
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The quantity 

σ

μX
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
  (6.28) 

is by definition standard, normally distributed. However, the standard deviation of the population is 
generally unknown, with the result that it must be estimated on the basis of a sample: s . At the 
same time, we can shown that in this case, the quantity 

s

μX
nt


  (6.29) 

is no longer normally distributed; its distribution is described by the so-called t-distribution (or 
student’s t-distribution). For small values of the parameter n, the t-distribution manifests a greater 
width and edge definition than normal distribution; for the large values of n (n=50 and above), it 
approaches normal distribution. 

An estimate of the probability P with which X  lies within a given interval can be made with the aid of 
the parameter t. By the same token, an indirect conclusion can also be drawn regarding an interval  

n

s
tXμ

n

s
tX   (6.30) 

that covers the unknown population mean. Here, the probability  
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is usually referred to as the confidence level, and the interval as the confidence interval. The more 
certain one wishes to be that the interval covers the true mean, the higher the confidence level and 
the larger the parameter t that must be selected. Tabular values of t are contained in section 6.3.2. 

In the same way, a confidence interval can also be stated for the variance, although this is not 
discussed any further here. Details can be found e.g. in [6]. 

6.1.3.5. Distribution-free estimation of failure probability, confidence intervals 

During the evaluation of lifetime data, n observations (e.g. failures) t1 ≤ t2 ≤ … ≤ tn taking place over 
time must often be described by an initially unknown, theoretical distribution. The question 
therefore arises as to which probability can be assigned to the various observations. Suitable 
methods of doing this are explained below. They are frequently also referred to as rank estimation 
methods, as they only take into consideration the order (rank) of the observations, not the actual 
times of observation.  

Let us assume that 4 out of 10 specimens have failed at a certain time in an experiment. The question 
is how a certain failure probability F can be deduced from this observation. The simple approach F = 
4/10 = 40 % would be naïve, as with a certain probability F, all failures between 0 and 10 would be 
possible, if also of varying likelihood, Fig. 46. Their probability can be calculated using the density 
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function p of the discrete binomial distribution. This indicates the probability with which an event 
(e.g. a failure) will occur precisely i times in a sample with a size n, if the probability of this event is F: 

ini FF
i

n
ip 




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


 )1()( . (6.32) 

Thus, from this observation of 4 failures, we do not immediately obtain a particular value for F, 
because 4 failures are possible with different values for F. However, this task can be formulated 
differently: A value for F must be selected that ensures that the probability of error is kept as small as 
possible, and the true but unknown failure probability is greater than the selected one. Thus, the 
probability for a non-conservative estimate must be kept small.  
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Fig. 46: Probability that 1 to 10 failures occur in a sample of n=10 with different failure probabilities F. 

As Fig. 46 shows, fewer than 4 failures become ever more improbable as the failure probability F 
increases. In other words, if it is very improbable that fewer than 4 failures occur, but at the same 
time 4 failures are observed, the 4 failures cannot be random; they would indicate a failure 
probability lower than that which was estimated. The estimate would therefore be conservative, 
which is desirable. The probability that results as the sum of equation (6.32) for i = 0,...,3   
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can thus be interpreted as the residual risk of a non-conservative estimate (probability of a type I 
error α), which must be kept small. The probability 

ini
n

xi

FF
i

n
αP 











  )1(1  (6.34) 

for its part, represents the confidence level.  

The explanations above have assumed a given failure probability F. However, the task is to determine 
F for the i-th observation. The procedure for doing this is provided by equation (6.34): For a 
sufficiently small probability α, F can be deduced from (6.34). This equation can be solved either 
iteratively and numerically or, as proposed in [14], p. 79, converted to 

 αiinFini

i
F αBB 


1;2);1(2)1(

1, . (6.35) 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-013_BBL_N_EN_2011-06-01.pdf


Methods of design for reliability, verification and validation 

 

©Robert Bosch GmbH | Date 06.2011 

 

87

Here,  αiinF  1;2);1(2  expresses the quantile of the Fischer distribution with degrees of freedom  

2(n+1-i) and 2i , which can be calculated using the "FINV" Microsoft Excel function, for example. The 
confidence bounds calculated using equation (6.35) FBB.1-α are set out for α = 5% in tabular form in 

section 6.3.4. They define the one-sided confidence interval αBBFF  1,  with associated confidence 

level 

  αFFP αBB   11, . (6.36) 

For α = 50 %, equation (6.35) produces the exact median values of the failure probability, as 
explained in section 6.3.3. The much used equation 
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n

i
F  (6.37) 

constitutes only a (relatively good) approximation.  

Further estimators and associated confidence intervals exist, such as the Kaplan-Meier, the Fisher 
matrix and the likelihood ratio. These approaches are based only on asymptomatically correct 
approximations, and are not discussed any further here. Details can be found e.g. in [14]. 

EXAMPLE: 

For the example from section 4.3.2.1, the median values and the one-sided confidence bounds (confidence 
level P = 90 %) of the failure probability are calculated using equation (6.35) as follows: 

 

Motor  1 2 3 4 5 6 7 8 9 10 

FBB.50%,% 6.7 16.2 25.9 35.5 45.2 54.8 64.5 74.1 83.8 93.3 

FBB.90%, % 20.6 33.7 45.0 55.2 64.6 73.3 81.2 88.4 94.5 99.0 

6.2. Distributions as a model of varying lifetime data 
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Fig. 47: Possible density function of the distribution of a real random variable (schematic). 

Distributions should be understood as models of varying lifetimes. As with any model, here too, it 
makes no sense to ask whether the model is correct or incorrect, but rather whether or not it serves 
its intended purpose. Nevertheless, caution must be exercised when dealing with (simplified) models, 
as they do not reflect reality in all its complexity: 

Random variables are not necessarily normally distributed. The Gaussian normal distribution 
assumes values between -∞ and +∞, but physical quantities are often only positive. Here, the use of 
the log-normal distribution may provide assistance. However, the normal distribution has a 
theoretical basis, for one can show that a random variable, which is subject to an infinite number of 
additive and independent influences, must be normally distributed (central limit theorem). Although 
this is a sensible model for the question at hand, a decision has to be made in each individual case. 
The same also applies to the log-normal and Weibull distribution. 
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Random variables do not even have to conform to a known analytical distribution, because they are 
subject to various complex influences and may therefore be skewed, multimodal or "cut" left and 
right by a selection, Fig. 47. Despite this, it can be helpful to use known distributions as a model. 
Although the random variable of pressure load obviously cannot assume values up to +∞, it makes 
sense to use a log-normal distribution to describe it. This is because deducing an upper limit for 
pressure is extremely difficult and would not really allow us to achieve our objective. The precise, 
"cut" distribution is very complex and scarcely manageable, a worst-case approach that takes 
account only of the maximum pressure but overlooks its very low probability of occurrence, resulting 
in overdesign. A "non-physical" distribution can provide assistance here as a simplified model. 

Where such a model appears necessary, however, modeling must not be excessively simplified. If, for 
example, several mechanisms have obviously led to failure, these must also be taken into 
consideration with a reasonable outlay using the approaches for censored data, not approximated by 
means of a single distribution. It is necessary to examine on a case-by-case basis which distributions 
seem most fit for purpose for modeling. Further details can be found in [14], p. 49ff. 

6.2.1. Weibull distribution  

In the early 1950s, in very general conditions, Swedish engineer W. Weibull developed the universal 
cumulative distribution function 
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of which he was able to show, purely empirically, that in many cases it constitutes a good description 
of the characteristics of real objects, such as the tensile strength of steel, particle size of fly ash, fiber 
strength of cotton and fatigue life of steel. 

Weibull himself was never of the opinion that this function must always apply. Nevertheless, 
Weibull’s distribution function has proven itself today and is inseparably connected with to the 
evaluation of lifetime tests. This is also due to subsequent work that was able to show the theoretical 
bases behind the distribution as a so-called extreme value distribution. These bases are outlined in 
brief below. 

A body can theoretically be broken down into n parts, with corresponding lifetimes t1, … , tn. If the 
individual elements are assumed to possess a serial structure, the lifetime of the body is the same as 
the lifetime of its weakest member: 

t = min (t1, … , tn). 

The lifetime of the body t therefore corresponds to the lowest failure time (first rank) of a size n 
sample. If this procedure is repeated for several bodies, the first rank will always be different – it will 
vary. The distribution that describes this variance is known as the extreme value distribution, since 
the first rank (like the n-th rank) constitutes an "extreme" rank. It is possible to demonstrate that the 
Weibull distribution always results as the distribution for n→∞, regardless of the type of distribution 
displayed by the lifetimes of the individual elements. Thus, the Weibull distribution describes in a 
theoretically sound way the failure characteristic of a body based on the principle of the weakest 
member. 

With some failure causes, first of all a certain time t0 must pass until a failure can occur as a result of 
this cause. Examples are wear (e.g. brush wear in electric motors), and corrosion. The three-
parameter Weibull distribution that is obtained through a transformation t → t - t0 serves as a model 
for statistically describing this phenomenon.  
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The expected value (MTTF) of the Weibull distribution is defined as 
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whereby (.)Γ  denotes the so-called gamma function. It is sensible to emphasize at this point that the 

MTTF value (or mean) of an asymmetrical distribution, such as is the case with Weibull, is not 
identical to the 50% quantile t50 (the median). The relationship between tq and MTTF can be 
expressed as described below. Assuming that the lifetime is Weibull-distributed, the time tq by which 
the proportion q of a population of equivalent products has failed can be expressed thus: 
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Table 6 illustrates some basic relationships underlying the Weibull theory. Fig. 48 shows the graphical 
representations of the density function, the distribution function and the failure rate. It is evident 
that the "appearance" of the Weibull distribution has strong variations depending upon the value of 
the shape parameter b. 

Weibull probability paper 

The Weibull probability paper is a diagram for plotting the cumulative failure frequencies versus the 
logarithms of failure time, Fig. 49. The y-axis in this diagram is selected to ensure that a straight line 
is formed with the representation of a Weibull distribution. A double logarithm of the distribution 
function produces: 
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which corresponds to a linear equation in terms of the independent variable ln(t) with slope b and 
intercept -b·ln(T). This enables a given data set with failure times of test objects to be examined 
graphically for Weibull distribution. If the recorded sequence of points lies approximately on a 
straight line, then we can deduce that the values are approximately Weibull-distributed. This 
representation can be used to determine estimate values for the parameters b and T, see section 
4.3.2. 
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Two-parameter Weibull distribution 
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Parameters of the Weibull distribution 

t Lifetime parameter 

b  Shape parameter or Weibull exponent. Determines the slope of the straight line in  
the Weibull plot (this explains the German term Ausfallsteilheit (failure slope) and is 
characteristic of this type of failure. 

T  Scale parameter or characteristic lifetime. Indicates the time up to which approx. 
63.2 % of the products of a population have failed, as F(T) = 0.632. Determines the 
relative position of the failure probability function in relation to the t-axis. 

t0 Time without failure 

Table 6:  Parameters and characteristic values of the Weibull distribution. 
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Fig. 48: Graphical representation of the density function (top), distribution function (center) and 
failure rate of the Weibull distribution (bottom) as a function of the shape parameter b. 
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Fig. 49: Weibull probability paper 

6.2.2. Exponential distribution 

The exponential distribution is a model for describing random failures, which can often be applied 
when dealing with electronic components, for example. This distribution is a special case of the 
Weibull distribution, with shape parameters b = 1. Its distribution function is 

)exp(1)( tλtF  ,  (6.44) 

whereby λ stands for the parameter of the distribution. The distribution density function is obtained 
by deducing the distribution function according to t: 

)exp(
)(

)( tλλ
dt

tdF
tf  . (6.45) 

The failure rate of exponentially distributed failures is 

λ
tλ

tλλ

tF

tf

tR

tf
tλ 








)exp(

)exp(

)(1

)(

)(

)(
)( . (6.46) 

Thus, the parameter of the distribution is the same as the (constant) failure rate, so that the 
designation λ makes sense. 

The exponential distribution has proven itself extremely effective for expressing radioactive decay 
(carbon dating using the 14C method). The validity of the decay law has repeatedly been reconfirmed 
in numerous physical experiments. Where lifetime tests are concerned, however, the exponential 
distribution is only valid within a limited period of time (in section II of the "bathtub curve" ), since 
after a sufficiently long time every technical product will eventually fail due to wear, aging and 
fatigue (the failure rate λ will then be time-dependent). 
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When evaluating a data set in the Weibull plot, the value b = 1 will practically never be exactly 
attained. For practical applications, we can also assume "random failures" in the case of 2.18.0  b . 

During the testing of electronic elements and components, in most cases a fixed number n of 
specimens and a fixed test time t are defined, and the number k of failed units up to this time 
determined (the individual failure times are unknown, and failed units are not replaced). An estimate 
value for λ is then: 







 

n

k

t
λ 1ln

1
. (6.47) 

For an estimation of λ under other test and evaluation conditions (e.g. predetermined number of 
failures, type II censoring), see section 4.3.2.2. 

The expected value of the exponential distribution (Weibull distribution with b = 1) is: 





00

)exp()(MTTF)(E dttλtλdttftt
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

0

)1(
)exp(

tλ
λ

tλ

λ

1
 . (6.48) 

As with the Weibull distribution, it also makes sense with the exponential distribution to determine 
the relationship between tq and MTTF. tq is the time up until which the proportion q of a population 
of equivalent products has failed: 

100
)exp(1)(

q
tλtF qq  , with 1000  q .  (6.49) 

Thus  

qtλ
q


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
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100
1ln  and 

λ

1
MTTF   results in  (6.50) 



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100
1lnMTTF

q
tq . (6.51) 

The table below shows some fundamental relationships. 

 

Exponential distribution 

)exp()( tλλtf   Failure density function 

)exp(1)( tλtF   Failure probability function 

λtλ )(  Failure rate 

E(t) = MTTF = 1/λ Expected value (mean) of the distribution 

Var(t) = 1/λ 2 Variance of the distribution 







 

100
1lnMTTF

q
tq  q-quantile of the distribution. Median of the distribution  

for q = 50 %. 

 

Parameters of the normal distribution 

t Lifetime parameter 

λ  Shape and scale parameter, λ = 1/E(t) 

Table 7:  Parameters and characteristic values of the exponential distribution. 

6.2.3. Normal distribution 

When we refer to a normal distribution, we mostly associate this term with the Gaussian bell curve. 
The Gaussian curve expresses the probability density function of the normal distribution, Fig. 50: 
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The distribution function of normal distribution expresses the probability for each value t that the 
random variable X will assume a value between -∞ and t. It is obtained by integrating the above-
mentioned density function, Fig. 50: 


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1
exp

2

1
)( . (6.53) 

F(t) denotes the area below the Gaussian bell curve up to the value t. The total area under the bell 
curve has the value one. 

The normal distribution’s special importance in statistics is explained by the central limit theorem. To 
explain this somewhat loosely, it states that the random interaction (addition) of numerous 
independent random variables produces a resulting random variable that is approximately normally 
distributed. 

The normal distribution is clearly established by the two parameters μ and σ. The first of these 
determines the position of the distribution on the characteristics axis, the second its width, Fig. 50. 
One reason why working with the normal distribution is so simple is that these parameters are 
identical with the expected value (mean) or standard deviation of the distribution. 

The transformation  

σ

μX 
U   (6.54) 

converts a normally distributed random variable X with a mean μ and standard deviation σ into a 
random variable that is also normally distributed. The mean of U is zero, its standard deviation is one. 
The special normal distribution N(0,1) is known as standard normal distribution. 

The values of the distribution function of the standard normal distribution )(Φ u  are set out in tabular 

form in section 6.3.1. The tabular standard normal distribution can be used, for example, to calculate 
the proportions of any normal distribution that exceed predetermined limits. 

Normal distribution plays only an indirect role in observations of reliability. This is due to the fact that 
here, a characteristic cannot fall below (e.g. surface roughness, eccentricity, roundness) or exceed 
(e.g. delivery rate, hardness) a certain limit. For example, a load or a load capacity can only assume 
values greater than zero (and the same applies to stress and strength).  

Table 8 shows some fundamental relationships. 
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Fig. 50: Graphical representation of the density function (top), distribution function (center) and 
failure rate of the normal distribution (bottom) as a function of the dispersion parameter σ, when  
μ = 1. 
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Normal distribution 
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)(  Failure probability function 
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tR

tf
tλ   Failure rate (cannot be further simplified) 

E(t) = MTTF = μ Expected value (mean) of the distribution 

Var(t) = σ2 Variance of the distribution 

t50 = μ Median of the distribution (50% failure probability) 

 

Parameters of the normal distribution 

t Lifetime parameter 

μ  Scale parameter, μ = E(t) 

σ  Shape parameter, σ2 = Var(t) 

Table 8:  Parameters and characteristic values of the normal distribution. 

6.2.4. Log-normal distribution 

In order to exploit the advantages of normal distribution, such as known characteristics, relatively 
simply representation, etc. within the context of reliability, the following procedure can be applied: if 
we express the values of an asymmetrically distributed random variable such as lifetime as 
logarithms, these will be approximately normally distributed. Using logarithms in this way transforms 
the range of numbers between 0 and 1 into the range -∞ to 0, so that the left-hand part of the 
distribution is greatly stretched, the right-hand part greatly compressed.  

A continuous random variable X is log-normally distributed if ln(X) is normally distributed. The 
density function of the log-normal distribution is expressed by 
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tf ,  (6.55) 

consequently, the distribution function results as 
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The distribution function cannot be further simplified analytically. Some examples of the density and 
distribution function of log-normal distribution are contained in Fig. 51. 

Unlike normal distribution, the log-normal distribution can effectively describe very different failure 
behavior, as with the Weibull distribution, for example. Furthermore, all findings and methods of 
normal distribution can easily be transferred to log-normal distribution. There is one major 
disadvantage, however, in that the failure rate of the log-normal distribution initially rises as lifetime 
increases, then falls again after a maximum is reached and tends towards zero for very long lifetimes. 
There are therefore limitations on how correctly the monotonously rising failure rate of fatigue and 
wear failures can be described. 
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Whereas a random variable resulting from the additive interaction of numerous influencing factors is 
normally distributed, in log-normal distribution the random factors are linked through multiplication, 
i.e. they are proportionally dependent upon one another. If we assume that a fracture occurs in 
stages and view the growth of the crack at each stage as a random variable that is proportional to the 
achieved crack length, according to the central limit theorem the log-normal distribution is the model 
for describing a failure characteristic of this kind, [1], p. 58. This is a theoretical reason for employing 
the log-normal distribution in questions of reliability. 

Table 9 below shows some fundamental relationships. In addition to e, 10 can also be used as the 
basis for the logarithm. This is particularly common when talking about strength. In this case, the 
expression ln(.) must be replaced by lg(.) and exp(.) by 10^(.). 

 

Log-normal distribution 
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t50 = exp(η) Median of the distribution (50% failure probability) 

 

Parameters of the log-normal distribution 

t Lifetime parameter 

η  Scale parameter, 
2
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Table 9:  Parameters and characteristic values of the log-normal distribution. 
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Fig. 51: Graphical representation of the density function (top), distribution function (center) and 
failure rate of the log-normal distribution (bottom) as a function of the dispersion parameter ζ, when 
η = 0. 
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6.2.5. Mixture of distributions 

A mixture of distributions of failure times occurs when products that are subject to different failure 
modes (e.g. due to different manufacturing conditions or material batches) are grouped in a 
population. This means, for example, that Group 1 fails only due to cause A, and Group 2 only due to 
cause B. In the Weibull model, these two failure mechanisms constitute different shape parameters 
b1 and b2 and/or different characteristic lifetimes T1 and T2. 

Consequently, when data from such a mixture of distributions is entered in the Weibull plot, it is not 
a straight line that is obtained in most cases, but a curve bending away from the time axis. Inasmuch 
as the cause of failure can be determined for each part, a separate Weibull analysis can be 
undertaken after the data has been separated accordingly. 

If we mix two populations with a size n1 or n2 , the distribution functions of which are F1(t)  or F2(t), 
the resulting distribution function of the mixture (with n = n1 + n2) according to the theorem of total 
probability is: 
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tF  . (6.57) 

Generally, the following applies:  
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Based on the density functions (relative frequencies), we can also say that:  
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If an individual product can fail for various reasons without the probability of occurrence of the 
individual failure causes being known, the situation is different. In this case, we refer to competing 
failure modes. The survival probability R(t) of a part then equals the product of the survival 
probabilities in terms of the individual k failure causes: 

)()()()( k21 tRtRtRtR  . (6.60) 

Weibull analysis of a data set based on indistinguishable, competing failure modes (which as such 
cannot be distinguished through testing of parts), is only possible with the aid of computers. 
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6.3. Tables 

6.3.1. Standard normal distribution  

Distribution function F(u0) of the standard normal distribution as per equation (3.12) 

u0 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09 

0.0 0.5039894 0.5079783 0.5119665 0.5159534 0.5199388 0.5239222 0.5279032 0.5318814 0.5358564 

0.1 0.5437953 0.5477584 0.5517168 0.5556700 0.5596177 0.5635595 0.5674949 0.5714237 0.5753454 

0.2 0.5831662 0.5870644 0.5909541 0.5948349 0.5987063 0.6025681 0.6064199 0.6102612 0.6140919 

0.3 0.6217195 0.6255158 0.6293000 0.6330717 0.6368307 0.6405764 0.6443088 0.6480273 0.6517317 

0.4 0.6590970 0.6627573 0.6664022 0.6700314 0.6736448 0.6772419 0.6808225 0.6843863 0.6879331 

0.5 0.6949743 0.6984682 0.7019440 0.7054015 0.7088403 0.7122603 0.7156612 0.7190427 0.7224047 

0.6 0.7290691 0.7323711 0.7356527 0.7389137 0.7421539 0.7453731 0.7485711 0.7517478 0.7549029 

0.7 0.7611479 0.7642375 0.7673049 0.7703500 0.7733726 0.7763727 0.7793501 0.7823046 0.7852361 

0.8 0.7910299 0.7938919 0.7967306 0.7995458 0.8023375 0.8051055 0.8078498 0.8105703 0.8132671 

0.9 0.8185887 0.8212136 0.8238145 0.8263912 0.8289439 0.8314724 0.8339768 0.8364569 0.8389129 

1.0 0.8437524 0.8461358 0.8484950 0.8508300 0.8531409 0.8554277 0.8576903 0.8599289 0.8621434 

1.1 0.8665005 0.8686431 0.8707619 0.8728568 0.8749281 0.8769756 0.8789995 0.8809999 0.8829768 

1.2 0.8868606 0.8887676 0.8906514 0.8925123 0.8943502 0.8961653 0.8979577 0.8997274 0.9014747 

1.3 0.9049021 0.9065825 0.9082409 0.9098773 0.9114920 0.9130850 0.9146565 0.9162067 0.9177356 

1.4 0.9207302 0.9221962 0.9236415 0.9250663 0.9264707 0.9278550 0.9292191 0.9305634 0.9318879 

1.5 0.9344783 0.9357445 0.9369916 0.9382198 0.9394292 0.9406201 0.9417924 0.9429466 0.9440826 

1.6 0.9463011 0.9473839 0.9484493 0.9494974 0.9505285 0.9515428 0.9525403 0.9535213 0.9544860 

1.7 0.9563671 0.9572838 0.9581849 0.9590705 0.9599408 0.9607961 0.9616364 0.9624620 0.9632730 

1.8 0.9648521 0.9656205 0.9663750 0.9671159 0.9678432 0.9685572 0.9692581 0.9699460 0.9706210 

1.9 0.9719334 0.9725711 0.9731966 0.9738102 0.9744119 0.9750021 0.9755808 0.9761482 0.9767045 

2.0 0.9777844 0.9783083 0.9788217 0.9793248 0.9798178 0.9803007 0.9807738 0.9812372 0.9816911 

2.1 0.9825708 0.9829970 0.9834142 0.9838226 0.9842224 0.9846137 0.9849966 0.9853713 0.9857379 

2.2 0.9864474 0.9867906 0.9871263 0.9874545 0.9877755 0.9880894 0.9883962 0.9886962 0.9889893 

2.3 0.9895559 0.9898296 0.9900969 0.9903581 0.9906133 0.9908625 0.9911060 0.9913437 0.9915758 

2.4 0.9920237 0.9922397 0.9924506 0.9926564 0.9928572 0.9930531 0.9932443 0.9934309 0.9936128 

2.5 0.9939634 0.9941323 0.9942969 0.9944574 0.9946139 0.9947664 0.9949151 0.9950600 0.9952012 

2.6 0.9954729 0.9956035 0.9957308 0.9958547 0.9959754 0.9960930 0.9962074 0.9963189 0.9964274 

2.7 0.9966358 0.9967359 0.9968333 0.9969280 0.9970202 0.9971099 0.9971972 0.9972821 0.9973646 

2.8 0.9975229 0.9975988 0.9976726 0.9977443 0.9978140 0.9978818 0.9979476 0.9980116 0.9980738 

2.9 0.9981929 0.9982498 0.9983052 0.9983589 0.9984111 0.9984618 0.9985110 0.9985588 0.9986051 

3.0 0.9986938 0.9987361 0.9987772 0.9988171 0.9988558 0.9988933 0.9989297 0.9989650 0.9989992 

3.1 0.9990646 0.9990957 0.9991260 0.9991553 0.9991836 0.9992112 0.9992378 0.9992636 0.9992886 

3.2 0.9993363 0.9993590 0.9993810 0.9994024 0.9994230 0.9994429 0.9994623 0.9994810 0.9994991 

3.3 0.9995335 0.9995499 0.9995658 0.9995811 0.9995959 0.9996103 0.9996242 0.9996376 0.9996505 

3.4 0.9996752 0.9996869 0.9996982 0.9997091 0.9997197 0.9997299 0.9997398 0.9997493 0.9997585 

3.5 0.9997759 0.9997842 0.9997922 0.9997999 0.9998074 0.9998146 0.9998215 0.9998282 0.9998347 

3.6 0.9998469 0.9998527 0.9998583 0.9998637 0.9998689 0.9998739 0.9998787 0.9998834 0.9998879 

3.7 0.9998964 0.9999004 0.9999043 0.9999080 0.9999116 0.9999150 0.9999184 0.9999216 0.9999247 

3.8 0.9999305 0.9999333 0.9999359 0.9999385 0.9999409 0.9999433 0.9999456 0.9999478 0.9999499 

3.9 0.9999539 0.9999557 0.9999575 0.9999593 0.9999609 0.9999625 0.9999641 0.9999655 0.9999670 

4.0 0.9999696 0.9999709 0.9999721 0.9999733 0.9999744 0.9999755 0.9999765 0.9999775 0.9999784 

4.1 0.9999802 0.9999811 0.9999819 0.9999826 0.9999834 0.9999841 0.9999848 0.9999854 0.9999861 

4.2 0.9999872 0.9999878 0.9999883 0.9999888 0.9999893 0.9999898 0.9999902 0.9999907 0.9999911 

4.3 0.9999918 0.9999922 0.9999925 0.9999929 0.9999932 0.9999935 0.9999938 0.9999941 0.9999943 

4.4 0.9999948 0.9999951 0.9999953 0.9999955 0.9999957 0.9999959 0.9999961 0.9999963 0.9999964 

4.5 0.9999968 0.9999969 0.9999971 0.9999972 0.9999973 0.9999974 0.9999976 0.9999977 0.9999978 

4.6 0.9999980 0.9999981 0.9999982 0.9999983 0.9999983 0.9999984 0.9999985 0.9999986 0.9999986 

4.7 0.9999988 0.9999988 0.9999989 0.9999989 0.9999990 0.9999990 0.9999991 0.9999991 0.9999992 
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6.3.2. t-distribution 

α /2 -quantile of the t-distribution with degree of freedom f (two-sided) as per equation (6.31) 

 
 α=0.05 0.01 0.001 

f=1 12.71 63.66 636.62 

2 4.30 9.92 31.60 

3 3.18 5.84 12.92 

4 2.78 4.60 8.61 

5 2.57 4.03 6.87 

6 2.45 3.71 5.96 

7 2.36 3.50 5.41 

8 2.31 3.36 5.04 

9 2.26 3.25 4.78 

10 2.23 3.17 4.59 

11 2.20 3.11 4.44 

12 2.18 3.05 4.32 

13 2.16 3.01 4.22 

14 2.14 2.98 4.14 

15 2.13 2.95 4.07 

16 2.12 2.92 4.01 

17 2.11 2.90 3.97 

18 2.10 2.88 3.92 

19 2.09 2.86 3.88 

20 2.09 2.85 3.85 

25 2.06 2.79 3.73 

30 2.04 2.75 3.65 

35 2.03 2.72 3.59 

40 2.02 2.70 3.55 

45 2.01 2.69 3.52 

50 2.01 2.68 3.50 

100 1.98 2.63 3.39 

200 1.97 2.60 3.34 

300 1.97 2.59 3.32 

400 1.97 2.59 3.32 

500 1.96 2.59 3.31 

100000 1.96 2.58 3.29 
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6.3.3. Median values of failure probability 

Values for FBB,1-α for α = 50 %, rank i and sample size n as per equation (6.35) 

 
 n=1 2 3 4 5 6 7 8 9 10 

i=1 0.500000 0.292893 0.206299 0.159104 0.129449 0.109101 0.094276 0.082996 0.074125 0.066967 

2  0.707107 0.500000 0.385728 0.313810 0.264450 0.228490 0.201131 0.179620 0.162263 

3   0.793701 0.614272 0.500000 0.421407 0.364116 0.320519 0.286237 0.258575 

4    0.840896 0.686190 0.578593 0.500000 0.440155 0.393085 0.355100 

5     0.870551 0.735550 0.635884 0.559845 0.500000 0.451694 

6      0.890899 0.771510 0.679481 0.606915 0.548306 

7       0.905724 0.798869 0.713763 0.644900 

8        0.917004 0.820380 0.741425 

9         0.925875 0.837737 

10          0.933033 

 
 n=11 12 13 14 15 16 17 18 19 20 

i=1 0.061069 0.056126 0.051922 0.048305 0.045158 0.042397 0.039953 0.037776 0.035824 0.034064 

2 0.147963 0.135979 0.125791 0.117022 0.109396 0.102703 0.096782 0.091506 0.086775 0.082510 

3 0.235786 0.216686 0.200449 0.186474 0.174321 0.163654 0.154218 0.145810 0.138271 0.131474 

4 0.323804 0.297576 0.275276 0.256084 0.239393 0.224745 0.211785 0.200238 0.189885 0.180550 

5 0.411890 0.378529 0.350163 0.325751 0.304520 0.285886 0.269400 0.254712 0.241543 0.229668 

6 0.500000 0.459507 0.425077 0.395443 0.369670 0.347050 0.327038 0.309207 0.293220 0.278805 

7 0.588110 0.540493 0.500000 0.465147 0.434833 0.408227 0.384687 0.363714 0.344909 0.327952 

8 0.676196 0.621471 0.574923 0.534853 0.500000 0.469408 0.442342 0.418226 0.396603 0.377105 

9 0.764214 0.702424 0.649837 0.604557 0.565167 0.530592 0.500000 0.472742 0.448301 0.426262 

10 0.852037 0.783314 0.724724 0.674249 0.630330 0.591773 0.557658 0.527258 0.500000 0.475420 

11 0.938931 0.864021 0.799551 0.743916 0.695480 0.652950 0.615313 0.581774 0.551699 0.524580 

12  0.943874 0.874209 0.813526 0.760607 0.714114 0.672962 0.636286 0.603397 0.573738 

13   0.948078 0.882978 0.825679 0.775255 0.730600 0.690793 0.655091 0.622895 

14    0.951695 0.890604 0.836346 0.788215 0.745288 0.706780 0.672048 

15     0.954842 0.897297 0.845782 0.799762 0.758457 0.721195 

16      0.957603 0.903218 0.854190 0.810115 0.770332 

17       0.960047 0.908494 0.861729 0.819450 

18        0.962224 0.913225 0.868526 

19         0.964176 0.917490 

20          0.965936 
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Continued: Values for FBB,1-α for α = 50 %. Rank i and sample size n as per equation (6.35) 

 
 n=21 22 23 24 25 26 27 28 29 30 

i=1 0.032468 0.031016 0.029687 0.028468 0.027345 0.026307 0.025345 0.024451 0.023618 0.022840 

2 0.078644 0.075124 0.071906 0.068952 0.066231 0.063717 0.061386 0.059221 0.057202 0.055317 

3 0.125313 0.119704 0.114576 0.109868 0.105533 0.101526 0.097813 0.094361 0.091145 0.088141 

4 0.172090 0.164386 0.157343 0.150879 0.144925 0.139422 0.134323 0.129583 0.125166 0.121041 

5 0.218905 0.209107 0.200147 0.191924 0.184350 0.177351 0.170864 0.164834 0.159216 0.153968 

6 0.265740 0.253844 0.242968 0.232986 0.223791 0.215294 0.207419 0.200100 0.193279 0.186909 

7 0.312584 0.298592 0.285798 0.274056 0.263241 0.253246 0.243983 0.235373 0.227350 0.219857 

8 0.359434 0.343345 0.328634 0.315132 0.302695 0.291203 0.280551 0.270651 0.261426 0.252809 

9 0.406288 0.388102 0.371473 0.356211 0.342153 0.329163 0.317123 0.305932 0.295504 0.285764 

10 0.453143 0.432860 0.414315 0.397292 0.381614 0.367125 0.353696 0.341215 0.329585 0.318721 

11 0.500000 0.477620 0.457157 0.438375 0.421075 0.405088 0.390271 0.376500 0.363667 0.351680 

12 0.546857 0.522380 0.500000 0.479458 0.460537 0.443053 0.426847 0.411785 0.397749 0.384639 

13 0.593712 0.567140 0.542843 0.520542 0.500000 0.481018 0.463423 0.447071 0.431833 0.417599 

14 0.640566 0.611898 0.585685 0.561625 0.539463 0.518982 0.500000 0.482357 0.465916 0.450559 

15 0.687416 0.656655 0.628527 0.602708 0.578925 0.556947 0.536577 0.517643 0.500000 0.483520 

16 0.734260 0.701408 0.671366 0.643789 0.618386 0.594912 0.573153 0.552929 0.534084 0.516480 

17 0.781095 0.746156 0.714202 0.684868 0.657847 0.632875 0.609729 0.588215 0.568167 0.549441 

18 0.827910 0.790893 0.757032 0.725944 0.697305 0.670837 0.646304 0.623500 0.602251 0.582401 

19 0.874687 0.835614 0.799853 0.767014 0.736759 0.708797 0.682877 0.658785 0.636333 0.615361 

20 0.921356 0.880296 0.842657 0.808076 0.776209 0.746754 0.719449 0.694068 0.670415 0.648320 

21 0.967532 0.924876 0.885424 0.849121 0.815650 0.784706 0.756017 0.729349 0.704496 0.681279 

22  0.968984 0.928094 0.890132 0.855075 0.822649 0.792581 0.764627 0.738574 0.714236 

23   0.970313 0.931048 0.894467 0.860578 0.829136 0.799900 0.772650 0.747191 

24    0.971532 0.933769 0.898474 0.865677 0.835166 0.806721 0.780143 

25     0.972655 0.936283 0.902187 0.870417 0.840784 0.813091 

26      0.973693 0.938614 0.905639 0.874834 0.846032 

27       0.974655 0.940779 0.908855 0.878959 

28        0.975549 0.942798 0.911859 

29         0.976382 0.944683 

30          0.977160 
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6.3.4. Confidence bounds of failure probability 

Values for FBB,1-α for α = 5 % (one-sided), rank i and sample size n as per equation (6.35) 

 
 n=1 2 3 4 5 6 7 8 9 10 

i=1 0.950000 0.776393 0.631597 0.527129 0.450720 0.393038 0.348164 0.312344 0.283129 0.258866 

2  0.974679 0.864650 0.751395 0.657408 0.581803 0.520703 0.470679 0.429136 0.394163 

3   0.983048 0.902389 0.810745 0.728662 0.658739 0.599689 0.549642 0.506901 

4    0.987259 0.923560 0.846839 0.774678 0.710759 0.655059 0.606624 

5     0.989794 0.937150 0.871244 0.807097 0.748632 0.696463 

6      0.991488 0.946624 0.888887 0.831250 0.777559 

7       0.992699 0.953611 0.902253 0.849972 

8        0.993609 0.958977 0.912736 

9         0.994317 0.963229 

10          0.994884 

 
 n=11 12 13 14 15 16 17 18 19 20 

i=1 0.238404 0.220922 0.205817 0.192636 0.181036 0.170750 0.161566 0.153318 0.145869 0.139108 

2 0.364359 0.338681 0.316340 0.296734 0.279396 0.263957 0.250124 0.237661 0.226374 0.216106 

3 0.470087 0.438105 0.410099 0.385390 0.363442 0.343825 0.326193 0.310263 0.295802 0.282619 

4 0.564374 0.527327 0.494650 0.465657 0.439784 0.416572 0.395641 0.376679 0.359426 0.343664 

5 0.650188 0.609138 0.572619 0.540005 0.510752 0.484396 0.460549 0.438883 0.419120 0.401028 

6 0.728750 0.684762 0.645201 0.609585 0.577444 0.548347 0.521918 0.497828 0.475797 0.455582 

7 0.800424 0.754700 0.712951 0.674972 0.640435 0.608988 0.580295 0.554046 0.529967 0.507818 

8 0.864925 0.818975 0.776045 0.736415 0.700014 0.666626 0.635991 0.607845 0.581936 0.558035 

9 0.921180 0.877149 0.834341 0.793927 0.756273 0.721397 0.689170 0.659402 0.631885 0.606415 

10 0.966681 0.928130 0.887334 0.847282 0.809135 0.773308 0.739886 0.708799 0.679913 0.653069 

11 0.995348 0.969540 0.933950 0.895953 0.858336 0.822234 0.788092 0.756039 0.726054 0.698046 

12  0.995735 0.971947 0.938897 0.903342 0.867889 0.833637 0.801047 0.770279 0.741349 

13   0.996062 0.974001 0.943153 0.909748 0.876229 0.843656 0.812496 0.782931 

14    0.996343 0.975774 0.946854 0.915355 0.883574 0.852530 0.822689 

15     0.996586 0.977321 0.950102 0.920305 0.890094 0.860446 

16      0.996799 0.978682 0.952975 0.924706 0.895919 

17       0.996987 0.979889 0.955535 0.928646 

18        0.997154 0.980967 0.957831 

19         0.997304 0.981935 

20          0.997439 
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Continued: Values for FBB,1-α for α = 5 %, rank i and sample size n as per equation (6.35) 

 
 n=21 22 23 24 25 26 27 28 29 30 

i=1 0.132946 0.127305 0.122123 0.117346 0.112928 0.108830 0.105019 0.101466 0.098145 0.095034 

2 0.206725 0.198122 0.190204 0.182892 0.176121 0.169831 0.163974 0.158507 0.153392 0.148596 

3 0.270552 0.259467 0.249249 0.239801 0.231040 0.222894 0.215300 0.208205 0.201561 0.195326 

4 0.329211 0.315913 0.303638 0.292273 0.281723 0.271902 0.262739 0.254170 0.246139 0.238598 

5 0.384408 0.369091 0.354932 0.341807 0.329608 0.318242 0.307626 0.297691 0.288372 0.279615 

6 0.436976 0.419800 0.403899 0.389139 0.375405 0.362595 0.350620 0.339402 0.328873 0.318971 

7 0.487389 0.468495 0.450975 0.434691 0.419520 0.405354 0.392098 0.379670 0.367996 0.357009 

8 0.535936 0.515457 0.496435 0.478728 0.462209 0.446767 0.432302 0.418728 0.405966 0.393947 

9 0.582801 0.560868 0.540456 0.521423 0.503642 0.486998 0.471392 0.456731 0.442936 0.429934 

10 0.628099 0.604844 0.583155 0.562893 0.543933 0.526162 0.509478 0.493789 0.479012 0.465073 

11 0.671891 0.647456 0.624606 0.603215 0.583162 0.564337 0.546640 0.529979 0.514270 0.499439 

12 0.714200 0.688736 0.664852 0.642436 0.621378 0.601576 0.582931 0.565355 0.548765 0.533086 

13 0.755006 0.728687 0.703907 0.680579 0.658611 0.637911 0.618387 0.599956 0.582536 0.566055 

14 0.794250 0.767276 0.741757 0.717644 0.694870 0.673358 0.653028 0.633803 0.615608 0.598371 

15 0.831824 0.804437 0.778364 0.753611 0.730147 0.707918 0.686861 0.666910 0.647995 0.630052 

16 0.867552 0.840059 0.813656 0.788434 0.764414 0.741576 0.719880 0.699275 0.679704 0.661107 

17 0.901156 0.873966 0.847520 0.822039 0.797622 0.774300 0.752066 0.730889 0.710729 0.691536 

18 0.932194 0.905891 0.879785 0.854314 0.829696 0.806040 0.783383 0.761729 0.741056 0.721330 

19 0.959900 0.935404 0.910191 0.885089 0.860525 0.836718 0.813780 0.791758 0.770660 0.750474 

20 0.982809 0.961776 0.938324 0.914115 0.889944 0.866226 0.843181 0.820923 0.799504 0.778941 

21 0.997560 0.983602 0.963485 0.940992 0.917709 0.894404 0.871478 0.849149 0.827535 0.806692 

22  0.997671 0.984326 0.965047 0.943437 0.921014 0.898515 0.876331 0.854678 0.833674 

23   0.997772 0.984988 0.966480 0.945688 0.924064 0.902318 0.880831 0.859815 

24    0.997865 0.985597 0.967801 0.947767 0.926886 0.905845 0.885013 

25     0.997950 0.986158 0.969022 0.949692 0.929506 0.909126 

26      0.998029 0.986677 0.970153 0.951480 0.931944 

27       0.998102 0.987159 0.971204 0.953145 

28        0.998170 0.987606 0.972184 

29         0.998233 0.988024 

30          0.998292 
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