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1. Preface 

This document describes the Fault Tree Analysis method as can be applied in all company divisions. As 
a deductive method it is one way to meet the requirements of ISO 26262 on functional safety in the 
automobile industry and it is considered as a recognized standard. 

The FTA can be used in a preventive or in a corrective manner. Systematic consideration of potential 
failures and the documentation of these with the means of the FTA help to describe failure mecha-
nisms and derive relevant actions as well as documenting their effects. This contributes to the devel-
opment of robust products and processes and in this way safeguards the company’s successes as well. 

The effectiveness of FTA depends on it being carried is good time, on the participation of skilled asso-
ciates and on concentrating on the aspects that are relevant. 

The FTA documentation and contents of this constitute together with other documents - like for ex-
ample FMEA, drawings, manufacturing and test instructions – sensitive know-how and may only be 
forwarded under defined boundary conditions. 

As a method of qualitative and quantitative risk analysis the FTA is included in engineering processes 
and manufacturing processes.   
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2. Introduction 

2.1. Objectives of the FTA 

The FTA serves in the first instance to detect and eliminate weaknesses as well as to make comparative 
studies. 

With the help of this method the probability for the occurrence of a previously defined event (Top 
Event) as well as the corresponding causes shall be determined. The FTA approach here is deductive – 
from the effect to the cause (Top-Down approach). 

The data acquired by the FTA makes possible, amongst others: 
• Identification of causes and combinations of causes that lead to an undesirable event (Top 

Event).  
• Computation of the probability of occurrence of the undesirable event or of the system avail-

ability (Boolean algebra). 
• Identification of particularly cCritical events and combinations of events (fault paths).  
• Identification of particularly effective improvement possibilities.  
• Showing and documentation of the failure mechanisms and the functional relationships.  
• Determining the characteristic values for demonstrating safety per ISO 26262. 

2.2. History of the FTA 

The first safety / risk analyses (USA 1950) were limited to investigating the different types of failures 
(Failure Modes) of components / assemblies of a system and the effects (Failure Effects) of the partic-
ular failure mode.  

It soon became apparent however that an analysis of only the failure modes and follow-on failures was 
difficult to carry out because of the increasing complexity of the devices and systems. Andalso it turned 
out, that this method was not suitable for a quantitative reliability analysis.  

Based on the knowledge of theory of reliability and the Boolean algebra engineers at Bell Telephone 
Laboratories (H. Watson, 1961) were able to show the abnormal behavior of control systems in a Bool-
ean model with logic symbols. The FTA was born! 

The FTA passed its first practical test at Boeing in the 1960s. In the years that followed it was adapted 
for use in aerospace and nuclear engineering. Later the chemicals, robotics and software industry 
started using the FTA for their safety analysis. 

FTA has been refined further in recent years and has since become a widely used analysis method for 
assessing the safety and reliability of large and complex systems from the technical viewpoint. 

The ISO 26262 introduced in automotive engineering in November 2011 prescribes the use of deduc-
tive methods like e.g. FTA. 

2.3. Benefits and drawbacks of the FTA 

The success of the FTA or the value of the analytical results determined in this way depends to a large 
degree on the external boundary conditions.  

The analysis by means of a fault tree Fault status…  
• Needs a qualified moderator that methodically guides the team. 
• Requires a high level of discipline in preparing the fault tree to prevent errors. 
• Requires a separate subtree / branch for each undesirable event. 

2.3.1. Benefits of the method 

The analysis by means of a fault tree... 
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• Systematically gives the logic path beginning with the undesirable event, that is to say from a 
certain effect, back to the actual cause and documents this path in a graphical and easily com-
prehensible form. 

• Computes the probabilities on the basis of Boolean algebra. 
• Allows the identification of cause-effect relationships not detected up to now. 

The result of the analysis makes it possible… 
• To make quantitative and qualitative statements on system parameters like e.g. availability, 

reliability, failure probability etc. This is of particular value for large and complex systems. 
• To consider multiple events as causes as well. 

The analysis can… 
• Handle parallel, redundant and alternative failure or event paths. 
• Handle any kind of technical and non-technical system. 
• Show the significance of fault causes for the undesirable event. 

2.3.2. Drawbacks of the method 

The analysis by means of a fault tree…  
• Only establishes the relationship between the causes found and the analyzed main event (Top 

Event). These causes can however lead to other effects not yet shown. 
• Can only model the time behavior of systems and dynamic processes with difficulty. 
• Is not always exactly quantifiable since the complete data basis for the basic causes is not al-

ways given. 
• Is an elaborate method when a complex system shall be quantitatively analyzed. It is therefore 

usually used only for a selection of few relevant undesirable events. 

2.4. FTA application areas 

The application areas of the FTA can be summarized briefly by the term “RAMS“. 

To be understood here: 
• Reliability 
• Availability 
• Maintainability 
• Safety 

Principally there are two areas of focus when applying the FTA: 
• Preventive approach 
• Corrective approach 

With the preventive application of the FTA the focus is on the hazard or risk analysis. 

Objectives of preventive use of the FTA: 
• Minimize design errors (malfunction, non-function), 
• Verify and demonstrate the system safety, 
• Increase the system reliability and 
• Assess potential risks within the scope of risk management. 

The corrective approach of the FTA is used in the damage analysis or risk analysis.  

In case of analyzing damages the FTA serves as decision-making assistance for legal issues (e.g. product 
liability) and also in determining the risks for the risk-management process. 

The results from the analysis are used to assess a damage or accident sequence. 
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3. Fundamentals of the FTA 

3.1. Roles 

Active roles in preparing the FTA  

FTA coordinator 

The FTA coordinator is the representative of the method for a unit (e.g. company division, product unit, 
… ). This associate designs the application process of the method in that unit and is responsible for 
empowering the FTA experts and members of the FTA team. The associate assumes the following tasks 
here: knowledge multiplier, coach, specialist contact person, methodic decision-maker. The FTA coor-
dinator should always be a FTA expert as well. 

FTA expert 

The FTA expert is responsible for the moderation on the FTA team. This associate prepares fault trees 
in collaboration with the team members and is responsible for ensuring that the method and the rel-
evant presentation media are used correctly. The FTA expert ideally has product knowledge as well so 
as to be able to take an active part in the discussions. 

Besides the tasks associated with preparing the FTA, the FTA expert also has other tasks: e.g. coaching 
members of the FTA team on the method and the tool, preparing interpretations and reports, provid-
ing support in the evaluation the results, presentation of the results. 

 

FTA team 

The FTA team is made up of the FTA experts and the relevant specialists. When a FTA is perfomed 
within the scope of a project, the participation of a technical project associate (e.g. Project Safety Man-
ager) is necessary. The FTA team is responsible for establishing the contents of the FTA, that is to say 
to depict the design. In the case of a quantitative FTA additionally failure rates have to be determined 
here.  

 

Passive roles in the preparation of the FTA  

FTA contractor 

The FTA contractor defines the goals and the scope of the considerations for the FTA to be conducted. 
The contractor is the “Sponsor” of the FTA and ensures the budget and the resources for the work. 
Based on the results of the analysis the contractor decides on the further course of action, e.g. intro-
duction of technical adjustments, negotiations with the customer (accepting risks). 

FTA reviewer 

The FTA reviewer is responsible for reviewing the contents of a FTA before it is released.   

FTA assessor 

The FTA assessor is responsible for the staging assessments to establish the maturity of the implemen-
tation of the method and to support the further-development of the organization. 

Other roles 
• Customer (OEM / Line/ ...)  
• Quality management  
• Supplier(s)  
• etc.  
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3.2. “The 8 steps of the FTA” – an overview 

A fault tree analysis can be broken down into following work steps: 

 

0  Preparation including system analysis 

1 Definition of the undesirable event (Top Event) 

2 Establish the criteria for the objective of the analysis 

3 Prepare the fault tree (qualitative description) 

4 Qualitative interpretation  

5 Determine the probability of occurrence of the basic events (quantitative description) 

6 Quantitative interpretation  

7 Establish the need for action, the actions, and success monitoring 

8 Documentation 

3.3. FTA software at BOSCH 

At Bosch the preferred solution for the processing and documentation of FTAs is by using the program 
FT+ from Isograph. 

At the present time: FT+, floating license with central administration. 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-015_BBL_N_EN_2015-08-18.pdf


Fault Tree Analysis 

© Robert Bosch GmbH | Status 08.2015 -9 - 

4. The Bosch approach to prepare a FTA 
Hints and examples on implementing the method of FTA 

4.1. Step 0:  Preparation including system analysis 

4.1.1. General 

In the preparation of an FTA both the contents as well as formal and organizational aspects have to be 
established. 

The contents to be established include: 

 Description of the assignment (if possible: Formulation of the Top Events) 

 Scope of considerations (system with its limits,  interfaces and boundary conditions) 

Included in the boundary conditions are e.g. 

o Probabilities of occurrence (e.g. from other FTAs / FMEDAs) from input signals (im-
portant for functions that are distributed throughout several systems) 

o Consideration  of  disturbances from the environment  

o Agreement on the allocation of safety mechanisms at the interfaces (no multiple use 
that might lead to falsification) 

o Information about the higher-level system (e.g. vehicle control unit) needed for prep-
aration of the FTA 

 Specification of failure modes to be considered: Systematic failures and / or random (hard-
ware) failures 

 Type and extent of the analysis:  

o Qualitative:  Analysis of the  cause-effects relationships 

o Quantitative: Computation of the probability of occurrence of events and additional 
quantitative parameters. For a quantitative analysis it is necessary to specify the data 
basis and the service / operating conditions. 

• When information from the customer is needed for preparation of the FTA, the availability of 
this information must be ensured. The consequences of such information not being provided 
shall be indicated. 

• Requirements on the FTA method:  
The DIN EN 61025 serves as the standards base for the FTAs at Bosch. If the customer (e.g. 
OEM) has called for a FTA per a different norm or guidelines for the method, then this has to 
be agreed on a project-specific basis. It shall be recorded in writing that the customer assumes 
the responsibility for the consequences from this demand. 

The above-referenced determinations and other assumptions / boundary conditions shall be docu-
mented and acknowledged by the customer in writing. 

Included in the formal determinations are e.g.: 
• Customer, FTA team, payment, acceptance criteria,  time frame 
• Work products: Report, fault tree file, special analyses 
• Documentation, release / handover to the customer, archiving 
• For  FTAs that are for customer projects:  

o Clarification of the type of presentation and the time plan for this 

o Clarification of which documents can / shall be handed over to external customers 
(observe:https://rb-wam.bosch.com/socos-c/SOCOS/finder.cgi?CD-03743-
000_XXX_X_EN) 

https://rb-wam.bosch.com/socos-c/SOCOS/finder.cgi?CD-03743-000_XXX_X_EN
https://rb-wam.bosch.com/socos-c/SOCOS/finder.cgi?CD-03743-000_XXX_X_EN
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4.1.2. Preventive / corrective FTA 

Preventive FTA 

Prerequisite for beginning an FTA is the at least preliminary description of the item under consideration 
(“System”). Of this preliminary description, an error-free function has to be available in a documented 
form (“System analysis”). This description can be very detailed or more abstract depending on the 
analysis goal and the scope of considerations.  

Typical sources of data are: Requirements specifications, function diagrams, effect chains, system ar-
chitecture models, behavior / data models, block diagrams, design drawings, flow diagrams, process 
descriptions, … 

Ideally at the start of an FTA there are already descriptions available from other risk analyses and fail-
ure descriptions, e.g.:  PHA, FHA, FMEA, FMEDA, DRBFM, QFD, 8D reports. 

For analyses of the functional safety, other sources of data should be available at the beginning of the 
FTA: Hazard and risk analysis, safety goals, safety concept including an overview of the safety mecha-
nisms, system design and definition of the safe states. 

Corrective FTA 

The corrective FTA analyzes the events that have actually occurred. At the beginning all relevant infor-
mation about the event has to be compiled, e.g.: 

• Failure description 
• 8D report 
• Interpretation of fault-code memories  
• Design descriptions of the object, e.g. TCD 
• Protocols of the statements from the user / discoverer of the event 
• Objects with discrepancies 

4.2. Step 1:  Definition of the undesirable event (Top Event) 

The undesirable event (often also referred to as “Top Event”) is the failure or the malfunction to be 
considered in the system to be investigated. The abstraction level where the event is defined is of no 
significance here. A malfunction at the vehicle level, discrepant control unit function, a wrong sensor 
signal or the failure of a circuit group can be considered. 

Attention shall be paid in the description of the undesirable event that both the event itself as well as 
the boundary conditions valid for this are unambiguously defined. The significance of the entire FTA 
depends crucially on this description. 

In the preventive application case of the FTA the definition of the undesirable event is based on either  
• the non-fulfillment of functions or requirements (e.g. requirements specifications) 
or  
• undesirable events from earlier investigations (e.g. FMEA, FHA, PHA, G&R or H&R).  

In the corrective approach a failure that has actually occurred or a malfunction of the system is defined 
as the undesirable event. 

4.3. Step 2:  Establish the criteria for the objective of the analysis 

4.3.1. General 

Once the undesirable event (Top Event) has been defined, it is established in this step which goals shall 
be pursued by conducting the FTA. The FTA provides information whether the defined goals have al-
ready been reached. If this is not the case then it can be shown which possibilities to modify the prod-
uct are there to fulfill the defined requirements. 
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In defining the goal the differentiation is made as a rule between qualitative and quantitative goals. 

Examples for qualitative goals are: 
• No Single Point failure acceptable, i.e. no single event may lead to the Top Event 
• Show all cut-Sets 
• Show all “Critical path“ (with diagnostics) 

Examples for quantitative objective criteria are: 
• Probability of occurrence, Q, for the Top Event 
• Probabilities of occurrence and sequence of the Minimal Cut-Sets 
• Show the “Critical path” (isolated event or probability of occurrence) 
• Compliance with the safety goals (e.g. failure probability < 10-8) 
• Identify the several importances (e.g. Birnbaum importance) 

Valid norms, guidelines from industry associations (e.g. VDA), customer requirements and company-
internal requirements are decisive for the purpose of the FTA.  

Examples for the objectives having their origin in the respective documents are: 
• Failure rate for “Random HW failures” according to ISO 26262 (“Functional safety of road ve-

hicles”) 
• Meeting “State-of-the-art” and “Highest priority for preventing failures” per CDQ0214 (“Re-

quirements on product safety”) 
• Safety against single failures according to the “E-Gas monitoring concept” or “3-level concept” 

of the ETC work group 

4.3.2. Preventive / corrective 

Principally both application forms of the FTA aim for similar objectives. It applies to show the structural 
build of a design and thereby detect the possible critical causes that can lead to or have led to the 
undesirable event. 

It is objective in both applications to highlight concrete possibilities to improve the design and show, 
where appropriate, the influence on the probability of occurrence. 

Unlike the preventive FTA with the corrective FTA there is a true discrepancy (undesirable event) al-
ready available. 

4.4. Step 3: Construct the fault tree (qualitative description) 

4.4.1. General 

The structure of a FTA and its build depend greatly on the undesirable event (Top Event) to be analyzed 
and also on the architecture of the object to be analyzed. 

Generally valid is the deductive approach (top-down): The start is at the undesirable event. The tree is 
then constructed over several levels down to the smallest unit of consideration (Basic Event). 

The structure of the tree is oriented on the failure structure or the failure net of the object to be con-
sidered. A functions analysis already conducted during the preparation phase is very helpful for the 
preparation of the fault tree. The starting information for the construction of a fault tree can be e.g. 
the FMEA and the DRBFM. 

4.4.2. Symbols and modeling recommendations 

The types of symbols used for preparing an FTA are defined in “Attachment 1 Symbols and modeling 
recommendations”: 

• Event and gate symbols 
• Recommendations for naming conventions 
• Fault models 
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• Handling variants 
• Modeling application boundary conditions 
• Modeling monitoring 
• Modeling “Common Causes” 

4.4.3. Breakdown principles 

The partitioning is made e.g. according to 
1. Effect chains (e.g. actuator – control unit – sensor) 
2. Breakdown according to physical domains (e.g. subtrees for the mechanical subsystem, elec-

tronic subsystem, hydraulic subsystem,…), that are then linked under one Top Event with one 
gate 

3. Breakdown according to integration levels (e.g. whole system – function level – component 
level) 

A modularization of the FTA is recommended for very large objects and for objects where the analysis 
is very complex. The advantage here is that the total number of gates and events in the system the 
FTA is kept as small as possible and hence the computing times can be reduced as well. 

Then the Top Events of the lower-level FTAs (e.g. the FTA of a sensor) are the basic events of the higher-
level FTA (e.g. FTA of a system that includes this sensor). These events are referred to as interface 
elements in the following. Together the elements constitute a kind of FTA substitute model.  

If the interface element is in an AND relationship with other components, then possible common fault 
causes (Common Cause faults) shall be considered in particular. For that purpose the evidence of pos-
sible common causes with other components can be required from the components authority, e.g. for 
the definition of the interface elements. 

Example 1: Sensor substitute model 

In the following an example of the determination of interface elements is shown. As an example a 
sensor that shall be in an AND relationship with another sensor (plausibility sensor) is taken.  

The basic idea of this modeling is to make a differentiation according to single point faults (monitored 
and dormant), multiple faults and Common Cause influences possible at the level of the system FTA 
for the purpose of analysis. It is made possible in this way to model the exact contributions from all 
sensors to the violation of the safety goal at system level, including the contribution from Common 
Causes from the system level on the sensors. 

The methodical limitation is that all possible Common Causes have to be determined beforehand in a 
qualitative analysis of the Common Cause faults. In order to have later all basic events of the FTA as 
disjunctive events.In the example it is assumed that there are two types of Common Cause faults: 
Firstly the supply voltage (SUPP) from the higher-level system and secondly electromagnetic interfer-
ence from external sources of disturbance within or without the specified range (EXT EMI IN or EXT 
EMI OUT). 

The fault model of the sensor is thereby broken down as follows:  
• Not-monitored isolated failures (Single Point Faults (“SENS SPF“) that have no monitoring 

whatsoever) 
• Single point faults with a monitoring outside of the failure tolerance time (“SENS_SPF DORM”) 
• Multiple point faults (“SENS CIRC THR”) whereby both types of double point faults are included 

here (faults of the function & failure of the associate monitoring as well as faults of function 1 
& faults of function 2), as well as faults of a higher order. 

(Symbols on the basic events and the logical gates of fault tree are explained in Attachment 1.) 
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Figure 4.1: Sensor substitute model for the sensor XXX 

Determine the interface elements (the inputs of the OR gate are referred to as elements in the follow-
ing): 

Element 1 = Basic event XXX SENS SPF 

Determine the single point faults (XXX SENSOR SPF) 

In the underlying sensor FTA a Cut-Set analysis is performed for the Top Event to be investigated. The 
failure rate for the single point faults is given from the sum of all Cut-Sets of the 1st order (true single 
point faults). The computations are typically executed after exporting the Cut-Sets into an Excel file. 

Element 2 = Basic event XXX SENS SPF DORM 

The failure rate is given here from the sum of all failures with a monitoring outside of the failure toler-
ance time. In this example there was none and therefore the Basic event appears in the fault tree 
without any numerical value. 

Element 3 = gate XXX SENSOR CIRC THR & DET 

The Gate SENSOR CIRC THR & DET stands for all multiple point faults and those failures with monitoring 
within the fault tolerance time. To determine the failure rates a Cut-Set analysis is again executed in 
Excel. Prerequisite is the compliance with a naming convention that allows effective filtering in Excel. 

First of all the isolated-failure and the Common Cause relevant Cut-Sets with EMI and with Power Sup-
ply are filtered out. The failure rate for the “XXX SENSOR CIRC THR & DET” is given from the sum of the 
remaining Cut-Sets. The failure rate for the “XXX SENSOR CIRC THRES” is given from the sum of the 
failure rates of the associated basic events (function failures without monitoring). The gap in the mon-
itoring “DET SENSOR CIRC THRES” can then be calculated as the quotient of the failure rates XXX SEN-
SOR CIRC THR & DET / XXX SENSOR CIRC TRHES. Detailed explanatory notes on the quantitative inter-
pretation of fault trees can be found in Section 4.5 on Step 4. 

Element 4 = gate XXX SENSOR SUPP & DET 

The event EXT SENSOR SUPP is identified here with an event of the system FTA. It is an example for 
modeling a circuit external to the sensor (hence the naming convention “EXT”) yet internal power sup-
ply for the system circuit. This power supply circuit can show a Common Cause for the other connected 
sensors and ICs. 
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The gap in the monitoring DET XXX SENS SUPP is determined in a manner similar to element 3. 

Element 5 = gate XXX EMI IN & MEASURES 

The modeling of an EMI fault constituting a Common Cause for the sensors is shown in a similar manner 
by the AND relationship of a basic event EXT EMI IN CONNECTION with the failure rate of the EMI 
protective circuit (AND relationship of the failures of two protective capacitances). 

Element 6 = gate XXX EMI OUT CONNECTION 

For this external fault it is assumed that it is outside the limit of the specification (naming convention 
EMI OUT) and therefore that the implemented protective measures do not act (any longer). The mo-
deling is a rate action for the Fehler! Verweisquelle konnte nicht gefunden werden. or the failure rate 
of the external event. 

This example is from CC-PS/EPH. More detailed information on modeling methods can be provided.  

 

Example 2: Transition from FTA to FMEDA 

When components of a system are analyzed by FMEDA (Failure Mode Effect and Diagnosis Analysis) a 
clearly defined transition between the two methods is necessary. The FTA defines the safety require-
ment, the fulfillment of which shall be confirmed by the results of the FMEDA. To incorporate the 
FMEDA in a FTA the following failure modes shall be determined by the FMEDA. 

Single point fault: 

A single point fault is a fault that is not covered by any safety mechanism and leads directly to violation 
of the safety goal.  

FMEDA result: Sum of the failure rates of all single point faults: SPF = Lambda Single Point Faults 

Residual fault: 

The residual fault is that proportion of a fault that is not recognized by monitoring and that leads to 
violation of the safety goal.  

FMEDA result: Sum of the failure rates of all residual faults of monitored faults: RF = Lambda Residual 
Faults (RF) 

Latent fault: 

A latent fault is one of the causes of a multiple point fault that alone however does not lead to violation 
of the safety goal and will not be detected within its latency period.  

FMEDA Result: Sum of the failure rates of all latent (multiple-point) faults:  MPF,L = Lambda Multiple 
Point Faults Latent 

This is the sum of the failure rates of all faults that only violate the safety goal in the multiple point 
faults case and for which no action against the latency has been implemented (or the gap of such 
actions against latency). 

Total failure rate: 

For correct consideration of the multiple point fault probability the sum of the total failure rate of all 
elements of relevance for the safety goal is necessary:  

FMEDA-Result: SR,HW = Lambda Safety Related Hardware Elements or SRHE = Lambda Related Hard-
ware Elements 

This is the sum of all failure rates of components that can have an influence on the safety goal in one 
of the ways mentioned above. The failure rates before taking Redundancy into consideration (=> leads 
to multiple point faults) or monitoring (=> leads to residual faults) are summed. 
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The following diagram describes the relationships between the mentioned fault classes. 

 

 

Figure 4.2: Fault types 

The safety requirement to be considered is handled as a gate in the FTA. The corresponding failure 

rate (SR,HW) is calculated from the failure rates determined from the FMEDA according to its signifi-
cance for the system. 

Determined single point and residual fault failure rates influence the fault tree directly. A single point 
fault of the FMEDA does not necessarily have to remain a single point fault in the FTA as such, but 
rather can also become part of a multiple point fault by the system architecture depicted in the FTA.  

A multiple point fault determined in the FMEDA has to remain a multiple point fault in the FTA because 
otherwise in the FTA it is visible that this fault already concerns a multiple point fault at the compo-
nents level. The FTA / FMEDA interface must take this into account. Since the FMEDA cannot show in 
detail by methodic limits the fault associated with each fault declared as a multiple point fault, a con-
servative modeling on interface level has to be realized for the resulting probability of multiple point 
faults. This is realized by an AND gate in the interface that combines the failure rate of the undetected 
multiple point faults with the failure rate of all safety-relevant elements. It can be assumed here that 
the probability of the ”real” second fault of the multiple point faults is lower than the sum of the failure 
rate of all safety-relevant elements; i.e. is the product probability as a conservative calculation. Atten-
tion shall thereby be paid that the undetected multiple point fault must be modeled as a “latent” fault 
with the appropriate latency period. 

Figure 3 and 4 show how the FTA / FMEDA interfaces have been realized as fault tree logic. 
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Figure 4.3: Generate FTA / FMEDA interfaces 
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Figure 4.4: FTA / FMEDA interfaces – example 

 

4.5. Step 4: Qualitative interpretation 

4.5.1. General 

The qualitative results of an FTA comprise 
• Fault tree depiction 
• Fault combinations (minimal cuts or cut-sets) 
• Importance (Birnbaum) for the events linked by logic in the FTA  

The interpretations regarding fault combinations and importance are always made with respect to a 
selected undesirable event (Top Event). This Top Event is represented by a logic gate below where the 
actual fault tree begins. 

The evaluation examples shown in the following sections have been created with the following fault 
tree. 
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Figure 4.5: Example of a fault tree 

The example shows monitored fault causes. 

CAUSE_1, CAUSE_2, CAUSE_5 as well as CAUSE_CC constitute the faults to be monitored whereby 
CAUSE_5 is only effective in combination with rare operating conditions. Both the Gate “FAULT & OP-
ERATING CONDITION “as well as the CAUSE_CC are also linked here at the input of the monitoring 
(Gate “I MON”) – it is therefore to be expected that the AND gate “FAULT & NOT DETECTED” is lifted 
for these faults.  

CAUSE_4_LATENT and CAUSE_6 constitute faults where the monitoring mechanism fails when these 
occur. If CAUSE_3 occurs then there is no appropriate reaction (e.g. system degradation) triggered for 
a known fault (shown here in the gate “NO SYS-DEG”). 

Furthermore, as a special feature, CAUSE_2 is linked with CAUSE_6 by means of a Common Cause fault 

model (CCF model) (character ). The CCF model describes the proportion of the total probability with 
the two faults (CAUSE_2 and CAUSE_6) occurring at the same time. Remark: The Computation results 
of the beta model can be influenced in the project options “Sets Generation” of FaultTree+ (CCF anal-
ysis area). 

Note: If a FTA shall be prepared for purely qualitative considerations then it is still meaningful to assign 
failure rates to the basic events. To avoid possible misunderstandings in any presentations it is recom-
mended to use a generically created fault model that is then assigned to all events. Effect: The com-
puted fault combinations are outputted by the tool sorted according to their probability. The displaying 
of the resulting probabilities of the gates can be suppressed in Tool options “View”. 

4.5.2. Fault combinations 

Different types of fault combinations can be identified. These are single point faults, residual faults 
(monitored faults), multiple point faults and as a sub- quantity of the multiple point faults, the group 
of latent multiple point faults. 
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a) Single point faults 

One objective of the FTA is to identify those single point faults that lead to an undesirable event. 

A single point fault is characterized as follows: 
• There are no safety mechanisms (e.g. monitoring or redundancy) that prevent the associated 

undesirable event (Top Event) from occurring when the fault occurs. 

Interpretation in the FT tool: 

The FT tool essentially offers two possibilities for the interpretation of fault combinations. These are:  
• The Cut-Set list which arranges the fault combinations (minimal cuts) computed by the tool 

according to the probability of their occurrence, and  
• The importance list that shows the significance (importance) for each basic event included in 

the fault tree. The Birnbaum importance can be taken for a qualitative interpretation. 

Compliance with a naming convention for the designations of the basic events (Event Names) is indis-
pensable to be able to efficiently evaluate the lists offered by the FT tool. This enables a quick identi-
fication of the basic events involved on the basis of their name. Even in the example above (see Figure 
4.5) there is a naming convention in a rudimentary form (e.g. all faults are termed “CAUSE_#”). For 
notes and recommendations concerning this topic refer also to “Attachment 1 Symbols and modeling 
recommendations”. 

Remark: Before beginning with the interpretation it must be ensured that for the gate of interest the 
saving of the fault combinations has been activated. This is realized in the FT tools used at Bosch by 
activation of the Gate option “Retain Results”. Otherwise the gate of interest will not be included in 
the list of gates available. Figure 4.6 shows the evaluation dialog when in the fault tree example the 
option “Retain Results” is only activated for the Top Gate. In the upper area only 1 gate is offered 
(unlike in Figure 4.7 where several gates can be selected for analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Retain results activated exclusively for the Top Gate 
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Single point fault in the Cut-Set list: 

Single point faults can now be identified in the Cut-Set list of the respective Top Events: 

 

 

Figure 4.7: Cut-Set list in FaultTree+ for the Top Event 

• Cut-Sets of the 1st order 
 the number of events involved is 1 (Cut-Set numbers 1 and 2 in Figure 4.7) 
CAUSE_CC is the modeled Common Cause fault that is attached both to faults as well as to 
the monitoring side. 
In the example: “CCF_CAUSE_2_UND_6” is not represented in the fault tree by a basic event. 
The tool moreover computes on the basis of the CCF model used the probability of the faults 
from CAUSE_2 and CAUSE_6 at the same time and shows this value as a single point fault en-
try (with the name of the CCF model) in the Cut-Set list. By tracing this Cut-Set using the FT 
tool back to its origins (using the option Trace Cut-Set) the “Trace” ends at CAUSE_2 respec-
tively CAUSE_6.  

• Cut-Sets order > 1 
 Max. 1 event constitutes the fault - the remaining events involved represent probability-
reducing conditions (e.g. rare operating conditions – that can be modeled as “Conditional 
Events” with a fixed probability of occurrence) (Cut-Set number 4 in Figure 4.7) 
In the example: “CAUSE_5” combined with the “OPERATING CONDITION” (this event de-
scribes neither a fault nor a monitoring mechanism) 

Single point fault in the importance list: 

In the importance list of the considered Top Event the Birnbaum importance (BI) can be used to identify 
single point faults.  

For computation of the BI it is irrelevant which data assignment is allocated to the particular single 
point fault event; important is that failure rates have been defined at all. In the case of a missing or 
incomplete data assignment (r = 0) then the importance list cannot be meaningfully used because in 
this case, the BI the computation would have to be divided by zero. The BI is defined as the ratio of the 
probabilities of occurrence and describes the conditional probability of the Top Event when the event 
considered has already occurred. In the case of a single point fault – i.e. without any safety mechanism 
–the Top Event occurs definitely (probability is 1), the BI for the single point fault must therefore equal 
1. For details refer to “Step 6: Quantitative interpretation“. 
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Consequentially, all events with a BI = 1 invariably constitute single point faults. (CAUSE_CC and 
CCF_CAUSE_2_AND_6 – boxed with a dashed line in Figure 4.8) 

N.b.: The BI for those events that occur in combination with rare operating conditions do not permit 
any clear statement about whether a single point fault is concerned here. This is because a BI < 1 can 
also be caused by the rare operating condition and therefore does not necessarily mean that this con-
cerns a combination multiple point faults for the event being considered. (CAUSE_5 – boxed in dots in 

Figure 4.8) 

  

Figure 4.8: Importance list in FaultTree+ 

b) Residual faults (monitored faults) 

The FTA is able to identify monitored (single point) faults (Residual Faults in the context of the ISO 
26262). 

A monitored fault constitutes a combination of a fault and one or several basic elements that show 
the gap in the diagnostic coverage of the monitoring functions. 

Interpretation in the FT tool: 

The FT tool offers two possibilities for the interpretation of fault combinations. These are:  
• The Cut-Set list containing the fault combinations (minimal cuts) computed by the tool ar-

ranged according to the probability of their occurrence, 
• The importance list that shows the significance (importance) for each basic event included in 

the fault tree. The Birnbaum importance can be taken for a qualitative interpretation. 

Monitored faults in the Cut-Set list: 

Monitored faults can be identified in the Cut-Set list of the respective Top Event: 

• Cut-Sets of the 2nd order are monitored faults, if  

(1) an event constitutes the monitored fault  

AND 

(2) the second event represents the gap in the diagnostic coverage of the monitoring 

• Cut-Sets Order > 2 are to be evaluated as monitored faults if 

(1) Not more than one single event constitutes a fault  

AND 
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(2) Of the remaining events involved at least one represents the diagnostic coverage of 
the monitoring  

AND 

(3)  The remaining events represent probability-reducing conditions (e.g. rare operating 
conditions) or further diagnostic coverage, NOT however faults. 

 

Figure 4.9: Monitored faults in FaultTree+ in the Cut-Set list 

Monitored faults in the importance list: 

On the basis of the importance list, no unambiguous conclusions can be drawn with regard to moni-
tored faults. Birnbaum Importance’s listed in the example considered with 0.01 < BI < 1 are not neces-
sarily justified by monitoring. Events with a BI = 0.1 can be combined either with rare operating condi-
tions (CAUSE_5 – boxed in dots in Figure 4.10:) or with monitoring (with a diagnostic coverage of the 
monitoring of 90 %: Cause_1 and CAUSE_2 boxed by a dashed line in Figure 4.10 (refer also to: C) 
Multiple point combination of faults, p. 22). 

 

Figure 4.10: Unambiguous classification using BI: dotted - single point faults with a rare operating condition – 
interrupted line – monitored faults 

c) Combinations of multiple point faults 

A combination of multiple point faults (Multiple Point Failure) is made up of several faults.  
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Interpretation in the FT tool:  

Combinations of multiple point faults in the Cut-Set list: 

Combinations of multiple point faults can be identified in the Cut-Set list of the respective Top Event: 
• Cut-Sets of the 2nd order are combinations of multiple point faults if BOTH events constitute 

faults but neither a diagnostics gap nor operating conditions. 
• Cut-Sets of the higher order are combinations of multiple point faults if AT LEAST TWO events 

depict faults – the remaining events may then represent other contents (e.g. operating condi-
tions, monitoring and similar).  

N.b.: In the context of the ISO 26262 it is necessary to distinguish between monitored combinations of 
multiple point faults and monitored single point faults (Residual Faults) because the norm places dif-
ferent requirements on dealing with such fault combinations. 

d) Latent faults 

Latent faults are faults that require a second fault to be able to trigger the undesirable event (Top 
Event). Latent faults should be differentiated from “sleeping” faults that require a rare operating con-
dition to be active for the undesirable event.  

At the point in time of their occurrence latent faults therefore 
• Are without any direct effect on the undesirable event (a second fault has to occur), 
• Cannot be noticed by secondary effects (e.g. noise or loss of comfort), 
• Cannot be detected by monitoring during their latency period. 

Single point faults and monitored faults can in the context of the definition given above therefore 
never be latent. Unlike “sleeping” faults that are combined with a rare operating condition, a fault 
identified as latent must therefore be searched in combinations of multiple point faults – monitored 
or not monitored. 

The identification of latent faults is possible in several ways: 

a) The fault tree is examined at the AND gates during the preparation phase. 

b) The composition of the computed Cut-Set is examined for latent faults. 

Investigate the fault tree to determine latent faults (Option a) 

Latent faults can be identified by considerations of the fault tree structure. Since latent faults are al-
ways part of failure combinations of multiple point faults, only gates that can lead to failure combina-
tions because of their logic (AND, XOR, VOTE) are of interest.  

Example: 

The fault tree example given in Section Fehler! Verweisquelle konnte nicht gefunden werden. (refer 
also to Figure 4.5) is examined for the presence of potentially latent faults. 

The considerations begin at the gate “FAULT & NOT DETECTED”. This is an AND gate that combines a 
fault with a monitoring:  

Step 1) The inputs of “FAULT & NOT DETECTED” are first of all investigated for potential latency.  

In the example the gate constitutes a combination of faults and monitoring. Since the fault without 
monitoring would most certainly lead to the undesirable event, the fault path (Gate “FAULT”) is as-
sessed as being non-latent. A failure of the monitoring is without any consequences as long as the fault 
does not occur (=> gate “NO DETECTION | REACTION”)  
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N.b.: Color-coding the gates already analyzed when working through this task can be useful.  

In the example (see Figure 11. Figure 12, Figure 13): GREEN: No potential latency; PINK: Potentially 
latent; YELLOW / CREAM: Faults; GRAY: Operating condition; ORANGE: Gap in diagnostic coverage; 
LIGHT BLUE: Still to be processed 

 

Figure 4.11: Step 1) – determining potentially latent / non-latent paths 

In the next step all fault trees and events that have a direct connection with the input considered (i.e. 
not via an AND gate) are marked according to the classification of the gate.  
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Figure 4.12: Step 2) – Inheritance of the initial classification on the directly associate FT elements (OR gates 
or events) 
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Figure 4.13: Step 3ff) – analysis of the AND gates on lower levels 

Result: 

The following events have been identified as potentially latent in the fault tree: 

CAUSE_4_LATENT; CAUSE_6  

If faults have been classified as latent this should be accordingly taken into account by the respective 

fault models (e.g. dormant-fault model assigned). The latency period of individual faults (parameter  
in the dormant model) must include the available actions against latency (e.g. power-on self-tests not 
considered in the fault tree either). 

Note: Option a) is suitable for the smaller fault trees with a limited number of AND gates. It can also 
be carried out to accompany construction of the fault tree. To limit the efforts alternatively Option b) 
is available for extensive fault trees. 

Examination of the established fault combinations to determine latent faults (Option b) 

An examination for latent faults can also be carried out on the basis of minimal cuts (Cut-Sets). Natu-
rally only Cut-Sets of at least 2nd order are in focus here since a latent fault neither can have any direct 
failure effect nor can be detected.  

N.b.: The identification of latent faults on the basis of the Cut-Sets cannot be made directly in the FT 
tool but requires a data export into a suitable spreadsheet application. The sorting of the Cut-Sets ac-
cording to the probability of occurrence may not be changed in the spreadsheet. 
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During the examination of the fault combinations, each event of the Cut-Set shall be considered sepa-
rately – if one of the following statements applies, then a latent fault is not concerned here. 

• There are monitoring mechanisms that will detect the fault (e.g. initial tests or online monitor-
ing) 

• The fault has consequences that although do not trigger the undesirable event directly (it only 
occurs in a multiple point fault), can however be noticeable in a different relationship (e.g. 
comfort limitation, noise or however that the fault is a single point fault with regard to another 
undesirable event in the same system)  the fault is “perceived”. 

• A fault identified as being potentially latent does not have under any circumstances an effect 
on the undesirable event. This is the case if there is more than one single point non-latent fault 
in the combination of the faults of the order n (where n > 2). This is because in a combination 
of faults with more than 1 fault the second non-latent fault prevents the latent fault from 
causing the undesirable event.  

 

Timescale 
Fault 1  

not latent 
Fault 2  
latent 

Fault 3  
latent 

Effect on the system 

1 0 0 1 No effect 

2 0 1 1 No effect 

3 1 1 1 Undesirable effect occurs without any advance warning 

 

 
Timescale 

Fault 1  
not latent 

Fault 2  
not latent 

Fault 3  
latent 

Effect on the system 

1 0 0 1 No effect 

2 0 1 1 Fault 2 detected or perceived 

 

Timescale 
Fault 1  

not latent 
Fault 2  

not latent 
Fault 3  
latent 

Effect for the system 

1 0 0 1 No effect 

2 1 0 1 Fault 1 detected or perceived 

 
• The considered event describes one of the following conditions (operating condition, monitor-

ing gap (monitor), other conditions); these events are not seen as being latent. 

Once made the categorization then applies for the event and its role in the fault tree being considered 
here. 

Example of a table for the exemplary fault tree from Figure 4.5: 

The search for latent faults using the second method identifies the same events as the first method. 

Each Cut-Set is now considered separately on a line-by-line basis. The 1st involved fault (1st fault) is 
classified and this classification is then applied to all rows where the fault being considered occurs. A 
fault is then to be evaluated as being latent when the potential latency is confirmed such, that there 
are no actions against the latency. In the table this is indicated by both an entry “pL” and a further 
entry “L”. If unlike this the potential latency is not confirmed later then a “P” can be entered (in the 
example given this applies for CAUSE_3) 

N.b.: Features of the spreadsheet application like e.g. filter options or a meaningfully programmed 
macro can provide efficient support when completing the table and speed up the analysis considerably! 

Classifications used in the table:  
n.a.  = not relevant;  
M  = Monitor gap ( not latent);  
B  = operating condition ( not latent);  
P  = Perceived (noted  not latent);  
L = Latent;  
SPF = Single Point Fault (=> not latent);  
RF  = Residual Fault (monitored faults => not latent);  
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S  = dormant fault (not latent);  
pL = potentially latent 
 

Number Cut-Set Event descriptions 
Unavail-
ability 

Order 1st fault 

la
te

n
t 

fa
u

lt
 

p
e

rc
e

iv
e

d
 f

au
lt

 

2nd fault 

la
te

n
t 

fa
u

lt
 

p
e

rc
e

iv
e

d
 f

au
lt

 

1 CAUSE_CC 
Fault cause - Common Cause of sig-
nal error and monitoring 

1E-09 1 SPF n.a.     

2 CCF_CAUSE_2_AND_6 Common Cause faults model 1E-09 1 RF n.a.     

3 
CAUSE_2.  
MONITOR GAP 

Fault cause 3) via the CCF model 
connected with fault cause 6) 
Gap of the monitoring quality (= 1-
DC) 

1E-09 2 RF n.a. M n.a. 

4 
CAUSE_1. 
MONITOR GAP 

Fault cause 1) 
Gap of the monitoring quality (= 1-
DC) 

1E-10 2 RF n.a. M n.a. 

5 
CAUSE_5.  
OPERATING CONDI-
TION 

Fault cause 5)  
Rare operating condition (1% of the 
operating time) 

1E-11 2 S n.a. B n.a. 

6 
CAUSE_2.  
CAUSE_6 

Fault cause 3) via the CCF model 
connected with fault cause 6) 
Fault cause 6) via the CCF model 
connected with fault cause 2) 

5E-13 2 RF n.a. pL L 

7 
CAUSE_2.  
CAUSE_4 - LATENT 

Fault cause 3) via the CCF model 
connected with fault cause 6) 
Fault cause 4) - relevant for the 
monitoring function  

5E-14 2 RF n.a. pL L 

8 
CAUSE_1.  
CAUSE_6 

Fault cause 1) 
Fault cause 6) via the CCF model 
connected with fault cause 2) 

5E-14 2 RF n.a. pL L 

9 
CAUSE_1.  
CAUSE_4 - LATENT 

Fault cause 1) 
Fault cause 4) - relevant for the 
monitoring function  

5E-15 2 RF n.a. pL L 

10 
CAUSE_2.  
CAUSE_3 

Fault cause 3) via the CCF model 
connected with fault cause 6) 
Fault cause 3) - relevant for the 
backup level - noticeable by the 
driver 

1E-17 2 RF n.a. pL P 

11 
CAUSE_1. 
CAUSE_3 

Fault cause 1) 
Fault cause 3) - relevant for the 
backup level - noticeable by the 
driver 

1E-18 2 RF n.a. pL P 

 

Result: 

The result agrees with the graphical analysis method. In the Cut-Set list the following events were 
identified as potentially latent: 

CAUSE_4 – LATENT; CAUSE_6  

The latency period of the latent faults (parameter  in the dormant model) must include available ac-
tions against latency (e.g. modeled power-on self-tests not considered in the fault tree). 

Identified latent faults – consequences for fault tree modeling 

Latent faults must have a fault model that takes their latency period into account. This can be realized 
by assigning a dormant model in the FTA tool.  

The latency is determined by the time interval that can elapse between the occurrence of the fault and 
its possible detection.  

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-015_BBL_N_EN_2015-08-18.pdf


Fault Tree Analysis 

© Robert Bosch GmbH | Status 08.2015 -29 - 

Example: If a fault is detected by a test executed on a regular basis (e.g. every 10 operating hours) then 
the longest possible time interval of 10 h corresponds to its latency (fault occurs immediately after the 
last test; it takes another 10 h until the next test). 

By applying the dormant fault model, the latency period leads to a considerably higher failure proba-
bility of latent faults compared to non-latent faults when determining the failure probability of the 
fault – assuming a meaningful selection of the fault tree computation parameters. It is therefore mean-
ingful to take actions against the latency of faults in systems. 

For details about fault models see Attachment 1: Symbols and modeling recommendations 

4.6. Step 5: Determine the probability of occurrence of basic events (quanti-
tative description) 

4.6.1. General 

To be able to perform a quantitative analysis of the fault tree the basic events must be assigned the 
respective probability of occurrence. These probabilities of occurrence can be determined on the basis 
of suitable reliability parameters.  

Reliability parameters are for example 

• the failure rate λ (time-dependent variable, e.g. r = 1 E-09/h = 1 FIT) 
• the failure probability QA  (time-independent probability, e.g. Q = 0.1) 
• the probability of occurrence QE (time-independent probability, e.g.  

ambient conditions like rain, snow, …) 

There are different approaches to determine the reliability parameters for the quantitative analysis of 
the fault tree. Often a certain approach is specified by the customer. If this is not the case then the 
approach has to be agreed in the team. 

As a rule the reliability parameters are determined from one of the following five sources of infor-
mation: 

• In-house experience from the field or from operation 
Advantage: Real service conditions 
Disadvantage: The product has to be in the field, data are then available later.  

Alternative: Use data for a comparable predecessor product (limitation: The applicability has 
to be checked) 

• In-house tests and / or test experience 
Advantage: Information is available before the product is in the field (random sample / time 
compression) 
Disadvantage: Only test conditions; additional efforts and costs 

• Literature data / generic data from data collections (e.g. handbooks; the use of “Siemens 
SN29500” or “IEC62380” is recommended) 
Advantage: Wide data basis, recognized data basis 
Disadvantages: Applicability to the application in question is not always given;  
      New types of components / new technologies are not included;    

     historic data – more conservative 

Note: If the service or boundary conditions (e.g. temperature profile) on which the handbook 
data are based should be different for the undesirable event or product to be investigated then 
the data have to be adjusted before using in the fault tree. 

For the FTA in the context of automotive applications, the Siemens norm (SN29500) has as-
serted itself in determining the reliability parameters for the verification of products. 

• Experience of Bosch-external sources e.g. suppliers  
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• Expert estimates (with justification) if none of the options given above provides a suitable re-
liability parameter for the application case 

The data are normally given as failure rates, in “ppm per time unit” or “FIT”. 

As a rule, the values refer to the whole component. In the FTA however, the failure rate with respect 
to the fault mode of a part of the component is needed.  

For simple components (e.g. diode, resistor,…) the overall rate can be broken down according to fault 
catalogs (e.g. short, open, drift). Used most often is the standard work from A. Birolini (Reliability En-
gineering: Theory and Practice, Springer Verlag). 

For complex components (e.g. microcontrollers) the total failure rate is typically broken down accord-
ing to the surface proportions of the circuit blocks. The fineness of the breakdown is determined by 
the requirements of the FTA.  

It can be necessary in the course of a development of a project to update the reliability parameters. 

4.6.2. Preventive / corrective 

In the preventive use of the FTA all information sources for determining reliability parameters can 
principally be used (see 4.6.1). 

In the corrective application case of the FTA reliability parameters preference is given to using in-house 
or external experience from the field and operation because in this case any discrepancy occurring in 
the application shall be investigated. 

4.7. Step 6: Quantitative interpretation 

4.7.1. General 

In order that the quantitative interpretation can lead to informative results, the qualitative analysis – 
i.e. of the fault tree – must be concrete. Furthermore both the data assignment of the basic events 
must be explained and the parameters for the computation of the fault tree results have to be set. 

4.7.2. Definition of the computing parameters in the FTA tool 

Mission time 

It shall established as early as possible during the preparation of the FTA, which mission time (compu-
tation time)  – in the automotive field this corresponds to the drive cycle – will be selected for the 
quantitative interpretation of the FTA. The results, that the FTA will provide, depend crucially on this.  

Remark: The corresponding option in the FT tool FT+ is “System life time” (Options/Calculation). 

Depending on the application case, different times can be meaningful here. In the automobile industry 
a mission time of 1 h has asserted itself e.g. in the use of the FTA for supporting the safety evidence 
per ISO 26262. This has a certain reference to the average utilization time of vehicles and enables a 
meaningful computation of the failure rate of non-latent faults (rates model) in the comparison with 
latent faults (dormant model). 
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Dormant fault model 

Computation of the dormant fault models is possible in different ways. The most conservative result 
(highest failure probability) is given by the setting “Max”. It is assumed here that the latent fault occurs 
at the beginning of the vehicle lifetime and then stays over the whole latency period. Here the fault 
occurs by chance always at the beginning of the vehicle lifetime – in reality this not the case.  

The option “Mean” assumes an equal distribution of the fault occurrence over the vehicle lifetime. The 
calculations therefore give the mean value for the probability  

(Q =  *  / 2) of a latent fault.   

The other computing method (ISO61508) can be meaningful as well depending on the project. Further 
information here is provided by the Help available in FaultTree+ (or RWB) 

4.7.3. Numerical value of the Top Gates 

The FTA tool automatically calculates for each gate  
• the non-availability Q 

• the occurrence frequency   
• the Mean Time To Failure (MTTF) 
• the Mean Time to Repair (MTTR) 
• the Mean Time between Failure (MTBF) 

The tool supports displaying in each case the type of results desired in the fault tree. 

Depending on the boundary conditions under which an FTA is prepared, the respective parameters 
have to be in line with the previously defined target values. 

Non-availability Q: 

Q is dimensionless and describes the probability of occurrence of the undesirable event at the end of 
the computed time period. If statements have to be made for Q with regard a certain time period then 
the computation time has to be taken into account. If a computation time (mission time, “System life 
time” see above) other than 1 hour is selected then this will lead to errors in the end result because 
the division of Q by a number limits the probability per hour.  

Example: An event occurring with certainty after 10.000 hours with the probability Q = 1 is given by 
division as:  

Q*/1 h = Q / 10.000 h = 1E-04 1/h  

I.e. the probability of this event can never be higher than Q*/1 h = 1E-04 1/h! This is not plausible. 

Occurrence frequency  

 has the dimension 1/h and corresponds to Q differentiated according to the time. I.e.  describes 
the course over time (mathematically the gradient) of the probability curve Q with t. As long as the 

products of the failure rates and the computation time are very much smaller than 1 (t << 1) the 
probability curve is in the linear range, i.e. the derivation of the exponential curve provides the same 

value as the curve itself   ≈ Q. 

Fault trees that include numerous basic events with fixed (constants) probabilities ( = 0 here) can 

lead to differences in the numerical values between  and Q. 
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Mean Time To Failure (MTTF), Mean Time to Repair (MTTR), Mean Time between Failure (MTBF) 

These terms play a role as a rule in systems that can be repaired whereby the MTTF is related to the 

failure rate  (under certain prerequisites it applies: MTTF ≈ 1/). These terms are not gone into in any 
further detail in this guideline.  

4.7.4. Identify optimization potential 

If a need for action is determined based on the considerations of the numerical values in the Top Event 
because e.g. the set goals have not yet been reached, then optimization potential can be identified. 
This is done by consideration of the importance of basic events. Importance considerations allow state-
ments to be made on the significance of basic events with regard to particular issues.  

Example 1: Reduction of the total failure probability 

One possible task after determining the probability of occurrence of the Top Event might be: The total 
probability of occurrence must be lowered to below a certain value. To optimize efficiently the parts of 
the FTA have to be identified where changes with respect to the assigned task are particularly active. 
The issue here is:  

By which amounts do the basic events contribute to the total failure rate of the Top Event?  

This question can be answered using the Fussel-Vesely Importance. 

Fussel-Vesely Importance (FVI): 

The FVI is a quotient of:  
• the sum of the probability of occurrence of all minimal cuts where the considered Basic event 

A is involved with the probability of occurrence qA, and  
• the probability of occurrence of the undesirable event QSYS. 

 

 

Since qA has to be greater than zero and can never be larger than QSYS, it applies for the FVI that  

0 < FVI ≤ 1.  

If the FVI were = 0 then the event would have no contribution to the overall result – and then it may 
not occur in any minimal cut that can trigger the Top Event, and thus it must apply that FVI > 0.  

If unlike this FVI = 1, then the Basic event is the only event than can trigger the undesirable event.  

Remark: The selection of the approximation method “Rare” in the Tool FT+ can lead to FVI = 1 and 
despite this that other causes can trigger the Top Event. Background here is a simplified computation 
of the total probability of occurrence as a straightforward sum of the part-probabilities of the available 
Cut-Sets.  

Basic events that have a high FVI (e.g. FVI = 0.7) also contribute significantly to the total probability of 
occurrence – 70% in the example here. Apart from this, it is likely that basic events with a high FVI are 
single point faults, or are monitored faults with a high failure rate. These events and their position in 
the fault tree are therefore of interest when it applies to reduce the probability of occurrence of the 
undesired event. 

See Step 7 for actions to reduce the influence. 
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Example 2: Effectiveness of monitoring and redundancy for safeguarding against the Top Event 

When the results of the quantitative analysis are available it can be of interest to know how likely the 
occurrence of the undesirable event is when a fault has occurred.  

The associated question here might then be: 

What is the probability of the undesirable event occurring if the basic event to be considered has 
occurred?  

This question can be answered using the Birnbaum Importance. 

Birnbaum Importance (BI) 

The Birnbaum Importance (BI) is defined as the quotient of:  
• the sum of the probability of occurrence of all minimal cuts where the considered basic event 

A is involved with the probability of occurrence qA, and  
• the probability of occurrence of the basic event qA itself 

 

 

Since the denominator qA has to be greater than zero and can never be larger than qA (when qA is a 
single point fault in the numerator), the BI is defined as  

0 < BI ≤ 1.  
If the BI were = 0 then the event would have no contribution to the overall result – and then it may 
not occur in any minimal cut that can trigger the Top Event, and thus it must apply that BI > 0. 
Faults where BI = 0 are not included in the importance list. 

If unlike this BI = 1, then the basic event is a single point fault that can trigger the undesirable event. 
Then qA must be in the numerator as the minimal cut (without further faults that would cause a smaller 
product probability) – the denominator is still qA. 

Remark: In some cases BI > 1 is outputted despite the definition given above. This indicates logic prob-
lems in the fault tree and occurs amongst others, when one and the same event Cut-Sets forms with 
several further events within a fault tree. The sum of the probabilities of these basic events must exceed 
1. Such events with high probabilities often concern the representation of diagnostic slip. A check of the 
fault tree logic is then appropriate. Example:  qA = 1E-07; qB = 0.6; qC = 0.7 with the fault combinations 
qA.qB OR qA.qC would give BI(qA) =1.3. since qB + qC = 1.3 

Basic events that have a high BI lead with high probability or even certainty (in the case of BI = 1) to 
the undesirable event. Unlike like this, basic events with a lower BI need at least a second or third 
event for the undesirable event to be triggered. 

The following additional issue can be examined using the Birnbaum Importance: 
• What is the significance of the monitoring in the system?  

 The BI for the basic event that defined the failing of the monitoring is provided by the 
sum of the probabilities of occurrence of all faults that can be detected with the monitor-
ing – the higher the BI the greater the significance of the monitoring. 

• Which basic events are safeguarded by monitoring? 

 Monitored faults have a BI between 0.001 and 1 depending on the monitoring gap of the 
associated monitoring (i.e. a 99% effective monitoring has a gap of 1% = 0.01 and this 
number then appears as the BI of the monitored fault). 

Remark: “Sleeping faults” (faults that are only active in combination with rare operating conditions) 
have the BI corresponding to the probability of the rare operating condition. In certain circumstances 
there is a danger of mistaking this for monitored faults. 
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Example 3: Interpretation of a fault tree example: 

The fault tree example shown in Figure 4.14 has been used already in Step 4: Qualitative interpretation. 
Explanatory notes on the technical background of the fault tree can also be found here. 

 

 

 

 

Figure 4.14 : Fault tree example 

The fault tree above provides the following minimum steps for the Top Gate “FAULT & NOT DE-
TECTED”: 

 
No. Cut-Set Event Descriptions Unavailability Order 

1 CAUSE_CC Fault cause - Common Cause of signal error 
and monitoring 

1E-09 1 

2 CCF_CAUSE_2_AND_6 Common Cause faults model 1E-09 1 

3 CAUSE_2.  
MONITOR GAP 

Fault cause 2) via the CCF model connected 
with fault cause 6) 
Gap of the monitoring quality (= 1-DC) 

1E-09 2 

4 CAUSE_5. BOPERATING CON-
DITION 

Fault cause 5)  
Rare operating condition (10% of the operat-
ing time) 

1E-10 2 

5 CAUSE_1.  
MONITOR GAP 

Fault cause 1) 
Gap of the monitoring quality (= 1-DC) 

1E-10 2 

6 CAUSE_2. CAUSE_4 - LATENT Fault cause 2) via the CCF model connected 
with fault cause 6) 
Fault cause 4) - relevant for the monitoring 
function  

5E-14 2 

FAILURE & UNDET
Q=3.200e-9

&

Failure AND
NO detec tion
by  monitor ing

FAILURE
Q=1.310e-8

>=1

undes ired
event

NO DET | REACTION
Q=1.000e-1

>=1

No detection of fault
OR No appropriate
reaction on detected

fault

FAULT & OPERATION_COND

Q=1.000e-10

&

Fault
combined with
rare operation

condition

CAUSE_1

Component
fault 1

r=1e-009

Q=1.000e-9

CAUSE_2

Component fault 2)
via CCF-Model

linked to CAUSE_6



r=1e-008

Q=1.000e-8

CAUSE_CC

Common cause
affecting undesired

event and monitoring

r=1e-009

Q=1.000e-9

NO DET
Q=1.000e-1

>=1

No detec tion of
fault

REAC NO
Q=1.000e-9

No appropriate
reaction on detected
fault (e.g. no system

degradation)

I MON
Q=1.001e-5

>=1

Wrong input to
monitoring function

leading to a
non-detection of the

fault

MONITORING (1-DC)

Probability that the
monitoring does

NOT detect the fault
(Q = 1-DC)

Q=0.1

Q=1.000e-1

CAUSE_3

component fault 3) -
impacting the

transition to the safe
state

r=1e-009

Q=1.000e-9

FAULT & OPERATION_COND

Q=1.000e-10

Fault
combined with
rare operation

condition

CAUSE_4 - LATENT

component fault 4) -
relevant for

monitoring function

r=1e-009 tau=10000

Q=1.000e-5

CAUSE_CC

Common cause
affecting undesired

event and monitoring

r=1e-009

Q=1.000e-9

CAUSE_6

component fault 6)
via CCF-Model

linked to CAUSE_2



r=1e-008

Q=1.000e-8

CAUSE_5

component
fault 5) 

r=1e-009

Q=1.000e-9

OPERATION_COND

Rare operation
condition (1% of

mission time)

Q=0.1

Q=1.000e-1
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No. Cut-Set Event Descriptions Unavailability Order 

7 CAUSE_1. CAUSE_4 - LATENT Fault cause 1) 
Fault cause 4) - relevant for the monitoring 
function  

5E-15 2 

8 CAUSE_2. CAUSE_6 Fault cause 2) via the CCF model connected 
with fault cause 6) 
Fault cause 6) via the CCF model connected 
with fault cause 2) 

1E-16 2 

9 CAUSE_1. CAUSE_6 Fault cause 1) 
Fault cause 6) via the CCF model connected 
with fault cause 2) 

1E-17 2 

10 CAUSE_2. CAUSE_3 Fault cause 2) via the CCF model connected 
with fault cause 6) 
Fault cause 3) - relevant for the backup level 

1E-17 2 

11 CAUSE_1. CAUSE_3 Fault cause 1) 
Fault cause 3) - relevant for the backup level 

1E-18 2 

 

The thereby associated importance list for the Top Gate “FAULT & NOT DETECTED” is: 
Name Fussell-Vesely Importance Birnbaum Importance 

MONITOR GAP 0.343744 1.1E-08 

CAUSE_2 0.31251 0.100005 

CAUSE_CC 0.312495 1 

CCF_CAUSE_2_AND_6 0.312495 1 

CAUSE_1 0.031251 0.100005 

BOPERATING CONDITION 0.031249 1E-09 

CAUSE_5 0.031249 0.1 

CAUSE_4 - LATENT 1.72E-05 1.1E-08 

CAUSE_6 3.44E-08 1.1E-08 

CAUSE_3 3.44E-09 1.1E-08 

Evaluation of the basic events on the basis of the Fussel-Vesely Importance (FVI) 

It can be seen on the basis of the importance list (sorted according to the FVI) that there are four basic 
events (MONITORING_GAP, CAUSE_2, CAUSE_CC CCF_CAUSE_2_AND_6), of which three fault combi-
nations (see Cut-Set list), each more than 30 %, contribute to the result (FVI > 0.3). If the goal is to 
reduce the total result, these fault causes and their fault combinations should be focussed. Two cases 
concern Common Cause faults for both sub-fault trees (CCF_CAUSE_2_AND_6 as well as CAUSE_CC). 
These are apparent as single point faults – and can be seen by amongst others, from their values for 
the Birnbaum Importance (BI = 1). 

Three further basic events contribute by their fault combinations in each case with about 3%, to the 
total result (CAUSE_1. OPERATING CONDITION, CAUSE_5 WITH FVI = 0.031251).  

Finally there are also three basic events where the fault combinations of these events have only a small 
influence on the total result. Their FVI is therefore very small (FVI << 1). The optimization of these 
events or of the fault tree where these events have an influence is therefore not a meaningful option 
when the total result shall be lowered. 

Evaluation of the basic events on the basis of the Birnbaum Importance (BI) 

The monitoring MONITOR GAP detects faults, the probability of which is 1.1E-08. When it is considered 
that MONITOR GAP has a fixed probability of 0.1 (see  

 

Figure 4.14), then the BI of CAUSE 1 and CAUSE 2 with BI = 0.1 can be understood – since these faults 
are monitored by the MONITOR GAP from which the CAUSE 1 provides a probability 1E-09 and CAUSE 
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2 a probability of 1E-08 (to be seen in the fault tree shown). Reason for the fact, that the BI for these 
events is not exactly 0.1 (BI = 0.100005) is that there are combinations of these faults with other basic 
events. 

On the basis of the BI statements about the “importance” of a monitoring can thus a comparison be-
tween the different monitoring types be made. If the BI of a monitoring lies e.g. in the region of the 
probability of a double point faults (typical for ISO 26262 applications Q < 1E-12), then it can be ques-
tioned whether this monitoring is needed for safeguarding against a single point faults – though it 
should not be overlooked that there might already be some effect here against latent faults occurring. 

The sleeping fault is CAUSE 5, its BI of 0.1 is exactly the same as the fixed probability of the OPERATING 
CONDITION. 

If the latent faults CAUSE 4) – LATENT occurs, then the undesirable event FAULT & NOT DETECTED 
follows with a probability of 1.1E-08 (CAUSE 1 WITH Q = 1.0E-09 or  still occur). 

Further importances: 

Further importance’s offered by the fault tree Tool FT+ (Barlow-Proschan, Sequential Importance) only 
play a role in combination with sequentially occurring faults and are not considered any further here.  

4.8. Step 7: Establish the need for action and success monitoring 

Following the qualitative or quantitative interpretation of the fault tree, a decision can be made on the 
basis of the results whether there is a need for action and if so, then the extent of the action.  

The objective criteria established before the analysis should be used again in this step.  

For example the interpretation of the fault tree can show that there are single point faults that lead 
directly to the Top Event or that the probability of occurrence of the Top Event is higher than is re-
quired for compliance with the safety goal. 

In such cases it can be necessary to define suitable actions so to reach the exact goals of the FTA. 

The decision here is thereby made by the customer.  

The FTA moderator can provide support in the interpretation of the results, and the FTA team acts in 
an advisory capacity and can assist in the definition and implementation of actions. 

For interpretation of the Cut-Set lists and the importance lists, refer also to Step 6 (quantitative inter-
pretation). 

Examples for possible actions: 
• Use of components with a reduced failure rate (=> leads to a different data assignment of  the 

basic event) 
• Introduce redundancy that can make the basic event concerned into a multiple point fault (=> 

has an influence on the architecture and moves the basic event into a multiple point fault => 
effectiveness better than for introducing monitoring) 

• Introduction of monitoring that reduces the failure rate with which a basic event has an effect 
on the undesirable event (turns a single point fault into a monitored fault => effectiveness 
depending on the quality of the monitoring) 

• Check of the specified service conditions (e.g. temperature,…) (=> influence on the failure rates 
of components already in use and on the monitoring is possible) 

• Detailing of the analysis for checking the status of the single point fault (an analysis in detail 
can highlight safety measures not considered up to now due to simplification, e.g. monitoring 
or redundancy in a sub-component) 

• Measures in the field 
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Success monitoring  

If the probability of the Top Event shall be reduced, then success monitoring of the applied actions for 
the preventive FTA can be realized by repeating the computation of the probability of occurrence of 
the Top Event.  

If the number of single point faults shall be reduced then the Cut-Set list can be used for checking the 
actions. 

With the corrective use of the FTA (implementation of the thereby derived actions) success monitoring 
is given by the absence of the fault status, e.g. no further field failures. 

4.9. Step 8: Release and documentation of the FTA 

A detailed documentation of the results of an FTA is indispensable since the FTA diagram alone as a 

rule does not contain (or show) all the information that is needed for an understanding or evaluation. 

Merely saving the FTA file does not fulfill the purpose as a rule. An added factor is that a changing 

composition of the team causes the knowledge carriers of the project to no longer be available at a 

later point in time. Also, the FTA report forms the basis for a possible routing for signatures that – 

comparable with routing for signatures for an FMEA – can be realized by means of the “eSignature”. 

Because of the diversity of the individual fault tree status analyses in the scope, depth of the consid-

erations made, etc. no fixed requirements on  the design of the FTA report can be given. It is for this 

reason that only a recommendation can be given in this document. 

It shall principally be observed that an FTA and the associated report can contain sensitive information. 

When handing over to external recipients (e.g. customer) the “Handling of Results from Qualityman-

agement-Methods towards Customers” in its currently valid edition are therefore to be observed. 

Best practice structure of an FTA report: 

• Summary of the results (similar to the cover sheet of an FMEA): 
o Overview of the task (e.g. Top Events) 
o Participating persons 
o Detailed listing of the results (target / actual comparison) for each individual Top Event 

(including the assessment by experts): 
o Name / description 
o Target values / determined values 
o Top-Faults (e.g. on the basis of a Cut-Sets analysis) 
o Listing the assumptions made (e.g. limiting the scope of the considerations, definition 

of the “safe state”) 
o Information about the data basis used (e.g. boundary conditions, sources for the fail-

ure rates, assumptions for the monitoring quality) 
o Listing of the attachments included 

 
• List of recommended attachments: 

o List of defined gates in the FTA 
(including remarks; can be exported from FT+ ) 

o List of the events defined in the FTAs 
(including remarks on deriving the failure rates or the data source; can be exported 
from FT+) 

o Printout of the fault tree (FTA diagram) 
o Printout of a “list of open items” if maintained 

https://rb-wam.bosch.com/socos-c/SOCOS/display.fcgi?exportExcel=0&lang=en&def_disp_lang=en&mode=999&searchstr=CD-03743-000&disp_historie=1&topicsAll=&orgAll=
https://rb-wam.bosch.com/socos-c/SOCOS/display.fcgi?exportExcel=0&lang=en&def_disp_lang=en&mode=999&searchstr=CD-03743-000&disp_historie=1&topicsAll=&orgAll=
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o Printout of a schedule / attendance / participation list 
o Block diagrams / diagrams / graphics / view cells that contribute to understanding 

the system 

An example for such a report on the basis of the Bosch eForms template “Report” can be found in 
“Attachment 2 – example of a report“ 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-015_BBL_N_EN_2015-08-18.pdf


Fault Tree Analysis 

© Robert Bosch GmbH | Status 08.2015 -39 - 

5. Literature on FTA  
Norms, Guidelines, Handbooks 

5.1. Norms 

[5.1.1] DIN 25424-1, Fehlerbaumanalyse – Methode und Bildzeichen (Deutsche Norm) 

Deutsches Institut für Normung, Sep. 1981, Beuth Verlag GmbH, Berlin 

[5.1.2] DIN 25424-2, Fehlerbaumanalyse – Handrechenverfahren zur Auswertung eines Fehlerbau-
mes (Deutsche Norm) 

Deutsches Institut für Normung, April 1990, Beuth Verlag GmbH, Berlin 

[5.1.3] DIN EN 61025 Fehlzustandsbaumanalyse (Deutsche Version der europ. Norm EN 61025) 

DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE,                    
 August 2007, Beuth Verlag GmbH, 10772 Berlin 

[5.1.4] ISO 26262 Straßenfahrzeuge – Funktionale Sicherheit (Teil 1 - 10) 

Internationale Organisation für Normung, November 2011, Genf (Schweiz) 

[5.1.5] SN 29500, Ausfallraten Bauelemente (Teil 1-16) (Siemens Norm) 

Siemens AG, 2004-2014, München und Erlangen 

 

5.2. Standards 

[5.2.1] Qualitätsmanagement in der Automobilindustrie, Band 4, Kapitel 4, Fehlerbaumanalyse 

VDA, Verband der Automobilindustrie e.V., Oberursel, Deutschland (2003) 

 

5.3. Handbooks 

[5.3.1] Fault Tree Handbook, NUREG-0492 (US-Standard) 

D. F. Haasl et al., U.S. Nuclear Regulatory Commission, Washington, USA (1981) 

[5.3.2] Fault Tree Analysis Application Guide (international standard) 

D. J. Mahar et al., Reliability Analysis Center, Rome, USA (1990) 

[5.3.3] Fault Tree Handbook with Aerospace Applications (Aerospace industry) 

W. Vesely et al., NASA Office of Safety and Mission Assurance, Washington, USA (2002) 

[5.3.4] VDI 4008 Blatt 7, Strukturfunktion und ihre Anwendung (VDI-Handbuch Technische Zuver-
lässigkeit) 

Verein Deutscher Ingenieure, VDI-Verlag GmbH, Düsseldorf (1986), Bezug: Beuth Verlag GmbH, Berlin 

[5.3.5] IEC TR 62380, Reliability Data Handbook (Internationaler Standard) 

(Ermittlung von Zuverlässigkeitsdaten, the für the Berechnung der FTA benötigt werden) 

Internat. Electrotechnical Commission, Geneve, Switzerland (2004) 

[5.3.6] Reliability Engineering: Theory and Practice 

Alessandro Birolini, ISBN: 3-642-39534-1, Springer Verlag, 2014 (7th edition) 

 

http://library.alibris.com/search/books/isbn/3642395341
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5.4. Reference books 

[5.4.1] Die Fehlerbaum-Methode 

W. Schneeweiss, ISBN 3-934447-02-3, LiLoLe Verlag, Hagen, Germany (1999) 

[5.4.2] Taschenbuch der Zuverlässigkeits- und Sicherheitstechnik 

(Darstellung unterschiedlicher Methothe und Techniken der Zuverlässigkeits- und Sicherheitstechnik) 
A. Meyna, B. Pauli et al., ISBN 3-446-21594-8, Carl Hanser Verlag, München – Wien (2003) 

[5.4.3]  Fault Tree Analysis Primer 

 Clifton A. Ericson II, ISBN 9781466446106, CreateSpace Inc., Charleston, NC (2011) 

[5.4.4] Fehlerbaumanalyse in Theorie und Praxis 

(Grundlagen und Anwendung der Methode), F. Edler, M. Soden, R. Hankammer  
ISBN 9783662481653, Springer-Verlag, Berlin Heidelberg (2015) 

[5.4.5] Erstellung von Fehlerbäumen 

(Eine strukturierte und systematische Methode), W. Freese, ISBN 9783446445161, 
Carl Hanser Verlag, München (2015) 
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6. Glossary 

 

Failure Termination of the capability of a unit under consideration to 
fulfill the required function.  

Remark: With complex systems “Failure” is used synonymous 
with “breakdown”. (DIN 40 041-3) 

Operating condition The working point, also known as the operating point or con-
dition is a certain point in the map, the characteristics of a 
technical device or system that is assumed because of the sys-
tem properties and acting external influences and parameter. 

CCF Common Cause Failure 

Common Cause Common fault cause within components that within a system 
are actually seen as being independent and that form a re-
dundancy. The Common Cause overcomes this redundancy.  
Example: Faults of a common voltage supply of two inde-
pendent sensors. 

Cut-Set-Analysis Is an interpretation of the fault tree and provides a list of the 
minimal cuts of the fault tree. 

Diagnostic coverage / degree of 
diagnostic coverage 

Proportion of the total failure rate of a fault cause that is de-
tected or controlled.  

DRBFM Design Review Based on Failure Modes 

ECU Electronic Control Unit, control unit 

E-Gas Electronic accelerator pedal 

et al. et al. means literally “and others”.  

Fault status Non-fulfillment of at least one requirement on a required 
characteristic of a unit under considerations. (VDI / VDE 3542)  

FHA Functional Hazard Analysis  

FIT 
Failure In Time 
For technical systems the failure rate is usually given in FIT. 
1 FIT = 1·10-9 failures per second 

FMEA Failure Modes and Effects Analysis  

FMEDA Failure Modes Effects and Diagnostic Analysis 

G&R Hazard &  Risk analysis 

H&R Hazard & Risk Analysis 

http://de.wikipedia.org/wiki/Kennlinie
http://de.wikipedia.org/wiki/Systemeigenschaft
http://de.wikipedia.org/wiki/Systemeigenschaft
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Importance Influence of certain causes = basic events on the safety, relia-
bility, probability of occurrence or availability of the  consid-
ered Top Event 

Critical event Critical events can be minimal cuts or other events defined 
within the scope of the system analysis that is subject to a spe-
cial consideration focus. The prioritization can be made e.g. on 
the basis of the probability of occurrences or by establishing 
singular events. 

Critical path Critical paths serve the visualization / designation of the causal 
chain from the Top Event through to an event / combination 
of events that is classified as critical. 

Minimal cut Minimal cut per EN 61025 
Smallest event quantity needed for the main event to occur.  

Minimal Cut-Set 
The fault tree structure constitutes the functional relation-
ship of the Top Event by the logical Left through to the basic 
events. 
The logical Left lead to the formation of sub-quantities of 
events by the occurrence of which the Top Event is causes or 
the unit under consideration (e.g. system) fails. These are re-
ferred to as cuts. 
The smallest common quantity of basic events forms a mini-
mal cut when it does not include any other cut as a true sub-
quantity. The sum of all minimal cuts describes the failure be-
havior of the fault tree structure completely. 
The smallest quantity of elements of the minimal cuts can 
constitute an event. The maximum quantity of elements of 
minimal cuts and number of minimal cuts is determined by 
the logical Left of the fault tree structure. 

MPF Multiple-Point Fault (designation from the context ISO 26262): 
Fault that as long as this occurs alone does not lead directly to 
the violation of a safety goal or to the occurrence of the unde-
sirable event. A second fault is neeeded for this. 

OEM Original Equipment Manufacturer; in this publication it is thus 
the vehicle manufacturer that is meant here 

PHA Preliminary Hazard Analysis 

ppm 
parts per million 
Relationship of the faults with respect to 1 million parts. 100 
ppm means 100 faults / 1 million parts. This corresponds to  
0.01 % faults. 

QFD Quality-Function-Deployment, or depicted quality functions 

RAMS R: Reliability                                                            
A: Availability                                                         
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M: Maintenance (maintainability)                                                       
S: Safety (Safety) 

Redundancy 
Presence of more operational means in a unit that are needed 
for fulfillment of the required function.  
Remark 1: How many means without redundancy are needed 
depends on the particular case.  
Remark 2: Maintaining the redundancy requires maintenance, 
i.e. the monitoring, the maintenance for in the case of failure 
the restoration of the functional capability of all means. (DIN 
40 041) 
 
In the case of this publication: 
Redundancy is the additional presence of functionally equal or 
comparable resources of a technical system  when these are 
not needed in the normal case for fault-free operation. 
(source: Wikipedia) 

RF Residual Fault (designation from the context ISO 26262) = re-
sidual fault of a Single Point Fault that after considering the 
safety mechanism (monitoring) leads to the violation of safety 
goal or the occurrence of the undesirable event. 

RWB Reliability Work Bench (ISOGRAPH SW); FT+ successor 

Sensitivity Analysis Methodology used to assess how sensitive indicators react to 
small changes in input parameters. 

SPF Single Point Fault (designation from the context ISO 26262) = 
faults that lead directly and without any safety mechanism to 
the violation of safety goals or the occurrence of the undesir-
able event. 

TCD Technical Customer Document(s) 

VDA Association of the automobile industry 

ZKG Reliability parameters 

8D report The 8D report is a document that within the scope of Quality 
Management is exchanged in the event of a complaint be-
tween supplier and customer. 8D thereby stands for the 
eight obligatory disciplines (process steps) that are necessary 
for working through a complaint to completion in order to 
overcome the fundamental problems. In the 8D report the 
type of complaint, the responsibilities and the actions for rec-
tifying the deficiency are formalized. The 8D report is stand-
ardized, amongst others by the Association of the automobile 
industry. 

 

http://de.wikipedia.org/wiki/Technisches_System
https://en.wikipedia.org/wiki/Quality_management
https://en.wikipedia.org/wiki/Quality_management
https://en.wikipedia.org/wiki/Warranty
http://de.wikipedia.org/wiki/Verband_der_Automobilindustrie
http://de.wikipedia.org/wiki/Verband_der_Automobilindustrie
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7. Attachment 1 Symbols and modeling recommendations 

7.1. Handling variants 

Subtrees can be activated or deactivated using logical switches for showing variants. The tool Fault-
Tree+ has the event symbol “House” to this end. 

 

Handling variants for a supplementary branch 

Figure 16 shows a branch that can be activated by the switch “SW ADDITIONAL FUNCTION”. 

 

Figure 7.1: Handling variants for a supplementary branch 
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Handling variants of mutually excluding options 

 

 

Figure 7.2 shows a logic “either-or switch” for the functions 1 and 2 as an example 

 

 

 

Figure 7.2: Handling variants of mutually excluding options 

 

7.2. Modeling application boundary conditions:  

Often functions are only active under very specific boundary conditions (e.g. warnings to the driver 
only when the vehicle is in motion) or faults occur only in special driving conditions (e.g. rough roads). 
These special cases are modeled by an AND link with one condition (= “conditional event”). If the prob-
ability of occurrence of the special case is constant with time, then the conditional event is modeled 
with a constant probability (Q). 
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Figure 7.3: Modeling application boundary conditions 

In the example given above the probability for the same or different sign of a signal (each 50%) is 
modeled by the oval depicted conditional event with Q = 0.5. 

 

7.3. Special hints on fault tree construction for evidence per ISO 26262 

The ISO 26262 suggests the use of the FTA. 
• A qualitative FTA for identification of systematic faults (ISO 26262-4) – whereby all fault types 

(mechanical, electrical, software) should be considered (in Vol. 4 the ISO 26262 does not state 
that the analysis is limited to purely electrical faults). 

• A quantitative FTA for evidence of the hardware metrics (ISO 26262-5) – whereby only the 
randomly occurring electrical hardware faults shall be considered. 

Both requirements - contradictory in the justification - can be encountered by an appropriate data 
assignment of the respective basic events. By a failure rate selected appropriately low for the mechan-
ical faults or software implementation faults, the influence can be controlled such on the one hand it 
can be shown in the results lists (Cut-Sets) whereas on the other hand however, has no significant 
influence on the extent of the hardware metrics. To be able to distinguish better in the composition of 
the computation results, different failure rates can be entered for the different fault types. 

The following data assignment has asserted itself: 
• Mechanical faults: Data model “Rate” where l = 1E-15 1/h 

(The resulting probability of the mechanical single point faults is higher than that of an dou-
ble point faults  the mechanical single point fault is noticeable in a Cut-Set list) 

• Software implementation fault: Data model “Fixed” where r = 1E-12 1/h 
(The data model “Fixed” is selected because the probability of a software error remains con-
stant over time.) 
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This data assignment is only meaningful in the context of the ISO 26262. It has been chosen inten-
tionally and has no reference whatsoever to any field data! 

7.4. Modeling monitoring (monitors) 

The following problem often arises in the quantitative modeling of typical electrical-electronic systems: 
One hardware element is monitored from another element. The monitoring (the monitor) is not how-
ever perfect (degree of diagnostic coverage DC < 100%), and also because the monitoring circuit itself 
can fail, or the foreseen system reaction triggered from the monitor can fail. 

Any possible modeling in the fault tree must therefore take into account: 
• the fault to be detected 
• the degree of diagnostic coverage of the monitoring (modeled using a fixed value) 
• the possible comparison signals used by the monitoring 
• the system reaction triggered from the monitoring that leads to the safe state 

Modeling the monitoring implemented in a hardware 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Modeling a monitoring system implemented in hardware 

 Modeling principle 

 

 

Monitor function is only 
evaluated for the HW 
metrics when these are 
active within the fault 
tolerance time. 
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Modeling a “model-based” monitoring for which software could be necessary. The task of the moni-
toring is the comparison of a signal to be monitored (CAUSE_1 and CAUSE_2) with a reference signal 
(CAUSE_4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Modeling a monitoring system implemented in software   
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7.5. Overview of the event and gate types in the Tool FaultTree+ 

7.5.1. Gate types available 

 

Type Symbol Remark 

AND gate 

 

 

 All inputs must be TRUE. 

 A  B 

 Cut-Set list: 
EVENT1.EVENT2 

 Computation of Q 
Q = qA*qB 

 In the example 
Q = 0.1 * 0.1 = 0.01 

 Remark: FaultTree+ limits the 
maximum number of inputs to 18 

 

Inhibit 

 

 All inputs must be TRUE – one in-
put represents a condition  

 A  B 

 Cut-Set list: 
EVENT1.EVENT3 

 Computation of Q 
Q = qA*qB 

 In the example 
Q = 0.1 * 0.1 = 0.01 

 Remark: FaultTree+ limits the 
maximum number of inputs to 18 
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Type Symbol Remark 

OR gate 

 

 

 One input must be TRUE 

 A  B 

 Cut-Set list: 
EVENT1 
EVENT2 

 Computation of Q (summation 
rule) 
Q = qA+qB -  qA*qB 

 In the example 
Q = 0.1 + 0.1 – (0.1*0.1)  
    = 0.2 – 0.01 = 0.19 

 Remark: FaultTree+ limits the 
maximum number of inputs to 18 

 

Exclusive OR 
gate 

 

 Only one input may be TRUE, the 
other must be FALSE. 

 (-AB)(A-B) 

 Cut-Set list: 
-EVENT1.EVENT2 
EVENT1.-EVENT2 

 Computation of Q  
Q =  
(1-qA)*qB +  (1-qB)*qA – 0 

since (-EVENT1.EVENT2) * 
(EVENT1.-EVENT2) = 0 

 

 In the example: 
Q = (1-0.1)*0.1 + (1-0.1)*0.1  
    = 0.9*0.1 + 0.9*0.1 
    =0.09 + 0.09 = 0.18 
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Type Symbol Remark 

Equivalent 
circuit  
diagram XOR 

 

NOT gate 

 

 • The input must be FALSE 

• -A 

• Cut-Set list: 
-EVENT1 

• Computation of Q 
Q = (1-qA) 

• In the example: 
Q = 1 – 0.1 = 0.9 
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Type Symbol Remark 

Vote gate (n 
from m) 

 

Remark: 
• n from m inputs must be TRUE.  

Here: 2 from 3 inputs... 

• (AB)(AC)(BC) 
• Cut-Set list: 

EVENT1.EVENT2 
EVENT1.EVENT6 
EVENT2.EVENT6 

• Computation of Q (summation rule) 
Q = qA*qB +  qA*qC +  qB*qC   
       - [(qA*qB)*(qA*qC) + (qA*qB)*(qB*qC) + (qB*qC)*(qA*qC)] 
       + (qA*qB)*(qA*qC)*(qB*qC) 
    = qA*qB +  qA*qC +  qB*qC  - [(qA*qB*qC) + (qA*qB*qC) + (qB*qC*qA)] 
       + (qA*qB*qC) 

• In the example the following applies...  
qx*qy = 0.01 
qx*qy*qz = 0.001 

• Also:  
Q = 0.01 + 0.01 + 0.01 - [0.001 + 0.001 + 0.001] + 0.001 
    = 0.03 – 0.003 + 0.001 
    = 0.028 

• Remark: FaultTree+ limits the maximum number of inputs to 18 
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Type Symbol Remark 

Equivalent 
circuit  
diagram 
VOTE (2 from 
3) 

 

Transfer gate 

 

• Gate has no inputs or no visible 
inputs 

• Flagged gate where the inputs are 
not yet defined or those that are 
defined as the Top Gate of a new 
side in the Fault-Tree+  

• Transfer gate without a defined 
input can be shown in FaultTree+ 
using the command “Verify Data”. 
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Type Symbol Remark 

Zero gate 

 

• Gate has no logic function 

• A = A 

• Cut-Set list 
EVENT1 

• Computation of Q: 

• In the example: 
Q = qA 

• Zero gates can be used for docu-
mentation purposes (e.g. docu-
mentation of the changed signal 
names in an active chain). 

Priority 

 

• All inputs must be TRUE in the de-
fined sequence. 

• A  B 

• Cut-Set list: 
EVENT1.EVENT2 

• Computation of Q  
Compared to the result of the 
purely AND gate where the se-
quence plays no role, the result is 
reduced. 

• Refer also to the FaultTree+ Help 
for details of the Priority gate 

• Remark: FaultTree+ limits the 
maximum number of inputs to 18 
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7.5.2. Available event type / event symbols 

 

  

Typ Symbol Remark 

Basis 

 

Application: 
• All types of faults 

Typical fault models used: 
• All except dormant 

 

Conditional 

 

Application: 
• For taking the state in fault trees or 

the gap in monitoring into account 
Typical fault models used: 

• Fixed or TRUE and FALSE 
 

(The rate model is only to be used when the 
probability of the state increases with the op-
erating time.) 

House 

 

Application: 
• For controlling the influence of sub-

fault trees 
Typisch fault models used: 
Compelling logic TRUE or FALSE 

Dormant 

  

Application: 
• For taking latent faults into account 

Typical fault models used: 
Dormant 

Undeveloped 

 

Application: 
• For the documentation of paths not 

pursued further or for the documen-
tation of inputs with and without in-
fluence 

Typical fault models used: 
All except Dormant, including TRUE and FALSE 
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7.5.3. Available fault models 

 
 

Type Application Remark 

Rate model 
“Rate” 
 

For the description of ran-
domly occurring faults 
with a constant failure rate 
that are detected immedi-
ately or are rectified.  
 
Early failures and failures 
at the end of the lifetime 
are not considered. 
 
Application:  
Electrical faults  
 
 
Can be used within in the 
scope of safety evidence 
per ISO 26262-5. 

Major parameter: 
r: failure rate lambda (1/h) 
t: considered time period (computing time, or also the 
mission time) 
Computation (source: FaultTree+ Help): 

 
Remark: 
µ: Repair rate is zero in systems that cannot be repaired 

Fixed failure 
rate: “Fix” 
 

For the description of ran-
domly occurring faults that 
occur with a constant 
probability. 
 
Application: Operating 
conditions; diagnostic slip 
because of the principle 
 
Can be used within in the 
scope of safety evidence 
per ISO 26262-5. 

Major parameter:  
Q(t) = constant probability 
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Dormant For computation of the 
probability of occurrence 
of latent occurring faults. 
 
Computation result de-
pends on the project set-
tings in the area “Sets Gen-
eration”: 
 
Application:  
Randomly occurring faults 
in the context of the Rate 
model that remain unde-
tected over a defined time 
period, i.e. are present as 
latent faults 
 
Can be used within in the 
scope of safety evidence 
per ISO 26262-5. 

Major parameters for systems that cannot be repaired:  
r = failure rate lambda (1/h) 
Inspection interval = latency period in h 
 

Course of Q(t) for latency : 
The course of Q(t) as depicted below is also shown in 
the FaultTree+ Help. The course over time cannot how-
ever be shown in this way and only serves to explain the 
principle of how the computed final value shall be un-
derstood. This computed final value is used in the tool 
as constant Unavailability. 
 

 
 
Setting options for FaultTree+ in the area “Sets Genera-
tion”: 

 
Mean: 
Can be used when it can be assumed that the occur-
rence of the latent faults is distributed equally through-
out the system lifetime.  
Remark: 
MTTR: “Mean Time To Repair” is zero for systems that 
cannot be repaired 
 
Calculation rule (source: FaultTree+ Help): 
 

For  it applies simplified 

 
 
Max: 
Can be used when it can be assumed that the occur-
rence of the latent fault always occurs in the first hours 
of the system lifetime (=> conservative approach). 
 
Calculation rule: 
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Weibull For the description ran-
domly occurring faults 
with a variable failure rate. 
 
Takes early failures and 
failures at the end of the 
lifetime into account. 
 
Application:  
E.g. mechanical faults for 
pronounced wear behavior 
 
! Do NOT use for the safety 
evidence per ISO 26262-5! 

Failure rate: 

 
Non-availability:  

 
with the “Unreliability” 

 
 
The other fault models available in FaultTree+ are not covered here in any further detail due to their 
minor significance of in practice. 

7.5.4. ISO 26262: Relationship of failure tolerance time – fault model consideration time 
(mission time) for continuous or initial monitoring 

Within the scope of the ISO 26262 standard for the automotive field it is important for safety evidence 
that only those monitoring events are considered that run “fast enough” to prevent the occurrence of 
the Top Event by fault detection and system reaction. I.e. the sum of the execution time and fault 
reaction time must be less than the failure tolerance time FTTI (Fault Tolerance Time Interval) of the 
Top Event to be prevented. 

Regarding the modeling is shall be differentiated for the quantitative interpretation whether this shall 
always take place only for a certain consideration time (= computing time = mission time) of 1 h (1 h is 
seen by many OEMs as the power-on-cycle, Case A) or whether other, longer, mission times shall be 
considered (Case B), e.g. 8000 h the average vehicle utilization time or 15000 h as the maximum vehicle 
utilization time. 

Case A (mission time = 1 h): 

In this case a non-latent basic event that experiences only an initial monitoring (i.e. once after ramping 
up the system) can be modeled in 2 different ways. These are mathematically equal, i.e. the magnitude 
of Q after 1 h is exactly the same. The initial monitoring cannot however be used here for a reduction 
of Q, because the fault to be detected can be active in the time between the executions (repetition 
period of the monitoring of 1 h >> FTTI of the Top Event to be prevented). The following modeling 
options are available: 

1. Symbol “Basic” and fault model “rate” 
2. Symbol “Basic” and fault model “dormant” with “inspection interval” = mission time. Disad-

vantage is that for computing time > 1 h (in case A is not relevant) the value for the Q does 
not increase, i.e. an inspection without a gap is assumed here. Also, the global project setting 
of the “dormant failure model” = MAX has to be selected so that the dormant fault model 
does not output any probabilities that are too small for this application purpose. All other 
“true” latent faults are then computed according to this dormant fault model as well (with 
appropriate adjustment of the inspection interval to the latency period). The MAX model has 
the meaning that it is assumed that all latent faults always occur within the first hours of the 
system running. 
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Latent faults that have no monitoring whatsoever during the vehicle lifetime have to be modeled 
with the fault model “dormant” and “inspection interval” = assured lifetime of the ECU (h).  

Case B (mission time > 1 h): 

Principally for the considerations in combination with the ISO 26262, computations of mission times > 
1 h are not to be advised since in the final determination of the unavailability after one hour, funda-
mental computing errors would then be made that lead to a limiting of the maximum attainable una-
vailability after one hour of 1/(mission time). This is because the result has to be with respect to 1 h 
and not to mission times > 1 h. Thus e.g. for a mission time of 10,000 h, the maximum attainable 
unavailability after one hour for the event occurring with certainty (i.e. Q = 1 for the 10,000 h) is limited 
to Q = 1E-04 because the mission time has to be averaged when converting back to 1 h. That this result 
cannot be correct is obvious. The higher the unavailability at the end of the mission time, the greater 
is the impact of such computing errors. 

If despite the factual situation outlined above such computations have to be made then there are 
several options for the modeling: 

1. Option: The effectiveness of the initial tests shall be taken into account:  
Non-latent faults: A non-latent basic event that is only initially monitored at the beginning of 
a trip (with a journey time of 1 h) is marked with the symbol “Basic” and modeled with the 
fault model “dormant” and “inspection interval” = 1 h (project option “dormant failure 
model” = Max has to be selected).  Otherwise it would have to be assumed that no initial 
monitoring has been installed in the system whatsoever or that the system is never shut 
down during the whole lifetime.  
Disadvantages: Modeling is given that is based on 100% effectiveness of the initial test. A 
possible gap in the monitoring is not shown. Q is reduced by the subsequent division for 
these faults to values that are then too small. 
Latent faults: Faults that remain latent throughout the vehicle lifetime (i.e. remain unde-
tected and without consequences for the Top Event) should be marked with the symbol 
“Dormant” and be modeled with the fault model “dormant” with “inspection interval” = sys-
tem lifetime. The consequence of selecting the option “dormant failure model” = max se-
lected because of the non-latent faults is that  Q is calculated as if the occurrence of the la-
tent faults always takes in the first hour of the system lifetime. 

2. Option: Effectiveness of the initial test not taken into account:  
Non-latent faults: 
In this case a non-latent basic event that is only monitored initially at the beginning of  a trip 
(with journey time 1 h) is modeled with the fault model “rate”.  
Effect: A very conservative modeling is given that does not take into account the weakening 
effect of the initial test and the shutdown of the systems after one hour of operation. 

True latent faults: Latent faults that have no monitoring whatsoever during the vehicle lifetime 
could be modeled with the fault model “dormant”, “inspection interval” = mission time. Here 
also the setting of the “dormant failure models” = MAX has to be selected so that the dormant 
fault model does not output any probabilities for this application purpose that are too small.  
Effect: The unavailability computed in this way corresponds exactly to the result of modeling 
with the “rate” model. Latent faults hence cannot be distinguished from non-latent faults on 
the basis of their unavailability. According to this it makes no difference which modeling is 
selected. A simple general modeling with “rate” for all faults gives the same result. This is a 
further indication that computations of mission times > 1 h are only meaningful for systems 
where the period of uninterrupted operation are in fact so long (e.g. power plants and similar). 
Unlike this for systems with shorter mission times problems occur when making (appropriate) 
considerations for the influence of latent faults. 
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7.6. Recommendations on the naming convention 

Specifying the naming conventions in the FTA is useful, amongst other reasons, for combining FTAs, 
ensures better readability, simplifies the interpretation and the orientation within the FTA. 

7.6.1. Naming Events / Gates 

Naming from general to special 

It shall be taken into consideration here that the tool environment in FaultTree+ preferentially sup-
ports certain implementations of a naming convention because some dialogs (Event Table, Gate Table) 
of the tool always sort the available lists in alphabetical order. If wanting to always obtain similar gates 
side-by-side in the selection of gates is desired, then it is recommended to use a naming from general 
to special (example: signal error_devation direction: PS_HIGH, PS_LOW, component_fault mode: 
R19_OPEN, R19_SHORT). 

The naming convention selected in the example fault tree from Step 4 follows one order. Thus all faults 
are named “CAUSE_*”.  

Prevent special characters 

The use of the decimal point “.” should be avoided in the gate name / event name: 

Reason: The point separates the events involved within multiple Cut-Sets in the default setting for 
FaultTree+ for the interpretation of the Cut-Sets. A decimal point might be confusing here. 

The blank in the gate name / event name can be substituted by an underline or by a dash (better 
readability in FaultTree+). 

Last character of event and gate designations 

The last character of an event / gate name should not be a number or a blank. 

Reason: When re-using trees or events in the mode “paste special” Fault-Tree+ adds a number to the 
end of the name. If there is already a number here then this number is simply incremented by Fault-
Tree+ by “1” when pasting using the “paste special” function.  

 Poor recognition of unintentional changes (“Fault pressure sensor 1” unintentionally becomes 
“Fault pressure sensor 2”).  

A blank at the end of an event or gate name can lead to problems with the unambiguous identification 
of gates. 

Example from the fault tree in Step 4:  

CAUSE_1)1 can be seen as an event not yet edited that has been added in the “paste special” mode. 

http://rb-socos-c.de.bosch.com/SOCOS/qr/?file=CGP-01900-015_BBL_N_EN_2015-08-18.pdf


Fault Tree Analysis 

© Robert Bosch GmbH | Status 08.2015 -61 - 

 

Figure 7.6: Naming convention in the event table 

Assign designations of events according to the fault type 

The event name can be made up of: Event class; name / designations; discrepancy class; signal devia-
tion 

Examples from an FTA for the product ESP (Electronic Stability Program): 

Software errors:  

SW_HAL (Software, Hydraulic Actuation Layer) 

SW_VDC (Software, Vehicle, Dynamics Controller) 

 

Mechanical faults:  

M_EV_U_CL (Mechanical fault, Intake Valve, Unintended, Closed) 

M_USV_U_O (Mechanical fault, Changeover Valve, Unintended, Open) 

  

Control unit faults: 

ECU_EV_U_O (Control Unit fault, Intake Valve, Unintended, Open) 

ECU_HSV_C2H (Control Unit fault, High-pressure Switching Valve, Current, 2(too), High) 

ECU_PHZ_2H(>+30) (Control Unit fault, HZ Pressure Signal, Too High, deviation > 30 bar) 

ECU_PHZ_2L(>20%) (Control Unit fault, HZ Pressure Signal, Too Low, deviation > 20%) 

 

Signal faults: 

P-WHEEL_2L(<-15) (Wheel Pressure Signal, Too Low, deviation > 15 bar) 

 

Monitoring gap 

UNDET_BLS_PERM_H (Monitoring Gap, BLS Permanently High) 

UNDET_MOM_LOW (Monitoring Gap, Modulator Monitoring, MomLowPressure) 
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7.6.2. Use event groups 

If the number of assigned events increases, then sorting the events into groups can help to retain the 
overview. Event groups are created in FaultTree+ in the project Explorer. Assigning an event to several 
event groups is also possible. 

 

Figure 7.7: Event groups 

7.6.3. Special feature when naming gates 

If a file contains several sub-fault trees that analyze the different Top Events, then it can be meaningful 
when the designations of the gates include indications about the inclusion in the particular sub-fault 
tree. If the note is added at the end of the designation then this has the advantage that similar gates 
which are sorted alphabetically are listed side-by-side by FaultTree+ in different hazards. 

Advantage: Especially the relationships between the gates are easier to understand. Contradictions 
(repeatedly used) signal-fault trees and the Top Event (the Hazard) of the fault tree can be (more) 
easily identified. 

Example for the identification of gates within fault trees (last letters):  

AV(FL) OP E|C *  [Exhaust Valve] [(Wheel Front Left)] [Open] [Electrical or Control fault] [identifica-
tion for the respective fault tree (L/ND, L/NP, R,...)] 

AV(FL) OP M|E *  [Exhaust Valve] [(Wheel Front Left)] [Open] [Mechanical or Electrical fault] [iden-
tification for the respective fault tree (L/ND, L/NP, R, ...)] 
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Figure 7.8: Naming convention gate table 
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7.7. Hints and tricks in the preparation, computation and handling of fault 
trees 

7.7.1. Multiple definition of a single basic event 

If one and the same fault can be relevant at different points in a fault tree then attention has to be 
paid that the same event is always in the fault tree. This ensures that the fault tree logic computes the 
influence of the event concerned correctly. 

 

Fault tree logic Result 

 

Cut-Set list:  

COMPUTING FAULT with Q = 1.0E-08 

The double point fault from the COMPUTING 
FAULT and the SIGNAL FAULT is absorbed when 
using the identical event COMPUTING FAULT be-
cause:  

Q = qA  (qA  qB) = qA 

Total probability: 

Q = 1e-08 
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Cut-Set list:  

COMPUTING FAULT (1)=> Q = 1E-08 
COMPUTING FAULT.SIGNAL FAULT => Q = 
9.995E-12 

Total probability: 

Q = qA + qB*qC – qA*qB*qC 

Mit qB.qC = 9.995E-12 

Q = 1E-08 + 9.995E-12 – 1E-08*9.995E-12 

Q = 1.001E-08 

 

 

7.8. Application of NOT or XOR gates for activated function “Full Not Logic” 

The preparation of a fault tree when using NOT gates and / or XOR gates for an activated function “Full 
Not Logic” has to be well-considered. Possible application cases might be such that e.g. certain fault 
combinations shall be excluded by the safety logic. By an AND combination with a NOT gate or XOR 
invalid fault combinations shall then be expunged.  

Problems arise from the type of the result that the NOT gate or the XOR gate provides. If faults are 
linked under these gate types the logic mode of which is neither TRUE nor FALSE, then NOT and XOR 
provide as  the result the probability of the NOT fault (i.e. the probability that the fault does occur not 
just at this moment).  

In the case of large fault trees this also leads to the condition - in addition to the actual relevant fault 
combinations – that NOT faults are combined as well. As a rule the Order of the thereby resulting Cut-
Sets then increases dramatically – even though not much has changed in the magnitude of the overall 
result. For the corresponding logic, the Cut-Sets cannot then be displayed completely either in the tool 
FaultTree+ or by an export to MS EXCEL because the length of the Cut-Set string to be displayed ex-
ceeds the possibilities of both tools. 

Alternatives to using NOT gates or XOR gates are:  
• Avoiding the use of NOT or XOR gates underneath an AND gate and thereby knowingly accept-

ing fault combinations where their occurrence is actually ruled out. When these are the most 
likely fault combinations in the overall result then this is good news because meaningful fault 
combinations are even more unlikely than those that are mutually excluding. 

• Not to use NOT or XOR gates by cutting out the fault trees while taking into account that the 
relationship cannot be displayed correctly (the expunge effect from the NOT gate is explicitly 
taken into account in the fault tree). 
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Example of a circuit diagram for 
lamp control. 

Event to be examined: “LAMP 
LIGHTS UP” 

Switch 1 operates two switching el-
ements in synchronization. One of 
these is switched as the  “Opener” 
in series with all other elements 
and as a  “Closer” in parallel with 
the switching element  that switch 
2 operates. 

Switch 3 operates a “Closer” and is 
connected in series with all 
switches. 

Node 1 and node 2 are points 
where the flow of current can be 
analyzed. 

 

Fault tree preparation thereby us-
ing “NOT gate”: 

The analysis showed: 

The lamp goes on when switch_1 is 
NOT operated (“Opener” not oper-
ated). The analysis of the other 
parts of the circuit also showed 
that node 1 has to be connected 
with node 2 connected (SWITCH_1 
or ). At the same time SWITCH_3 
must be operated. 

Cut-Set: 

SWITCH_2.SWITCH_3.-SWITCH_1 

Expunged Cut-Set: 

SWITCH_1.SWITCH_2.-SWITCH_1 

Alternatives: 

Deactivate: “Full Not Logic” in the Fault-Tree options ( accept fault combinations) 

Computing the fault tree again from the top for a deactivated “Full Fault Tree NOT logic” leads to the 
NOT gate or XOR gate being ignored. 
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The computation results of the fault tree change as follows: Cut-Set list: 

SWITCH2.SWITCH3 
SWITCH1.SWITCH3  

The second Cut-Set has to be accepted here even though it is evidently invalid.  
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Alternative preparation of the fault tree by cutting free:  

 

The alternative fault tree logic 
takes the technical relationships 
into account and provides a con-
servative (i.e. slightly too high) 
overall result. 

The NOT gate has been converted 
into an Undeveloped Event “NOT 
SWITCH1” and set to logically 
TRUE. Compared to the probability 
of non-operation (Q = 1 - 1E-08) 
this leads a slightly higher result in 
the Top Event ( conservative) 

The data assignment of SWITCH1 is 
set to logically FALSE while taking 
into account the contradictory 
fault effects (closing and at the 
same time opening the current cir-
cuit). This means that SWITCH1 
cannot contribute to the lamp go-
ing on by a connection of node1 
with node2. 

Cut-Set list: 

SWITCH2.SWITCH3 

The probability of non-operation of 
SWITCH1 remains unconsidered 
because NOT SWITCH 1 = TRUE. 
This way of proceeding is meaning-
ful for basic event where the prob-
ability is << 1.  

If the probability is higher then the 
attempt can be made to take into 
account the reciprocal probability 
in a basic event that describes the 
non-occurrence of the fault (here 
“NOT SWITCH 1”). 

7.9. Unintentional / intentional absorption of multiple point faults 

With the combination of AND and OR gates, absorption effects can take place because due to the rules 
of Boolean algebra. These effects can be used beneficially to still be able to show for the full analysis 
depth the irrelevance of inputs. 

Example from the system FTA of the ESP (Electronic Stability Program): 

In the product ESP there is a wheel-slip controller than can only be activated by a request from the 
vehicle dynamics controller. In response to the request, the wheel-slip controller then compares the 
measured wheel velocities with a computed vehicle speed. 

Assuming that the wheel-slip regulator should be unintentionally active (i.e. without a request) the 
following fault tree is given... 
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Figure 7.9: Absorption of wheel-speed faults 

MB_TAR_WHEEL_ZU_NIEDRIG is negligible because of the probability larger by a factor of about 100 
for WSS NIEDRIG. I.e. the wheel-velocity signal does not contribute to the total probability even though 
it was fully taken into account by the analysis (useful for discussions with customers with respect to 
complete analysis). 

This absorption effect can however also take place unintentionally. Special attention shall therefore 
always be given to fault trees where OR gate single point faults and AND gate are combined. 

7.10.  Use of cut-off rules for the computation 

Sometimes fault trees are so large that the computing times for the combinations of faults that are 
given are very long. Remedial help can be found by the activation of so-called Cut-Offs. In this way the 
computation in FaultTree+ is prematurely aborted – a corresponding loss in the accuracy of the results 
must however then be taken into account. 

FaultTree+ offers two Cut-Off conditions (Order Cut-Off and Probability Cut-Off) that are available for 
the particular problem assignments. Both conditions can be combined with one another. 

Order Cut-Off: 

FaultTree+ only computes fault combinations up to the designated magnitude of the Order. The prob-
ability of the combination of faults does not play any role here. 
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Probability Cut-Off: 

FaultTree+ only computes fault combinations up to the designated Unavailability / Frequency. The Or-
der of the fault combinations does not play any role here. 

Figure 7.10: Project options – Cut-Offs 

Inappropriate selection of the Cut-Offs can have unexpected effects on the computed result. Therefore 
the effectiveness of the Cut-Off conditions shall be demonstrated using an example fault tree. The 
logic in Figure 7.11 has no technical background, does however provide the corresponding fault com-
binations from single-point through to the four-point faults. A special feature here is that there are 
some events for which the failure probability lies in the region of 0.1. 
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Figure 7.11: Example fault tree for demonstrating Cut-Offs 

The example fault tree gives the following results for a 1 h mission time (“System lifetime”). 

Without activated Cut-Off: 

Unavailability TOP3: Q = 9.056 E-05 

Cut-Set list: 

Number Cut-Set Unavailability Order 

1 EVENT2. EVENT1. EVENT5. EVENT4 9.05592E-05 4 

2 EVENT9. EVENT1 9,51626E-10 2 

3 EVENT8. EVENT5. EVENT4 1E-10 3 

4 EVENT10 1E-11 1 

5 EVENT2. EVENT1. EVENT4. EVENT6. EVENT7 9.05592E-13 5 

6 EVENT8. EVENT9 1E-16 2 

7 EVENT8. EVENT4. EVENT6. EVENT7 1E-18 4 

The most likely combination of faults has an Order of 4! In practice single point faults that are con-
nected with several conditions (Q in the percentile range) can form such Cut-Sets. 

The activation of a Order Cut-Off with the value 3 has the corresponding consequences:  

The result is improved by a factor of 10,000 because the cut-off and presumably insignificant Cut-Set 
with the Order 4 provided the decisive contribution to the total result. 
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Unavailability TOP3: Q = 1.062 E-09  

Cut-Set list: 

Number Cut-Set Unavailability Order 

1 EVENT9. EVENT1 9.51626E-10 2 

2 EVENT8. EVENT5. EVENT4 1E-10 3 

3 EVENT10 1E-11 1 

4 EVENT8. EVENT9 1E-16 2 

 

Probability Cut-Off with value 1E-12: 

For activation of a Probability Cut-Off with the Unavailability value 1E-12 the overall result remains 
almost unchanged because the difference between the Cut-Off and the expected overall result is ac-
cordingly high.  

Unavailability TOP3: Q = Q = 9.056 E-05 

Cut-Set list:  

Number Cut-Set Unavailability Order 

1 EVENT2. EVENT1. EVENT5. EVENT4 9.05592E-05 4 

2 EVENT9. EVENT1 9.51626E-10 2 

3 EVENT8. EVENT5. EVENT4 1E-10 3 

4 EVENT10 1E-11 1 

The meaningfully selected Probability Cut-Off here takes into account the magnitude where the ex-
pected result will lie – it is smaller by a factor 1E-07 (!) than overall result. (Example from practice 
(ESP-FTA): Target value lies in the range 1E-08 to 1E-07 => Probability Cut-Off at 1E-30). 

Summary:  

An Order Cut-Off should only be used when:  

• It is certain that the result will not be falsified by the Order Cut-Off. 

• The focus is in fact on the output of fault combinations with a limited Order. 

A Probability Cut-Off can be selected when taking the expected result into account such that the overall 
result will not be significantly influenced. 

7.11.  Taking inputs into consideration that have no influence on a gate 

It can be meaningful to model inputs in a fault tree as well when it is known that they have no influence. 
This can be realized by attaching basic events with the symbol “Undeveloped” and the logic mode = 
FALSE. 

Advantages:  
• The completeness of the analysis can be demonstrated and reasons for the non-relevance of 

inputs can be appropriately documented.  
• When information is missing in the fault tree then this can be clearly interpreted.  
• The comparability of fault trees increases.  
• The completeness of the analysis can be easily checked.  

Disadvantage: The number of events to be created increases. 
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7.12.  Open points in the FTA (=> Transfer Gates, Labels etc.) 

Open points in the FTA can be flagged by using labels on FaultTree pages as well by including gates 
without any input (Transfer Gates) in the fault tree. 

Drawback of using labels: Labels are always assigned to one page in the fault tree. If the allocation of 
the pages in the fault tree changes (pages are defined by the option “Page” in gates defined), and 
hence the allocation of the label (of the open points) to the fault tree is lost. 

Advantage of using transfer gates: The Option “Verify Data” in the menu “Analysis” allows straightfor-
ward identification of such transfer gates. If this query does not provide any more open gates then all 
open points are closed. 

7.13.  Modeling Common-Cause Failures 

There are principally 2 options for the modeling:  

1. Modeling with a coupling factor between basic events that can have a common Root Cause 

failure (-factor model). 

2. Modeling by using the Root-Cause event at all relevant points in the fault tree. 

7.13.1. Modeling with the -factor model 

The ß-factor is the simplest model for the description of the dependency of two events A and B that 
are initially assumed to be independent. 

With the help of a factor (the ß-factor that can vary between 0% and 100%) an expression is given for 
the proportion of the failure rate of A that leads to the same type of fault for B. In the most straight-
forward case of homogeneous redundancy where QA = QB it the following applies: 

QCCF =  x QA 

QTOP = QCCF + (1-)QA * (1-)QB 

Example:  QA = QB = 1E-03.  = 10% 

  QTOP = 0.1 * 1E-03 + 0.9 * 1E-03 * 0.9 * 1E-03  1.0081E-04 

For other cases refer to the FT+ User Manual. 

The  -factor model is not undisputed since there is no generally accepted method for determining the 

 factor. The norm IEC61508 includes a checklist for determining the  factor that is often used. 

7.13.2. Modeling by using the Root-Cause event 

When modeling Common Causes by using the Root-Cause attention has only to be given that the same 
event is being linked. 

Example: In Figure 7.11 (see Section: 7.10  Use of cut-off rules for the computation) the EVENTS 1 and 
EVENT 9 are linked as Root-Cause events for the higher precedence AND gate. 
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8. Attachment 2 – example of a report 
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